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REFLECTED BROWNIAN MOTION IN AN ORTHANT:
NUMERICAL METHODS FOR STEADY-STATE ANALYSIS

By J. G. Da1 anD J. M. HARRISON
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This paper is concerned with a class of multidimensional diffusion
processes, variously known as reflected Brownian motions, regulated
Brownian motions, or just RBM’s, that arise as approximate models of
queueing networks. We develop an algorithm for numerical analysis of a
semimartingale RBM with state space S = R? (the nonnegative orthant of
d-dimensional Euclidean space). This algorithm lies at the heart of the
QNET method for approximate two-moment analysis of open queueing
networks.
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1. Introduction. This paper is concerned with a class of multidimen-
sional diffusion processes, variously known as reflected Brownian motions,
regulated Brownian motions, or just RBM’s, that arise as approximate models
of queueing networks. More specifically, we develop methods for numerical
analysis of a semimartingale RBM (SRBM) with state space S = R? (the
nonnegative orthant of d-dimensional Euclidean space). On the interior of S
this process, denoted by Z = {Z(¢), t > 0}, behaves like an ordinary Brownian
motion with drift vector u and covariance matrix I', and on each of the
(d — 1)-dimensional hyperplanes that form the boundary of S, it is instanta-
neously reflected in a direction that is constant over that boundary face. The
precise mathematical definition of the process Z will be given later in Sec-
tion 2.

The motivation for our study comes from the theory of open queueing
networks, that is, networks of interacting processors or service stations where
customers arrive from outside the network, visit one or more stations in an
order that may vary from one customer to the next and then depart. (In

" Received August 1990; revised February 1991,
AMS 1980 subject classifications. Primary 60J70, 60K30, 65U05; secondary 65P05, 68M20.
Key words and phrases. Brownian system model, reflected Brownian motion, stationary
distribution, numerical analysis, open queueing networks, performance analysis

65



66 J. G. DAI AND J. M. HARRISON

contrast, a closed queueing network is one where a fixed customer population
circulates perpetually through the stations of the network, with no new
arrivals and no departures.) It was shown by Reiman [19] that the d-dimen-
sional queue length process associated with a certain type of open d-station
network, if properly normalized, converges under heavy traffic conditions to a
corresponding SRBM with state space R?. Peterson [18] proved a similar
heavy traffic limit theorem for open queueing networks with multiple cus-
tomer types and deterministic feedforward customer routing; Peterson’s as-
sumptions concerning the statistical distribution of customer routes are in
some ways more general and in some ways more restrictive than Reiman’s.
The upshot of this work on limit theorems was to show that SRBM’s with
state space R? may serve as good approximations, at least under heavy traffic
conditions, for the queue length processes, workload processes and waiting
time processes associated with various types of open d-station networks.
Recently Harrison and Nguyen [12] have defined a very general class of open
queueing networks and articulated a systematic procedure for approximating
the associated stochastic processes by SRBM’s. This general approximation
scheme subsumes those suggested by the limit theorems of both Reiman and
Peterson, but it has not yet been buttressed by a rigorous and equally general
heavy traffic limit theory.

In light of the work described above, one may take the point of view that an
SRBM with state space R? represents a diffusion model or Brownian model of
a d-station open queueing network, at least if the data of the SRBM are
correctly chosen, and that this Brownian model is an alternative to the more
familiar models emphasized in conventional queueing theory. If the replace-
ment of a conventional queueing model by its Brownian analog is to yield
benefits, of course, one must be able to compute interesting performance
measures for the Brownian model, and it is steady-state performance measures
that are usually of greatest interest in queueing theory. Thus we are led to the
problem of computing the stationary distribution of an SRBM in an orthant,
or at least computing summary statistics of the stationary distribution. As we
will explain later, the stationary distribution is the solution of a certain highly
structured partial differential equation problem (PDE problem). The purpose
of this paper is to develop a general computational method for numerical
solution of that PDE problem, prove some properties of the general method
and provide some (admittedly incomplete) evidence as to its practical efficiency.
The method developed here is closely related to one described in an earlier
paper [3] for steady-state analysis of an SRBM in a two-dimensional rectangle;
however, in the orthant setting there are new issues to be dealt with because
of the unbounded state space.

The paper is organized as follows. Section 2 gives a precise mathematical
definition of the SRBM to be studied and Section 3 develops the analytical
characterization of its stationary distribution. A general method for computing
the stationary distribution is presented in Section 4 and Section 5 describes
the choices that we have made in implementing the general method. (Readers
will see that other choices are certainly possible.) In Section 6 we consider a
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number of test problems, comparing the numerical results obtained with our
algorithm against known exact results. Finally, Section 7 presents a simple
example of an open queueing network that has been studied previously in the
literature of computer science: we develop the data of the SRBM, use our
algorithm to compute the approximate steady-state performance measures and
compare those figures against simulation results and other approximate per-
formance estimates that have been proposed elsewhere. This last section gives
additional evidence that our algorithm works and also gives a concrete example
of the algorithm’s role in performance analysis of queueing systems.

2. Definitions and preliminaries. Let d > 1 be an integer and S =
{x = (x,%5,...,%5) €ER% x,>0,i=1,2,...,d} be the nonnegative orthant
in d-dimensional Euclidean space R¢. For i =1,2,...,d, let F,={x € S:
x; = 0} be the ith face of dS and v; be a vector on F, pointing into S (that is,
the ith component of v; is strictly positive). Figure 1 shows an example with
d = 2. Consider R = (v,,vy,...,0;) @as a d X d matrix and let T be a d X d
symmetric positive definite matrix and u a d-dimensional vector. For the
purpose of this paper we introduce a sample path space

Cg = {functions w: [0,) — S, such that w is continuous} .
The canonical process on Cg is Z = {Z(¢, - ),t > 0} defined by
Z(t,w) =w(t) forweCg,t=>0.

