
Queueing Systems 32 (1999) 5–40 5

A heavy traffic limit theorem for a class of open queueing
networks with finite buffers ∗

J.G. Dai a and W. Dai b,∗∗
a School of Industrial and Systems Engineering, and School of Mathematics, Georgia Institute of

Technology, Atlanta, GA 30332-0205, USA
E-mail: dai@isye.gatech.edu

b School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA

Submitted 1 February 1998; accepted 1 December 1998

We consider a queueing network of d single server stations. Each station has a finite
capacity waiting buffer, and all customers served at a station are homogeneous in terms
of service requirements and routing. The routing is assumed to be deterministic and hence
feedforward. A server stops working when the downstream buffer is full. We show that
a properly normalized d-dimensional queue length process converges in distribution to a
d-dimensional semimartingale reflecting Brownian motion (RBM) in a d-dimensional box
under a heavy traffic condition. The conventional continuous mapping approach does not
apply here because the solution to our Skorohod problem may not be unique. Our proof
relies heavily on a uniform oscillation result for solutions to a family of Skorohod problems.
The oscillation result is proved in a general form that may be of independent interest. It
has the potential to be used as an important ingredient in establishing heavy traffic limit
theorems for general finite buffer networks.
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1. Introduction

This paper proves a heavy traffic limit theorem for an open queueing network
with finite buffers. The queueing network has d single server stations. Each station
has a finite capacity waiting buffer, and all customers served at a station are homo-
geneous in terms of service requirements and routing. The routing is assumed to be
deterministic and hence feedforward. Since there is a single customer class associated
with each station, our network is a single class queueing network as opposed to the
multiclass queueing networks widely discussed in the literature in recent years (see,
e.g., Harrison [24]).
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Queueing networks have been used to model telecommunication networks and
manufacturing systems. All these networks have finite buffers in practice. See, e.g.,
Bertsekas and Gallager [3], Buzacott [9], Mitra and Mitrani [31], Perros and Al-
tiok [32], and Yao [40]. In some applications, notably in some manufacturing systems
like existing wafer fabrication facilities, buffer constraints have not been a major
problem. Therefore, it is safe to ignore buffer constraints in the analysis of these
networks. However, in telecommunication networks, more recently in asynchronous
transfer mode (ATM) networks, buffer constraints have a major impact on system
performances (see, e.g., Elwalid and Mitra [20] or Kroner et al. [29]). Thus, it is
imperative to model the finiteness of the buffer sizes in these networks.

In our network the interarrival times and service times at each station are assumed
to be independent, identically distributed (iid) sequences with finite first two moments.
We show that the normalized d-dimensional queue length process converges in dis-
tribution to a d-dimensional reflecting Brownian motion (RBM) under a heavy traffic
condition. The RBM lives in a d-dimensional box. The Brownian data, including
the drift vector, covariance matrix and reflection matrix, can be calculated explicitly
from the moments, network topology and the blocking mechanism employed. There
are algorithms to numerically compute the stationary distribution of the RBM. There-
fore, one can obtain performance estimates for the queueing network, like blocking
probabilities and average queue lengths, from their Brownian counterparts [15].

The normalization of the queue length involves a scaling in time by a factor n and
a scaling in space by a factor 1/

√
n for large n. Thus the heavy traffic limit theorem

provides qualitative insight for the queueing network when it is operated for a long
period of time, and each individual customer’s movement is not of primary concern.
The heavy traffic condition assumes that the traffic intensity ρi at each station i is
close to 1 so that 1 − ρi is of order 1/

√
n. In addition, it requires the buffer size at

a station is of order
√
n. The limit theorem suggests that this is the magnitude of the

buffer size for the network to experience a “moderate level” of blocking.
Although many blocking mechanisms can be employed for a finite buffer net-

work, we will focus on the “block-and-hold-0” mechanism. Under such a blocking
mechanism, a server will stop working whenever an immediate downstream buffer is
full. Therefore, the number of blocked customers that have completed services is 0.
Readers are referred to Cheng and Yao [13] or Cheng [12] for the definition of the
general “block-and-hold-k” mechanism. We note that the terms “manufacturing block-
ing” and “communication blocking” may not have a standard meaning in the literature;
see, e.g., Cheng [12], and Konstantopoulos and Walrand [28]. A loss mechanism will
be briefly discussed in section 9.

Due to the finiteness of the buffer sizes and the blocking mechanism used, the
Skorohod problem associated with the queueing network may not have a unique solu-
tion (see the example at the end of section 5). Therefore the conventional continuous
mapping approach, as used in Iglehart and Whitt [25,26] for feedforward single class
networks, in Reiman [34] for single class networks with feedback and in Peterson [33]
for feedforward multiclass queueing networks, does not apply here, although some
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authors, such as Bardhan and Mithal [1], attempted such an extension. Instead we
establish a uniform oscillation result for solutions to a sequence of Skorohod prob-
lems. Using this result, one can establish that the sequence of normalized queue length
processes is precompact in the space of right continuous paths with left limits. Each
limit point of the sequence is shown to be an RBM. Care has been taken to show
that the limit satisfies a martingale property which is a defining property of the RBM.
(Lemma 7.1 of this paper plays a key role in proving this martingale property. The
proof of this lemma is adapted from Williams [38].) Finally, the heavy traffic limit
theorem follows from the uniqueness (in distribution) of the RBM [18].

Almost all prior proofs of heavy traffic limit theorems for open networks assume
the buffer sizes are infinite. For multiclass queueing networks, the mapping associated
with the Skorohod problem is not well defined in general, as illustrated by an example
of Dai et al. [17] which is included as appendix A of Williams [38]. The nonuniqueness
excludes the usage of the continuous mapping theorem used in Iglehart and Whitt [25,
26], Reiman [34], Johnson [27], Peterson [33], and Chen and Zhang [10] to prove
heavy traffic limit theorems. Reiman [35] proved a heavy traffic limit theorem for
a multiclass station; see Dai and Kurtz [16] for an alternative proof and extension.
Chen and Zhang [11] showed a heavy traffic limit theorem for a multiclass FIFO
network with a restrictive spectral radius condition on a certain matrix. Although
these three works went beyond the conventional continuous mapping paradigm, until
very recently, we have not seen a viable approach to the proof of general heavy
traffic limit theorems. The contemporaneous, independent works of Bramson [7] and
Williams [38,39] provided sufficient conditions for a heavy traffic limit theorem for
multiclass queueing networks under many conventional queueing disciplines, including
the FIFO discipline, static buffer priority discipline, and head-of-the-line proportional
processor sharing (HLPPS) discipline. These results represent a major breakthrough for
proving heavy traffic limit theorems for infinite buffer multiclass queueing networks.
In fact, using the sufficient conditions and Bramson [5,6], they established new heavy
traffic limit theorems for FIFO networks of Kelly type and open multiclass queueing
networks under the HLPPS discipline. The two key ingredients in establishing their
heavy traffic limit theorems are oscillation result [38] and “state space collapse” [7].

Although the oscillation result in this paper looks similar to the oscillation result
in [38], neither one implies the other. Our oscillation result deals with the Skorohod
problem in a general state space and requires some control on the jump sizes of
the pushing process, whereas Williams’ result deals with a more general family of
perturbed Skorohod problems in an orthant. Our oscillation result, which is proved
in a much more general setting than needed in this paper, has the potential to be
used as an important ingredient to prove a heavy traffic limit theorem for a general
finite buffer queueing network, although other important ingredients, like deadlock in
feedback networks and “state space collapse” in multiclass networks, have to be dealt
with separately.

We now introduce the notation to be used in the paper. The number of stations
in the network is assumed to be d > 1. Let I = {1, . . . , d}. The set of nonnegative
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integers is denoted by Z+, and the k-dimensional nonnegative lattice is denoted by Zk+.
We use Rk to denote the k-dimensional Euclidean space. Let R+ = [0,∞). Unless
stated otherwise, all vectors are envisioned as column vectors. The prime symbol on
a vector or a matrix denotes transpose. For a = (a1, . . . , ak)′ ∈ Rk, |a| = maxki=1 |ai|.
For an n × k matrix A, ||A|| = maxni=1

∑k
j=1 |Aij |. For a vector a ∈ Rk, we use

diag(a) to denote the k × k diagonal matrix whose diagonal entries are given by the
components of a. Vector inequalities are interpreted componentwise. We use e to
denote the d-dimensional vector of ones.