The natural filtration associated with Cg is {.#,}, where .#, = 0{Z(s): 0 < s <
t},t > 0. For ¢t > 0, .#, can also be characterized as the smallest o-algebra of
subsets of Cg which makes Z(s) measurable for each 0 < s < ¢. The natural
o-algebra associated with Cg is .#= 0{Z(s): 0 <s < ®} = V7_,4,. (Vi_o#,
is defined to be the smallest o-algebra containing .#, for each ¢ > 0.)

In this paper we are concerned with the class of semimartingale reflected
Brownian motions in S, defined as follows.

, "DermiTioN 1. Let Z be the canonical process defined above and let
{P,, x € S} be a family of probability measures defined on the filtered probabil-
ity space (Cg, .#,{.#,)). We say that Z with {P,, x € S} is a semimartingale
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reflected Brownian motion (SRBM) associated with data (S, T, u, R) if for each
x € S we have, P -almost surely,

d
(1) Z#)=X@)+RL@®)=X@#)+ Y L) v, t=0,

i=1

X(0) = x and X is a d-dimensional Brownian motion with
(2) covariance matrix I' and drift vector u such that {X(¢) —
wut, #,,t > 0} is a martingale,

L is a continuous {.#}-adapted d-dimensional process such
(3) that L(0) = 0, L is nondecreasing and L; can increase only
at times ¢ when Z,(¢) =0(G =1,...,d).

REMARK. This is actually a special case of the definition advanced by
Reiman and Williams [20], who define an SRBM on an arbitrary filtered
probability space. Thus one might say that we are dealing with a canonical
SRBM. Reiman and Williams pointed out that {X(z) — ut} being an {.#}-
martingale is necessary for an SRBM to have certain desired properties.

An SRBM Z as defined above behaves in the interior of its state space like a
d-dimensional Brownian motion with drift vector x and covariance matrix T.
When the boundary face F; is hit, the process L, (sometimes called the local
time of Z on F)) increases, causing an instantaneous displacement of Z in the
direction given by v;; the magnitude of the displacement is the minimal
amount required to keep Z always inside S. Therefore, we call T', x and R the
covariance matrix, the drift vector and the reflection matrix of Z, respectively.

DErFINITION 2. We say that the SRBM in Definition 1 is unique if the
corresponding family of probability measures {P,, x € S} is unique.

DErFINITION 3. A d X d matrix A is said to be an . matrix if there exists
a d-dimensional vector u > 0 such that Au > 0, and to be a completely-.”
matrix if each of its principal submatrices is an . matrix.

Reiman and Williams [20] proved that the reflection matrix R being com-
pletely-# is a necessary condition for existence of an SRBM Z as defined
above. The following fundamental problem was recently resolved by Taylor
and Williams [21]. For an alternative proof of Feller continuity, see Section 3.2
of Dai [2].

PROPOSITION 1. Let there be given a covariance matrix T, a drift vector u
and a reflection matrix R. Assume R is completely-#. Then there is a unique
SRBM Z (with associated {P,, x € S}) associated with the data (S,T, u, R).
Moreover, Z together with {P,,x € S} is a strong Markov process and Feller
continuous, that is, x > EP[ f(Z(t))] is continuous for all f € Cy(S) and
t > 0, where Cy(8S) is the set of bounded continuous functions on S.
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Hereafter we assume the reflection matrix R is completely-# and use
{P,, x € S} to denote the unique family which makes Z an SRBM. For each
x €8, let E, denote the expectation operator under P,. For a probability
measure 7 on S, let

4) P(:) = [ P()m(dx)

and E, be the corresponding expectation operator. [The integral in (4) is well
defined because of the Feller continuity and Markov property of {P,, x € S}.]

DEFINITION 4. A probability measure 7 on S is called a stationary distri-
bution for the SRBM Z if for every bounded Borel function f on S and every
t>0,

LELF(2(e))]m(dx) = [ f(x)m(ds).

The following proposition lists some of the properties of the stationary distri-
bution of an SRBM.

ProPOSITION 2. Let Z be an SRBM associated with data (S,T,u, R).
Assume there exists a stationary distribution for Z. Then:

(a) the stationary distribution m of Z is unique and it is absolutely continu-
ous with respect to the Lebesgue measure dx;
(b) Z is ergodic and for any f € C,(S) and x € S,

1
tli_{g;fotExf(Z(s)) ds = [Sf(x)fr(dx);
(¢c) R is invertible.

Proor. The proofs of parts (a) and (b) are essentially the same as the proof
of Theorem 7.1 of Harrison and Williams [13], where the authors considered
SRBM'’s with reflection matrix R being Minkowski. (R is said to be Minkowski
if all the elements of I — R are nonnegative and I — R is transient, that is, all
the eigenvalues of I — R are strictly less than 1.) Therefore, we only give the
proof of part (c).

Assume R is singular. Then there exists a nontrivial vector v such that
VR = 0, where prime is the transpose operator. For the SRBM Z, we have the
semimartingale representation (1). Therefore

(5) vZ(t) = vX(t) + VRL(¢) = VX (2),

becauyse v'R = 0. From part (b), Z'is ergodic and hence v'Z is ergodic. On the
other hand, v'X is a one-dimensional (v'Tv,v'n)-Brownian motion which
cannot be ergodic, contradicting (5). Thus R cannot be singular. This proves
part (c). O
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3. The basic adjoint relationship.