For k > 1, the k-dimensional path space D([0,∞),Rk) is the set of func-
tions x : [0,∞) → Rk that are right continuous on [0,∞) and have finite left lim-
its on (0,∞). For a path x ∈ D([0,∞),Rk), we sometimes use x(·) to denote the
path. For a vector a ∈ Rk and a path x ∈ D([0,∞),Rk), x(a·) is the path with
x(at) = (x1(a1t), . . . ,xk(akt))′. More generally, for an h ∈ D([0,∞),Rk+), x(h(·))
is the path with x(h(t)) = (x1(h1(t)), . . . ,xd(hd(t)))′. A path x ∈ D([0,∞),Rk) is
nondecreasing if each component is. We use x(s−) to denote the left limit at s > 0.
The space D([0,∞),Rk) is endowed with the Skorohod J1-topology (see, e.g., Ethier
and Kurtz [21]). For a sequence of paths {fn}, for each n > 1 the paths f̄n and f̃n

are defined by

f̄n(·) =
1
n
fn(n·) and f̃n(·) =

1√
n
fn(n·).

The sequence {fn} is said to converge to f uniformly on compact sets if for each
T > 0

sup
06t6T

|fn(t)− f (t)| → 0

as n→∞. We denote such converge by fn → f u.o.c.
In section 2, the queueing network model is introduced. The heavy traffic limit

theorem is stated in section 3. The Skorohod problem is stated in section 4, where a
general oscillation result is established. In section 5, we represent the queue length
process as a solution to a Skorohod problem. In section 6 we prove a fluid limit theorem
which will be used in the proof of the heavy traffic limit theorem. In section 7 we
prove a stopping time property that is needed to prove a martingale property. The
proof of the heavy traffic limit theorem is completed in section 8. Extensions will be
discussed in section 9.

2. The queueing network model

The queueing network under consideration has d single server stations indexed
by i ∈ I ≡ {1, . . . , d}. Customers visiting station i are homogeneous in terms of
service time distribution and routing. We assume that routing is deterministic. That is,
customers leaving station i all go next to station σ(i) ∈ I or leave the system. In the
latter case we let σ(i) = 0. Because all customers leaving station i are deterministically
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Figure 1. A five station network.

routed to a station, the routing must be feedforward. The network is sometimes
called an in-tree network. This routing assumption is quite restrictive by conventional
standards. An example of such a network is pictured in figure 1. (Other routing
assumptions will be discussed in section 9.) We assume that the size bi of the buffer
associated with each station i is finite, i ∈ I. Therefore, at each station i there are
at most bi customers, including the one possibly being served. We assume that the
network is open. That is, all customers eventually leave the network.

Associated with each station i, there are two sequences of iid positive random
variables {uik, k > 1} and {vik, k > 1}, defined on some probability space (Ω,F ,P).
We assume that

E(ui1) = 1, Var(ui1) = cai <∞, i ∈ I,

E(vi1) = 1, Var(vi1) = csi <∞, i ∈ I.

Also associated with each station i, there are two numbers: αi > 0 and mi > 0. The
iid random variables {vik, k > 1} are the normalized service times and the iid random
variables {uik, k > 1} are the normalized interarrival times. The actual service times
for the kth customer at station i is mivik. If αi = 0, there are no external customer
arrivals to station i. If αi > 0, the interarrival between the kth and the (k − 1)th
customer is uik/αi. Although it is not necessary, for notational convenience, we
assume that αi > 0 for each i ∈ I.

An important feature in the network is that the sizes of buffers are finite. When the
buffer at a downstream station σ(i) is full, server i stops working although a customer
may still occupy station i. This phenomenon is called the “block-and-hold-0” blocking;
see Cheng and Yao [13] for a discussion of general blocking mechanisms. One can
envision that when the kth customer enters service at station i, a service time clock
(stopwatch) is set to mivik. The service is completed when the clock reading reaches
zero. During the service period, the clock is turned off or on depending on whether the
server is blocked or not. Our blocking mechanism applies to arrivals too. Upon the
kth external arrival to station i, an arrival clock at station i is set to ui,k+1/αi. When
the clock reading reaches zero, the k + 1 customer arrives at station i. During this
interarrival period, the arrival clock is turned off or on depending on whether buffer i
is full or not.
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We admit that our blocking mechanism for external arrivals is restrictive for some
applications. However, in many manufacturing applications, external arrivals can be
controlled. Our blocking mechanism represents one way of modeling arrival processes.
In section 9, we will discuss other blocking mechanisms, including loss networks. In
heavy traffic analysis, the blocking in our network introduces complications that do
not exist in networks with infinite buffers.

For i ∈ I, let Zi(t) be the number of customers at station i at time t, including
possibly the one being served. Note that Zi(0) is the initial number of customers at
station i at time 0. It represents part of an initial network configuration. Let Yi(t) be
the amount of time that server i has been idle while server i is not blocked in time
interval [0, t], and let Yi+d(t) be the amount of time that buffer i has been full in time
interval [0, t]. That is,

Yi(t) =

∫ t

0
1{Zi(s)=0,Zσ(i)(s)<bσ(i)} ds, Yi+d(t) =

∫ t

0
1{Zi(s)=bi} ds. (2.1)

Hereafter, whenever σ(i) = 0 condition {aσ(i) < bσ(i)} always holds for any a, b ∈ Rd.
Let Z(t) = (Z1(t), . . . ,Zd(t))′ and Y (t) = (Y1(t), . . . ,Y2d)′. The process Z =
{Z(t), t > 0} is called the queue length process and the process Y = {Y (t), t > 0} is
called the allocation process. Clearly, Y is a nondecreasing, continuous process. Given
the iid interarrival time sequences and service time sequences, one can uniquely con-
struct the queue length process and the allocation process. Such detailed construction,
though not attempted here, is implicitly assumed in section 7.

For each i ∈ I and t > 0, let

Fi(t) = t− Yi+d(t), Bi(t) = t− Yi(t)− Yσ(i)+d(t). (2.2)

Hereafter, whenever σ(i) = 0, Yσ(i)+d(t) is understood to be 0.
It is clear that Bi(t) is the cumulative amount of time that server i has been busy

in [0, t] and Fi(t) is the cumulative amount of time that buffer i has not been full in
[0, t]. That is,

Fi(t) =

∫ t

0
1{Zi(s)<bi} ds, Bi(t) =

∫ t

0
1{Zi(s)>0,Zσ(i)(s)<bσ(i)} ds.

3. A heavy traffic limit theorem

To state a heavy traffic limit theorem, we need to consider a sequence of networks
indexed by n. The network depends on the index n through the external arrival rates
αn, mean service times mn and buffer sizes bn, where

αn =
(
αn1 , . . . ,αnd

)′
, mn =

(
mn

1 , . . . ,mn
d

)′
, bn =

(
bn1 , . . . , bnd

)′
.

We let µni = 1/mn
i be the mean service rate at station i. The normalized interarrival

and service times, and the routing do not depend on n. Let Zn =
{
Zn(t), t > 0

}
be the queue length process and Y n =

{
Y n(t), t > 0

}
be the allocation process
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associated with the nth network. In the following theorem, P is the d × d routing
matrix, i.e., Pij = 1 if station i customers go next to station j and Pij = 0, otherwise.

Theorem 3.1. Assume that as n→∞,

αn → α > 0 and mn → m > 0, (3.1)
bn√
n
→ b > 0, (3.2)

√
n
(
αn −

(
I − P ′

)
µn
)
→ θ. (3.3)

Assume that for each n, Zn(0) is defined on the probability space (Ω,F ,P) and Zn(0)
is independent of the interarrival and service time sequences such that

1√
n
Zn(0) =⇒ ξ, n→∞. (3.4)

Assume further that

Γ = diag
(
α1c

a
1 , . . . ,αdc

a
d

)
+
(
I − P ′

)
diag

(
µ1c

s
1, . . . ,µdc

s
d

)
(I − P ) (3.5)

is (strictly) positive definite. Then(
1√
n
Zn(n·), 1√

n
Y n(n·)

)
=⇒

(
Z∗(·),Y ∗(·)