PropoSITION 3. Let 7 be the stationary distribution for an (S,T,u, R)-
SRBM Z and %y, be the Borel o-field of F,(i = 1,...,d). Foreachi = 1,...,d,
there exists a finite Borel measure v; on F, such that

(6) E,,{fotlA(Zs) dLi(s)} = 1tv(A), t20,A€ By,

and v; is absolutely continuous with respect to the (d — 1)-dimensional
Lebesgue measure do; on F; (i = 1,2,...,d). Furthermore, denoting d/dx =
Po and dv;/do;=p; (i=1,...,d), p=(py;Py,...,Py) jointly satisfy the
following basic adjoint relationship:

d
(0 [(FFpo)de+ 3L [(Dif p)do,=0 forallfeCYS),
5 i=1"F;

where
14 4 o%f a  of
8 Gf= — T.. —_—
( ) f 2 igl ng ljaxi axj + isll‘l’laxi ’
(9) Z;f(x) =v;-Vf(x) forxeF,(i=1,2,...,d),

and CX(8S) is the space of twice differentiable functions which together with
their first and second order partials are continuous and bounded on S.

ProoF. The reflection matrix R is a completely-. matrix and therefore,
in the terminology of Bernard and El Kharroubi [1] it is completely saillante.
Then Lemma 1 of [1] implies that for some constant C,

Lit) < Comax |X(s) - X(0), P-as,xeS8.
<s<t

Because X — X(0) is a (T, u)-Brownian motion starting from the origin under
each P, we have

supE,[L;(t)] <, t=20(i=12,...,d).

x€S
The rest of the proof follows exactly the proof of Theorem 8.1 in [13] when R
is Minkowski. O

Proposition 3 shows that the basic adjoint relationship (7) is necessary for

P =(Po;P1s---5Pg)

to be the stationary density of Z. The following essential complement, which
was conjectured in [13], was recently proved by Dai and Kurtz [4].

'PROPOSITION 4. Suppose that p, is a probability density function on S and
P; is an integrable (with respect to do;) nonnegative Borel function on F,
(@ =1,...,d). If p, together with p,,...,p, jointly satisfy the basic adjoint
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relationship (7), then p, is the stationary density of Z and v; defined by
dv;,=p;do; (i =1,2,...,d) is the boundary measure defined in (6) above.

Here we conjecture that a stronger result is true.

CoNJECTURE 1. Suppose that p, is an integrable Borel function on S and
Py,...,Dg are integrable Borel functions on F,,...,F,, respectively. If
Jspo(x)dx = 1 and (pgy; py,--.,Py) jointly satisfy the basic adjoint relation-
ship (7), then p; is nonnegative (i = 0,1,2,...,d).

ReEMARK. The conjecture simply says that if p = (p,; py,-. ., py) satisfies
the basic adjoint relationship (7), then p does not change sign.

Hereafter, we simply denote the stationary density of the SRBM by p. As
explained in the introductory section, our primary task in this paper is to
compute the stationary density p. For a driftless reflected Brownian motion in
a bounded two-dimensional region the work of Harrison, Landau and Shepp
[15] gives an analytical expression for the stationary density, and the availabil-
ity of a package for computation of Schwartz—Christoffel transformations
makes evaluation of the associated performance measures numerically feasi-
ble; see [22]. For the two-dimensional case with drift, Foddy [7] found analyti-
cal expressions for the stationary densities for certain special domains, drifts
and directions of reflection, using Riemann—-Hilbert techniques. In dimensions
three and more, SRBM’s having stationary distributions of exponential form
were identified in [14, 24] and these results were applied in [13, 16] to SRBM’s
arising as approximations to open and closed queueing networks with homoge-
neous customer populations. However, until now there has been no general
method for solving the PDE problems in (7) and it is very unlikely that a
general analytical expression for p can ever be found.

In the next section we will develop an algorithm for computing a solution p
to the basic adjoint relationship (7). We end this section by converting (7) into
a compact form that will be used in the next section. Given an f € CZ(S), let

(10) ALf = (I D, fr..., Duf).
Also, let
(11) dA = (dx; 3doy,...,3doy).

For a subset E of R?, let & be the Borel o-field of E and #(E) denote the
set of functions which are % -measurable. Let

Lj(S,dA) = {g = (go;gl,...,gd) € #H(S) XHB(F,) X --XHB(F):
(12y

SH

[leo’dx + 3L [lgil"dai<oo}, j=12...,
S i=1"F;
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and for g € L(S, dA), let
d
= l
Lgd)« = /Sgodx + Ziglj;v;gida.i'

For g,h € #(S) X #(F) X --- X #(F;) we put g-h =(gyhy;8:hy,-..,
gshy), and for h >0, we put g/h =(go/h¢;&1/b1,---,84/hy). With this
notation, the basic adjoint relationship (7) can be rewritten as

(13) [s(&/f-p) dA =0 forall fe C2(S).

4. An algorithm. In this section we develop an algorithm to determine
the stationary density p (interior density p, and boundary densities p,) of an
SRBM. We start with the inner product version (13) of our basic adjoint
relationship. If &/f and p were in L%(S,dA\) for all f< CZ(S), then (13)
would amount to saying that p is orthogonal to &/f for each fe C2(S).
Unfortunately, there are f € CZ(S) for which &/f is not in L*(S, d)), since
the state space S is unbounded. Nevertheless, the above observation is the key
to the algorithm that we are going to describe. In fact, based on the above
observation, Dai and Harrison [3] developed an algorithm for approximating
the stationary density of an SRBM in a two-dimensional rectangular state
space.

In order to carry over the algorithm in [3] to the case with unbounded state
space, we need to introduce the notion of a reference measure. Let

q=1(90;91---,94)>
where g, is a strictly positive probability density in S and gq; is a strictly
positive integrable function on F; [with respect to the (d — 1)-dimensional
Lebesgue measure do;]. The function g will be called a reference density. We
will come back to the question of how to choose a reference density in the next
section. Given a reference density g, we define the reference measure

(14) dn =qd\ = (qodx;3q,doy,...,3q4day),

where the measure dA is defined in (11). Similar to the definition of L(S, dA)
and [ggdA for g € LY(S,d)), we can define L(S,dn) and [qgdn for g €
LY(S, d7). If we introduce a new unknown r = p/q, then the basic adjoint
relationship (13) takes the form

(15) [S(Mf-r)dn=o for all £ C2(S).