)
, as n→∞, (3.6)

where Z∗, together with Y ∗, is a semimartingale reflecting Brownian motion (RBM)
defined on a filtered probability space (Ω∗, {F∗t },F∗,P∗). The process (Z∗,Y ∗) is
uniquely determined in distribution from the following equations:

P∗-a.s., Z∗(t) = Z∗(0) +X∗(t) +RY ∗(t) for all t > 0, (3.7)

P∗-a.s., 0 6 Z∗(t) 6 b for all t > 0, (3.8)

Z∗(0) has the same distribution as ξ, (3.9)

Z∗(·) and Y ∗(·) are{F∗t }-adapted, (3.10)

P∗-a.s., Y ∗(0) = 0, Y ∗(·) is continuous and nondecreasing, (3.11)

P∗-a.s., for i ∈ I, Y ∗i (·) increases only at times t when Z∗i (t) = 0, (3.12)

P∗-a.s., for i ∈ I, Y ∗i+d(·) increases only at times t when Z∗i (t) = bi, (3.13)

X∗ is a Brownian motion with drift θ and covariance matrix Γ, (3.14){
X∗(t)− θt

}
is an

{
F∗t
}

-martingale, (3.15)

where θ is defined in (3.3), Γ is defined in (3.5) and

R =
((
I − P ′

)
diag(µ),

[(
I − P ′

)
diag(µ)

]
σ
− diag(α)

)
. (3.16)

For a d× d matrix A and a vector x ∈ Rd,

xσ = (xσ(1), . . . ,xσ(d))
′ and Aσx = Axσ. (3.17)
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The theorem will be proved in section 8. The vector θ, the matrix Γ and the
d× 2d matrix R are called the drift, the covariance matrix and the reflection matrix of
the RBM Z∗, respectively. For i ∈ I , the ith column of R is the direction of reflection
used when Z∗i (t) = 0, and the (i+d)th column of R is the direction of reflection used
when Z∗i (t) = bi. Because of (3.8), the RBM Z∗ lives in the d-dimensional box S
defined by

S ≡
{
x = (x1, . . . ,xd)

′ ∈ Rd: 0 6 xi 6 bi for i ∈ I
}
. (3.18)

Therefore, the RBM Z∗ in the theorem has state space S. From now on, we call
the RBM Z∗ a (Γ, θ,R,S)-RBM. The process Y ∗ is the pushing processes associated
with the RBM Z∗. In the stochastic differential equation terminology, the process
(Z∗,Y ∗) is a weak solution to (3.7)–(3.14). Because the corresponding Skorohod
problem may not have a unique solution (see the example at the end of section 5), it
is not known whether a (strong) solution exists for each Brownian motion X∗ defined
on a probability space. The uniqueness of (Z∗,Y ∗) (in distribution) follows from Dai
and Williams [18] that generalized an earlier result of Taylor and Williams [37] for
RBM’s in an orthant.

4. The Skorohod problem and an oscillation theorem

In this section, we define the Skorohod problem and establish an oscillation result
for solutions to a family of Skorohod problems. We choose to prove our results in a
general polyhedral state space S, instead of the d-dimensional box introduced in (3.18).
We believe our oscillation result in a general state space is of independent interest.

In this section we follow most of the notation introduced in section 1 of Dai and
Williams [18]. Symbols m and F are reused in this section. In the subsequent sections,
they retain the original meaning. The polyhedron is defined in terms of m (m > 1)
d-dimensional unit vectors {ni, i ∈ J}, J ≡ {1, . . . ,m}, and an m-dimensional
vector a = (a1, . . . , am)′. The state space S is defined by

S ≡
{
x ∈ Rd: ni · x > ai for all i ∈ J

}
, (4.1)

where ni · x = n′ix denotes the inner product of the vectors ni and x. It is assumed
that the interior of S is non-empty and that the set {(n1, a1), . . . , (nm, am)} is minimal
in the sense that no proper subset defines S. That is, for any strict subset K ⊂ J , the
set {x ∈ Rd: ni · x > ai ∀i ∈ K} is strictly larger than S. This is equivalent to the
assumption that each of the faces

Fi ≡ {x ∈ S: ni · x = ai}, i ∈ J , (4.2)

has dimension d − 1 (cf. [8, theorem 8.2]). As a consequence, ni is the unit normal
to Fi that points into the interior of S. Let N denote the m× d matrix whose ith row
is given by the row vector n′i for each i ∈ J .
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For each face Fi, i ∈ J , we associate a d-dimensional vector vi with it. We use
R to denote the d×m matrix whose ith column vi. Let us first define the Skorohod
problem associated with the data (S,R). The matrix R is called the reflection matrix.

In the following, for a Borel set U ⊂ Rk, k > 1, we define D([0,T ],U ) =
{w : [0,T ]→ U , w is right continuous in [0,T ) having left limits in (0,T ]}.

Definition 4.1 (The Skorohod problem). Given T > 0 and x ∈ D([0,T ],Rd) with
x(0) ∈ S, an (S,R)-regulation of x over [0,T ] is a pair (z, y) ∈ D([0,T ], S) ×
D([0,T ], Rm+ ) such that

(i) z(t) = x(t) +Ry(t) for all t ∈ [0,T ],

(ii) z(t) ∈ S for all t ∈ [0,T ],

(iii) for each i ∈ J ,

(a) yi(0) = 0,

(b) yi is nondecreasing,

(c)
∫

(0,T ](ni · z(t)− ai) dyi(t) = 0.

Remarks. (a) Although in the rest of this paper, y is known to be continuous, we
allow y to have jumps in the definition of the Skorohod problem.

(b) The integral
∫

(0,T ](ni ·z(t)−ai) dyi(t) is well defined as a Lebesgue–Stieltjes
integral, because any path z ∈ D([0,T ],Rd) is bounded in [0,T ]. Loosely speaking,
condition (iii)(c) says that yi can increase only at times t ∈ [0,T ] for which z(t) ∈ Fi.
(See lemma 4.4 for a more precise statement.)

The existence and uniqueness of an (S,R)-regulation heavily depends on the
reflection matrix R.

Definition 4.2. For each ∅ 6= K ⊂ J , define FK =
⋂
i∈K Fi. Let F∅ = S. A set

K ⊂ J is maximal if K 6= ∅, FK 6= ∅, and FK 6= F
K̃

for any K̃ ⊃ K such that

K̃ 6= K.

Now we introduce an assumption on N and R.

Completely-S assumption. For each maximal K ⊂ J ,

(S.a) there is a positive linear combination v =
∑

i∈K civi (ci > 0 ∀i ∈ K) of the
{vi, i ∈K} such that ni · v > 0 for all i ∈K;

(S.b) there is a positive linear combination η =
∑

i∈K cini (ci > 0 ∀i ∈ K) of the
{ni, i ∈K} such that η · vi > 0 for all i ∈K.

The labels (S.a) and (S.b) stand for S-condition (a) and (b), respectively. The
origin of these labels becomes apparent when the conditions are written in matrix form
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as below. For a vector x ∈ Rk, the notation x > 0 indicates that all coordinates of
x are strictly positive, and the notation x > 0 indicates that all coordinates of x are
nonnegative.

Definition 4.3. A matrix A is called an S-matrix if there is a vector x > 0 such that
Ax > 0.

For an m × m matrix A and K ⊂ J , let AK denote the |K| × |K| matrix
obtained from A by deleting those rows and columns with indices in J\K.

Conditions (S.a) and (S.b) are equivalent to the following:

(S.a) the matrix (NR)K is an S matrix;

(S.b) the matrix (NR)′K is an S matrix.

Definition 4.4. The convex polyhedron S is simple if for each K ⊂ J such that
K 6= ∅ and FK 6= ∅, exactly |K| distinct faces contain FK .

The convex polyhedron S is simple if and only if for each K ⊂ J , FK 6= ∅
implies that K is maximal. One can check that the d-dimensional box in (3.18) is a
simple polyhedron. The following proposition was proved in Dai and Williams [18,
proposition 1.1]. It is a straightforward generalization of Reiman and Williams [36,
lemma 3].

Proposition 1. Suppose that S is simple. Then (S.a) holds for all maximal K ⊂ J if
and only if (S.b) holds for all maximal K ⊂ J .