In the following, we actually develop an algorithm to solve for this new
unknown r. Of course, once one has r, one can get the stationary density p via
p —3 ’y’ . q' .

We denote by L? = L*(S, dn) all the square integrable functions on S with
respect to dn, taken with the usual inner product ¢ -, - ) and norm | -|.
Unless specified otherwise, all inner products and norms are taken in
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L*(S,dn). Because 7 is a finite measure and &/f is bounded, we have
&/f € L? for each f€ CS). We define H c L? to be the closed subspace

(16) H = the closure of {&/f: f € CZ(S)},

where the closure is taken in the usual L? norm. Let ¢, be the element of L?
defined by

(17) b0 = (1;0,...,0).

PROPOSITION 5. If the unknown function r € L2, then r is orthogonal to H
and {r,¢,) = 1. Conversely, if there is a nonnegative r € L*® such that r is
orthogonal to H and {r, ¢,) = 1, then r - q is the stationary density, where q is
the chosen reference density.

Proor. Assume r € L2 Since r satisfies the basic adjoint relationship (15),
r is orthogonal to &/f for every f € CZ(S). It follows that r is orthogonal to
H. Also,

(r,¢0) = [r(x)  do(x) dm = fS§ - bo - gdA

=[SP'¢od)‘=fSP0dx=l'

The last equality holds because p,, is a probability density function on S.

Conversely, assume there is a nonnegative r € L? such that r is orthogonal
to H. Then r is orthogonal to &/f for every f € CZ(S), or equivalently, r
satisfies the basic adjoint relationship (15). Therefore, by definition, r - g
satisfies the basic adjoint relationship (13). Since r - ¢ is nonnegative and
Js(r-q@)dx = {r,¢y) = 1, it follows from Proposition 4 that r-gq is the
stationary density of the corresponding SRBM. O

ProposiTION 6. Ifr € L?, then the function 4;0 = ¢, — ¢, is nonzero in L?
and is orthogonal to H, where ¢, is the projection of ¢, onto H defined by

(18) ¢ = argminli$, — &Il

deH
Therefore, assuming Conjecture 1 to be true, we arrive at the following
formula for the stationary density:

1

(19) P

|2 ¢0

ProoF. Assume r € L2, Froni Proposition 5, {r, ¢, = 1, and thus r is not
orthogonal to ¢,. Also from Propos1tlon 5, we know that r is orthogonal to H.
Hence we conclude that ¢, is not in H. Because H is closed and ¢, & H, the
projection ¢, defined in (18) of ¢, is not equal to ¢,, which implies that b, is
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not zero in L2. Of course, ¢, is orthogonal to H. Note that

<<5o;¢o> = <¢o - $0,¢0> = <¢o - $o’¢o - $0>
= [l > 0.

If Conjecture 1 is true, then ¢, does not change sign and r = (4;0, ¢0)_ld;0
satisfies all the conditions in Proposition 5. Then (19) follows from Proposition
5.0

ProposITION 7. Let {H,} be a sequence of finite-dimensional subspaces of
H, such that H,* H. (H, 1" H means that H,, H,, -+ are increasing and
every h € H can be approximated by a sequence {h,} with h, € H, for each
n.) For each n, define ¢™ by ¢" = ¢, — ¥", where

(20) Y = argminll¢o - @l
¢EHn

If r € L?, and if we assume Conjecture 1 to be true, then

n

™I
Furthermore, by setting p™ = r™ - q, one has for all f € L?,

/Sf-p”dA —>[Sf-pd)t,

and if q is taken to be bounded, then p™ — p in L(S,d)) as n — .

(21) rt = —»r inL?asn > ».

Proor. Since H, 1t H, y" - ¢> in L? as n — . It follows that ¢" — éo
in L2 as n — «, Because r € L? &, is nonzero in L2 Therefore ™12 -
llgoll> # 0 and hence r” </>"/II</>"I|2 goes (in L?) to ¢0/II¢OII which is r
under the assumption that Conjecture 1 is true. If f € L? then

| [rcr —r)qu]

[f-pran = [f-pax
(22) S S
=| [7 =) dnl <IFI2rn = r2,

If ¢ is bounded, then
n_ .2 = no_ 2,2 2 n_ .2
(23) fslp pl*dA fSIr rlg*da < [r;lgq(x)] lr™ —rl*
The rest of the proof can be readily obtained from (22) and (23). O
" Proposition 7 says that, when r € L?, we can calculate the corresponding

stationary density p numerically by choosing appropriate finite-dimensional
subspaces H,. However, when r & L?, we can still define p™ via r" as in (21).
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We conjecture that, in this case, p™ converges to p weakly, that is,

ff~p"d)¢ - ff-pd/\ asn — o forall fe Cy(S).
S S

5. Choosing a reference density and {H,}. In this section we will
choose a particular ¢ to serve as the reference density function of the previous
section. We will first define some quantities that are of interest in the
queueing theoretic application of SRBM. Let p = (py; py, - - -, bg) be the sta-
tionary density of an SRBM Z, and for i = 1,2,...,d let

(24) m; = fs(xi *Po(x)) dx.

Then m = (m,,..., my) represents the long-run mean position of the SRBM
Z. In the applications mentioned earlier, m; approximates a performance
measure of the corresponding queueing network (for example, the average
waiting time or average queue length at station i). There are, of course, other
quantities associated with p, that are of interest, such as the second moments
or quantities like [g max(x,, x;)po(x)dx for i + j; see Nguyen [17]. Because
our algorithm gives estimates for the density function itself, such extensions
are routine and we will only focus on the quantity m. Proposition 8 indicates
that, in calculating the steady-state mean vector m, it is enough to consider
only standard SRBM’s.

DEFINITION 5. A semimartingale RBM with data (S, T, u, R) is said to be
standard if diag(I") = diag(R) = I, R is invertible and max, _; _ /(R 'w),| = 1.

ProposITION 8. Suppose that Z with {P,,x € S} is an SRBM with data
(S,T,u, R), that Z has a stationary distribution (thus R is invertible by
Proposition 2), and that the steady-state mean vector m = (my,...,m,) is
defined via (24). Let y= —R ', A = diag(T'%,...,I;}? and a =
max, _; . 4(T;;'/?R;;v,). The process Z* = {Z*(¢),¢ > 0} defined by

Z*(t) =aAZ(a"%), t=0,
is a standard SRBM with data (S,T*, u*, R*), where
I* = ATA, w*=a Ap, R*=ARVA~!

and V = diag(R3}, ..., R;})). Moreover, Z* has a stationary distribution and
its associated mean vector m* is related to m via

m* =aAm.
ProoF. Suppose that Z with {P,,x € S}is a (S, T, u, R) SRBM. We know
that Z can be represented in the form
Z(t) = X(t) + RL(?), t>0,

where X is a (T, u) Brownian motion and L is an increasing process that has
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the properties specified in Definition 1. Thus we can represent Z* in the form
Z*(t) = X*(t) + R*L*(¢), t>0,

where X*(t) = aAX(a"2%¢) and L*(¢) = a AV~ 'L(a"2%t). [Note that R* and L*
are defined so as to ensure diag(R*) = I.] It is easy to verify that X* is a
(I'*, u*) Brownian motion and that L* and X* jointly satisfy the obvious
analogs of (1) and (3). Thus Z* is an SRBM with data (S, I'*, u*, R*).

Moreover, defining y* = —R*~!u* in the obvious way, one has that
y*=—(AV'RTA ) (e Ap) = —a"'AVIRIp
=a AV 1y,
Thus

*| — 41
1?;’2%'7' |=a

by the definition of a, and A has been chosen so as to give diag(I'*) = I, so Z*

is a standard SRBM as claimed. Finally, let Z(x) be a random vector whose

distribution is the stationary distribution of Z. Then Z*(») = a A Z(«) has the

stationary distribution of Z*, implying that
m* = E[Z*(»)] = aAE[Z(®)] = aAm. o

When the SRBM is standard, all the associated data are properly scaled and
therefore the algorithm described in the previous section is more stable.

max |[;;2R;y,| = 1
l1<i<d

DEeFINITION 6. We say that a stationary density for Z is of product form (or
has a separable density) if the stationary density p, can be written as

d
(25) Po(2) = kljlpg(zk)’ z2=(21,..-,2) €8,
where pl, ..., pd are all probability densities relative to Lebesgue measure on

R.,. The following is proved by Harrison and Williams ([13], Theorem 9.2); in
that paper it is assumed that the reflection matrix R is a Minkowski matrix,
but that additional assumption does not enter in the proof of this proposition.

ProPOSITION 9. A standard SRBM Z has a product form stationary distri-
bution if and only if
(26) y=-R u>0
holds, as well as the following condition:
(27) 2T, = (Ry; + Ry) forj +k.
In this case, there is a constant C such that the density p is the exponential
" (28) 2> Cexp(—2y-2), 2z=(21,...,24) €8,

that is, p, is given by (28) and p; is the restriction of this exponential to F;
(i=1,2,...,d), where v is defined in (26).
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REMARK. Condition (27) holds if and only if I' — R is skew symmetric;
Harrison and Williams [13] refer to (27) as a skew symmetry condition.

Proposition 9 asserts that the density p is of exponential form precisely
when the skew symmetry condition (27) is satisfied. If we choose g to be the
exponential in (28), then r = p/q is identically 1 when (27) is satisfied. When
the skew symmetry condition (27) is not satisfied, but is almost satisfied, we
expect the density p to be only slightly perturbed from the above exponential.
That is, 7 is nearly equal to 1. Therefore, we can think of r as some adjusting
factor of how far the actual stationary density p is from the exponential
solution. Based on these observations, we choose ¢ to be the exponential in
(28).

COROLLARY 1. Fix the reference density q to be the exponential in (28) and
let dn be as in (14). If r = p/q is in L%(S, dn), then for each f € L*(S, dn),

/:gf(x)p"(x) dx — fsf(x)p(x)dx asn — o,

In particular, the approximating moment m?} = [¢x;p™ dx converges to m;
(i=12...,d.

Proor. Since ¢ is decaying exponentially, f(x)=x; € L? = L*S,dn).
Therefore, the proof of the corollary is an immediate consequence of Proposi-
tion 7.

The next proposition tells us how to choose a finite-dimensional subspace
H, approximating H. Here we assume that the reference density ¢ has been
chosen as in Corollary 1.

ProposITION 10. For each integer n > 1, let
(29) H, = {o/f: fis a polynomial of degree < n}.
Then H, 1 H.