The following oscillation result is concerned with paths in a family of (Sr,Rr)-
regulations indexed by r > 0. In the case that S = Rd+, and all paths are continuous
and from a single (S,R)-regulation, this result was proved previously by Bernard and
El Kharroubi [2]. Dai and Williams [18] generalized the result to a general polyhedral
state space. Our proof here is adapted from [18].

For any f ∈ D([t1, t2],Rk) with some k > 1, let

Osc
(
f , [t1, t2]

)
= sup
t16s6t6t2

∣∣f (t)− f (s)
∣∣,

Osc
(
f , [t1, t2)

)
= sup
t16s6t<t2

∣∣f (t)− f (s)
∣∣,

||∆f ||(t1,t2] = sup
t1<s6t2

∣∣∆f (s)
∣∣,

where, as before, ∆f (s) = f (s) − f (s−) and f (s−) is the left limit at s. Note that
when f is left continuous at t2, Osc(f , [t1, t2]) = Osc(f , [t1, t2)).
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We consider a sequence of state spaces Sr indexed by r > 0. The shape of the
space state does not change with r. That is, the normal vectors {ni, i ∈ J} do not
depend on r. However, the size (ar1, . . . , arm)′ of the state space depends on r. Hence,

Sr ≡
{
x ∈ Rd: ni · x > ari for all i ∈ J

}
.

The reflection matrix associated with each state space Sr is Rr, whose ith column is
denoted by vri . Recall that N is a matrix whose ith row is given by n′i.

Theorem 4.2. Assume that Rr → R as r →∞ and (N ,R) satisfies the Completely-S
assumption. There exist constants κ > 0 and r̂ > 0 that depend only on (N ,R)
such that for any T > 0, r > r̂, x ∈ D([0,T ],Rd) with x(0) ∈ Sr, and an (Sr,Rr)-
regulation (y, z) of x over [0,T ], the following holds for each interval [t1, t2] ⊂ [0,T ]:

Osc
(
y, [t1, t2]

)
6 κ
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
,

Osc
(
z, [t1, t2]

)
6 κ
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
.

We leave the lengthy proof to the end of this section. To prepare for the proof,
we need a few lemmas.

Lemma 4.3. Let f ∈ D([0,∞),R). Suppose f is of bounded variation on each finite
time interval, and assume that f (0) = 0. Then for each t > 0:

f 2(t) +
∑

0<s6t

[
∆f (s)

]2
= 2

∫
(0,t]

f (s) df (s).

Proof. The result is quite standard. See, for example, Last and Brandt [30, theo-
rem A.4.6]. �

Let g ∈ D([0,∞),R) be a nondecreasing function. The function g is said to
increase at time t > 0 if there exists a δ > 0 such that g(u) < g(v) for each t− δ <
u < t < v < t+ δ. The following lemma should also be standard. For completeness,
we provide a direct proof.

Lemma 4.4. Let g ∈ D([0,∞,R) be a nondecreasing function and f ∈ D([0,∞),R)
be a nonnegative function. For t > 0, if

∫
(0,t] f (s) dg(s) = 0 and f (s) > 0 for s ∈ [0, t),

then g(s) = g(0) for s ∈ [0, t).

Proof. Suppose that there is an s ∈ (0, t) such that g(s) > g(0). If g has jump at a
point t′ ∈ (0, t), then ∫

(0,t]
f (s) dg(s) > f

(
t′
)
∆g
(
t′
)
> 0,
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contradicting the fact that
∫

(0,t] f (s) dg(s) = 0. Thus g must be continuous on (0, t).
Let

t′ = inf
{
s ∈ (0, t): g(s) > g(0)

}
.

By the continuity of g, g(t′) = g(0). By the definition of t′, for any s > t′, g(s) >
g(t′). Because f (t′) > 0 and f is right continuous, there is a δ > 0 such that
inft′6s6t′+δ f (s) > 0. Now,∫

(0,t]
f (s) dg(s) >

∫
(t′,t′+δ]

f (s) dg(s) > inf
t′6s6t′+δ

f (s)
(
g
(
t′ + δ

)
− g
(
t′
))
> 0,

contradicting the fact that
∫

(0,t] f (s) dg(s) = 0. Therefore, g(s) = g(0) for 0 6 s < t. �

Lemma 4.5. Let S = [0,∞) and R = 1. Then the (S,R)-regulation of x with
x(0) > 0 has a unique solution (z, y) given by

y(t) = sup
06s6t

x−(s) for 0 6 t 6 T ,

z(t) = x(t) + y(t),

where x−(t) = max{−x(t), 0}.