Proor. It is obvious that H, is increasing. The proof of the convergence
H, —» H is an immediate consequence of Proposition 7.1 and Remark 6.2 in
the appendices of Ethier and Kurtz [6]. O

REMARK. Since the chosen ¢ is smooth, our approximating function p” =
r™ - q is also smooth, whereas in many cases the stationary density p is known
to be singular. In some cases, these singularities will cause r = p/q & L2 If
we knew in advance the order of the singularities at the nonsmooth parts of
the boundary, we might be able to incorporate these singularities into the
reference density g, so that r = p/q would be smooth and in L2. This would
yield an algorithm which would converge faster. Unfortunately, there is no
general result on the order of the singularities of the stationary density of an
SRBM in high dimensions.
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6. Numerical comparisons. We have written a computer program in
“C” that implements the general algorithm described in Section 4. In this
initial implementation the reference density ¢ is the exponential function
specified in (28) and the finite-dimensional subspaces H, are those specified in
(29). As a basis for H,, we take the following collection of functions on R?:

B, = {o/(xft -+ x4):0 <i;+ -+ +iy<nand

n
iy,...,1, are nonnegative integers}.

Let d and n be fixed for the moment and define
N= (”;d) —(d+1)--(d+n)/nl

The basis B, contains N — 1 elements and to determine our estimate p” of
the steady-state density p, one must compute the projection ¢ of ¢° onto the
span of B,. (The time required for the remainder of the algorithm is trivial
and will not even be mentioned hereafter.) One familiar and elementary
approach to computing the projection " requires that one first solve a certain
system of linear equations Kx = b. To calculate the coefficient matrix K and
the vector b, one must evaluate inner products for pairs of functions in B,,
which requires a general formula for the integral of a monomial times an
exponential function over the nonnegative orthant. Given that formula, the
number of calculations required to compute " and hence p” is O(N2).

With the implementation described in the last paragraph, the estimate p”
that we ultimately obtain for the steady-state density p is an (n — 1)th degree
polynomial times the exponential reference density gq. One expects that larger
values of n will give better accuracy, and as a practical matter we have found
that n = 5 generally gives satisfactory answers, at least for the test problems
examined thus far. If one fixes n = 5, the computational complexity of the
algorithm is O(d'?), which means that small- and medium-sized problems can
be solved using the current implementation of the algorithm. To give readers a
feel for actual running times, we have examined a family of seven closely
related SRBM’s having dimension 2,3,...,8. The member of this family
having dimension d corresponds to the first d stations of a particular eight-
station tandem queue, the exact data of which are not relevant for current
purposes. The amount of CPU time (in seconds) on a SUN SPARCstation 1
required to compute p” for each case was as follows:

d=2 d=3 d=4 d=5 d=6 d=7 d=38

4 00 0.2 1.2 6.0 236 805 2511
5 0.0 0.6 49 319 1629 7342 2654.8

n
n

Some early experience regarding the accuracy of the algorithm will be pre-
sented in this section. The Ph.D. dissertation of Dai [2] describes more
compuitational experiences and explains in detail the current implementation.
A future paper by Dai, Nguyen and Reiman [5] will describe a decomposition
method that can be used on large and very large queueing networks.
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In the remainder of this section we will compare numerical results (called
QNET estimates) obtained with the current implementation of our algorithm
against some known analytical results for particular SRBM’s. The two cases
discussed in this section are the only cases for which explicit analytical
solutions are known, except for SRBM’s with exponential stationary densities.
Because the exponential solutions are incorporated in our algorithm, the cases
discussed below represent the only exact solutions available for checking the
algorithm.

A two-dimensional SRBM. Consider a two-dimensional SRBM with covari-
ance matrix I' = I, drift vector of the form u = (u;,0) and reflection matrix
_ 10
r-(_19)

An SRBM with these data (T, 4, R) arises as a Brownian approximation for a
special type of tandem queue. For this SRBM, our stationary condition (26)
reduces to u, < 0. This type of SRBM was studied in Harrison [11]. There,
after a transformation, the author was able to obtain a solution of product
form for the stationary density in polar coordinates. The explicit form of the
stationary density is

(830) p(x) = Cr~2e#"**D co5(0/2),  x = (%;,%5) = (rcosf,rsinb),

where C = 77 /2(2|u,)32. (Greenberg [10] pointed out that Harrison’s [11]
original calculation of C' was in error by a factor of 2.) Notice that x = 0 is the
singular point of the density. The above density p is square integrable in S
with respect to interior Lebesgue measure, but p is not square integrable over
the boundary with respect to boundary Lebesgue measure. Therefore, p is not
in L2. By the scaling argument given in Proposition 8, it is enough to consider
the case when u; = —1. It follows from (30) (cf. Greenberg [10]) that

=1 =3
m; =3, my;=x.

Using our algorithm, taking the maximum degree of the polynomials in (29) to
be n = 5, we have QNET estimates
m, = 0.50000, m, = 0.75133.

The QNET estimate of m, is exact as expected. If one takes the first station in
the tandem queue in isolation, the first station will correspond to a one-dimen-
sional SRBM, whose stationary density is always of exponential form. It was
rigorously proved in [11] that the one-dimensional marginal distribution of x,
is indeed of exponential form. Table 1 shows that if we require 1% accuracy,
which is usually good enough in queueing network applications, the conver-

‘ TaBLE 1
Convergence of the algorithm

b

‘n 1 2 3 4 5 6 7 8

ms, 0.50000 0.83333 0.75000 0.75873 0.75133 0.75334 0.75225  0.75681
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gence is very fast, even for this very singular density. It appears that the
accuracy of m, does not increase as n increases. This shows that for very
singular r, the numerical roundoff errors in the approximation may have a
significant effect on the accuracy of the algorithm.

Symmetric SRBM’s. A standard SRBM (cf. Definition 5) is said to be
symmetric if its data (T, u, R) are symmetric in the following sense: I; =
Lj=p for 1<i<j<d, p;=-1for 1<i<d and R;;=R;, = —r for
1 <i <j <d, where r > 0. The positiveness of I' implies —1/(d — 1) <p <1
and the completely-” condition of R implies r(d — 1) < 1. A symmetric
SRBM arises as a Brownian approximation of a symmetric generalized Jack-
son network. In such a network, each of the d stations behaves exactly the
same. Customers finishing service at one station will go to any one of the other
d — 1 stations with equal probability r and will leave the network with
probability 1 — (d — 1)r. For d = 2, the symmetric queueing network was
used by Foschini to model a pair of communicating computers [8]. The author
extensively studied the stationary density of the corresponding two-dimen-
sional symmetric SRBM.

Because the data (T, u, R) of a symmetric SRBM is, in an obvious sense,
invariant under permutation of the integer set {1, 2, ..., d}, it is clear that the
stationary density p,(x) is symmetric, that is,

Po(X1, Xg,. .., %4) = po(xa(l)’ Xg@)r s xo’(d))

for any permutation o on {(1,2,...,d}. In particular, f,,}xi ‘pjdo; =8=
[r%2 - P1doy for all i #j and the marginal densities of p, are the same, and
hence
my=my= ‘" =mgy.
If we take f = x2, then the basic adjoint relationship (7) gives
d
(31) 1—2m1—erx1'pjd0'j=0.
j=2"F

Taking f = x,x,, we have

p—(my+my)+ %/ X3 prdoy + %f %y pydoy
F, F,
(32) d
—%rZ f (x; + xz)pj dcrj =0.
j=3"F
By symmetry, from (31) and (32) we get
(33) 1-2m, —8(d-1)r=0,
(34) p—2m,+6—68(d—2)r=0.
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TABLE 2
QNET estimates for m, whend = 2(n = 3)

r\p -0.90 -0.50 0.00 0.50 0.90

0.20 0.341667 0.375000 0.416667 0.458333 0.491667
0.40 0.228571 0.285714 0.357143 0.428571 0.485714
0.60 0.143750 0.218750 0.312500 0.406250 0.481250
0.80 0.077778 0.166667 0.277778 0.388889 0.477778
0.90 0.050000 0.144737 0.263158 0.381579 0.476316
0.95 0.037179 0.134615 0.256410 0.378205 0.475641

TABLE 3

Relative errors when d = 2 (n = 3)

r\p -0.90 -0.50 0.00 0.50 0.90
0.20 9.75e-16 4.44¢-16 -7.99¢-16 —2.42¢-16 3.39¢-16
0.40 3.89e-15 -7.77e-16 -17.77e-16 5.18e-16 1.49e-15
0.60 4.63e-15 3.17e-15 8.88e-16 2.73e-15 -2.42¢-15
0.80 2.32e-15 —4.33e-15 -1.20e-15 —2.63e-14 3.83e-15
0.90 -6.91e-14 2.45e-14 -2.08e-13 -1.81e-12 -7.46e-13
0.95 -9.59e-14 6.69¢-13 5.44e-12 3.32¢-11 i.04e-10

Solving these linear equations gives 8§ = (1 — p)/(1 + r) and

1-(d-2)r+(d-1)rp
(35) M= 2(1 +r) ‘

Now we compare our numerical estimates of m, with the exact values of m,
calculated from formula (35). When d = 2, the conditions on the data (T, u, R)
yield [p| < 1 and 0 < r < 1. Letting p range through {—0.9, —0.5, 0.0, 0.5, 0.9}
and r range through {0.2,0.4,0.6,0.8,0.9,0.95} and taking n = 3, we obtain
QNET estimates for m, (Table 2). Table 3 gives the reiative errors between
these QNET estimates and the exact values.

When r = 1, there is no corresponding SRBM. It is expected that when p is
big [the skew symmetry condition (27) is far from being satisfied], the station-
ary density is very singular as r 1 1. This phenomenon seems to be indicated in
Table 3, where the performance of the algorithm degrades as r increases to 1.
When the dimension d is 3, then the restriction on the data gives — 3 <p < 1
and 0 < r < 3. Table 4 gives the relative errors between some QNET esti-
mates and the exact values for m, in this case. When the dimension d is 4,
then the restriction on the data gives — < p <1 and 0 < r < 3; relative
errors between QNET estimates and exact values for m, are found in Table 5.

7. Analysis of an illustrative queueing network. The two-station
open queueing network pictured in Figure 2 has been suggested by Gelenbe
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TABLE 4
Relative errors when d = 3 (n = 3)

r\p -0.40 -0.20 0.00 0.80 0.90

0.10 1.49¢-16 1.14e-15 -5.43e-16 -4.61le-16 -1.47e-15

0.30 2.04¢-15 -2.12¢-15 -2.68e-15 -9.79e-15 -1.75e-14

0.40 1.39e-15 -1.06e-15 -7.77e-15 8.65e-14 3.66e-13

0.45 -1.06e-14 -6.16e-14 -6.54e¢-14 9.21e-12 7.73e-12
TABLE 5

Relative errors when d = 4 (n = 3)

r\p -0.30 -0.15 -0.00 0.80 0.90
0.10 -2.06e-15 -1.29¢-15 9.16¢-16 -3.88e-15 -5.14e-15
0.20 4.60e-15 7.18e-15 8.88¢-16 7.40e-16 2.34e-14
0.30 -2.01e-14 1.39¢-14 -1.08e-14 3.23e-12 4.78e-12
0.33 -2.23e-13 -5.32e-12 -6.06e-12 4.60e-10 1.53e-11
T11 C,zn
(23] 1- q
— 1 —
Q2 1- q2
2 C2,
1 C, Q| e
T2 CL,

Fi1c. 2. Model of an interactive computer.

and Pujolle [9] as a simplified model of a certain computer system. Server 1
represents a central processing unit (CPU) and server 2 a secondary memory.
There are two classes of programs (jobs, or customers) flowing through the
system, and they differ in their relative use of the CPU and the secondary
memory. Jobs of class j (j = 1,2) arrive at station 1 according to a Poisson
process with rate a;; and after completing service there they may either go on
to station 2 (probability q;) or leave the system (probability 1 — g;); each
service at station 2 is followed by another service at station 1, after which the
customer either returns to station 2 or else leaves the system, again with
probability g ; and 1 — g, respectively. The service time distribution for class
J customers at station i (i, j = 1,2) is the same on every visit; its mean is 7;;
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and its coefficient of variation (standard deviation divided by mean) is C, .
Customers are served on a first-in-first-out basis, without regard to class, at
each station. The specific numerical values that we will consider are such that
class 1 makes heavier demands on the secondary memory but class 2 consumes
more CPU time. Denoting by @; (i = 1, 2) the long-run average queue length
at station i, including the customer being served there (if any), our goal is to
estimate @, and Q,.

This open queueing network is within the class for which Harrison and
Nguyen [12] have proposed an approximate Brownian model, but their initial
focus is on the current workload process or virtual waiting time process
W(2) = (Wy(¢), Wy(¢)), rather than the queue length process; one may think of
W,(¢) as the time that a new arrival to station i at time ¢ would have to wait
before gaining access to the server. Harrison and Nguyen proposed that the
process W(¢) be modeled or approximated by an SRBM in the quadrant whose
data (T, u, R) are derived from the parameters of the queueing system by
certain formulas. Specializing those formulas to the case at hand one obtains

(36) w=R(p-e), T=TGT" and R=M"1
where e is the two-vector of ones, p = (p;, p,) is the vector of traffic intensi-
ties

SN
P 1-q, 11 1-gq, 12 P2 1-4q, 21 1-gq, 22>

and the matrices M, T and G are given by
1 1

_F11 _F12
M= P P2
11 1 ’
P_1F21 p_2F22
where
1711 U719 171191 A2T1299
2 2 2 P}
po| G (A=) (A-g)  (1-g)
B 179141 A3T22q 2 ®179141 A9To2q2 |’

1-g)° (1-g)° (1-q)° (1-gy)°

T T11 T12 ;"12
T l1-¢; 1-¢; 1-¢q3 1-gq
! T Tad: To1 To2d2 To2 ’

1-¢; 1-¢q; 1-q; 1-gq,
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and
31 @14,
a; + g - g 0 0
1t 7T 2 1 1-4q, 12
@149, @149y
- 812 191 t+ 82 0 0
G- 1-q, 1-q,
B 0 0 a, + t - *1da ’
2T T q2g3 1_ q2g34
@142 ®2q9
0 0 - g asqy t+
1-gq, 34 242 1—q2g4
where

81% (03211 + qlcszzl)’ 82 = (C-"zzl + qlezu)’ 812 = (Cszu + 03221)’
83 = (Cs212 + (I2Cszzz), 84 = (Cs222 + Q2Cszlz), 834 = (Cszm + Cszzz)

Let us denote by m = (m,, m,) the mean vector of the stationary distribu-
tion of the SRBM whose data (T, u, R) are computed via (36). In the approxi-
mation scheme of Harrison and Nguyen [12], which they call the QNET
method, one approximates by m; both the long-run average virtual waiting
time and the long-run average actual waiting time at station i (i = 1,2). By
Little’s law (L = AW), we then have the following QNET estimates of the
average queue length at the two station:

(37) Q +( % %2 )
- + my,
1= P1 1-q, 1-q, 1
@149, (D1
38 Q,=p +( )m .
(38) 2 2 1-q, 1-4q, 2

Gelenbe and Pujolle [9] have simulated the performance of this simple
queueing network in the five different cases described by Table 6, obtaining
the results displayed in Table 7. All of the numerical results in the latter table

TABLE 6
Parameters for the system
a; = 0.5, a3 = 0.25,q, = 0.5, g5, = 0.2

Class 1 Class 2
Station 1 Station 2 Station 1 Station 2
Case Mean SCvV Mean SCV Mean - SCV Mean SCv

1 0.5 1.0 0.5 2.0 1.0 0.0 1.0 1.0
2 0.5 0.2 0.5 2.0 1.0 0.0 1.0 1.0
"3 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0
4 0.5 3.0 0.5 2.0 0.5 0.0 1.0 1.0
5 0.5 3.0 0.5 1.0 0.5 0.0 1.0 0.2
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TABLE 7
Mean number of customers for the network represented in Figure 2

Case 1 Case 2 Case 3 Case 4 Case 5
p 0.81 0.31 0.81 0.31 0.66 0.56 0.66 0.31 0.66 0.31
Q Q, Q; Q, Q; Q, Q; Q, Q; Q, Q.
SIM 3.62 0.49 3.15 0.45 1.92 1.24 2.35 0.51 2.37 0.50
TD 4.33 0.45 4.33 0.45 1.90 1.29 1.91 0.45 191 0.45
DC 3.66 0.50 291 0.49 1.90 1.29 2.77 0.53 2.77 0.50
QNET 3.83 0.50 3.40 0.49 1.90 1.29 2.48 0.54 241 0.48

except the QNET estimates are taken from Table 5.3 of [9]: the row labeled
SIM gives simulation results, whereas the row labeled TD gives a time division
approximation based on the classical theory of product-form queueing net-
works and that labeled DC gives a diffusion approximation that is essentially
Whitt’s [23] QNA scheme for two-moment analysis of system performance via
node decomposition. In essence, this last method uses a diffusion approxima-
tion to the queue length process of each station individually, after artificially
decomposing the network into one-station subnetworks; the QNET method
captures more subtle system interactions by considering the joint stationary
distribution of an approximating two-dimensional diffusion process, the mean
vector m of that stationary distribution being computed by means of the
algorithm described earlier in this paper.

As Table 7 indicates, our QNET method gives very good approximations,
somewhat better overall than either the TD or DC approximations. The
network described by case 3 is in fact a product form network, and for it all
these approximation schemes give exact results.
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