Proof. We first show the uniqueness. Suppose there are two solutions (z, y) and (ẑ, ŷ)
to the (S,R)-regulation of x. Then z− ẑ = y− ŷ. Now let f = y− ŷ. By lemma 4.3,
we have for each t > 0

06 f 2(t) +
∑

0<s6t

[
∆f (s)

]2
= 2

∫
(0,t]

f (s) df (s)

= 2
∫

(0,t]

(
z(s)− ẑ(s)

)
d
(
y(s)− ŷ(s)

)
=−2

∫
(0,t]

ẑ(s) dy(s)− 2
∫

(0,t]
z(s) dŷ(s) 6 0.

Hence, f (t) = 0, thus proving uniqueness.
For existence, let y(t) = sup06s6t x

−(s). Since x(0) > 0, x−(0) = 0 and so
y(0) = 0. Clearly,

z(t) ≡ x(t) + y(t) > x(t) + x−(t) > 0 for all t > 0,

y is nondecreasing, and, hence, it has left limits on (0,T ]. Since x(·) is right continu-
ous, y is right continuous. It remains to be verified that y satisfies property (iii)(c) in
the definition of the Skorohod problem. Suppose y has a jump at time t. Because

y
(
t−
)

= sup
06s<t

x−(s) and y(t) = max
{
y
(
t−
)
,x−(t)

}
> y
(
t−
)
,

we have y(t) = x−(t) = −x(t). Thus, z(t) = x(t) + y(t) = x(t) + x−(t) = 0.
Therefore, without loss of generality, we assume that y is continuous. If y increases
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at time t, it follows from the proof of lemma 8.1 in Chung and Williams [14] that
z(t) = 0. Therefore, by Graves [22, p. 269],∫ t

0
z(s) dy(s) = lim

n→∞

2nt∑
k=1

(
inf

s∈[(k−1)t/2n, kt/2n]
z(s)

)(
y

(
kt

2n

)
− y
(

(k − 1)t
2n

))
= 0.

�

Let C be the constant determined in Dai and Williams [18, lemma B.1]. It
depends on {ni, i ∈ J} only, not on (ar1, . . . , arm)′. For each ε > 0 and K ⊂ J
(including the empty set), define

F r,ε
K =

{
x ∈ Rd: 0 6 nix− ari 6 Cε for all i ∈K
and nix− ari > ε for all i ∈ J\K

}
, (4.3)

where Cε = Cmε. The following lemma, which was proved in [18, lemma 4.1], plays
a key role in the proof of the oscillation theorem.

Lemma 4.6. For each ε > 0,

Sr =
⋃
K∈C

F r,ε
K , (4.4)

where C denotes the collection of subsets of J consisting of all maximal sets in J
together with the empty set.

Proof of theorem 4.2. Our proof is adapted from that of lemma 4.3 in Dai and
Williams [18] who generalized lemma 1 of Bernard and El Kharroubi [2]. We proceed
via an induction on the size of J , the index set for the faces of S. Throughout this
proof, T , x, y, z, t1, t2 will be as in the statement of the theorem. In general, z and
y depend on the index r, but we suppress the dependence in the proof.

First consider the case |J | = 1. Then Rr = vr1 is a vector in Rd and vr1 → v1 as
r →∞. By (S.a), n1 · v1 > 0. Take r0 such that

n1 · vr1 >
1
2

(n1 · v1) and
||vr1 ||

(n1 · vr1)
6 2||v1||
n1 · v1

for r > r0. Fix r > r0. In this case, y is uniquely given by the one-dimensional
regulator mapping for n1 · x− ar1 in lemma 4.5:

y(t) =
(
− min

06s6t

(
n1 · x− ar1

)
(s)
)+/(

n1 · vr1
)

for all t ∈ [0,T ]. (4.5)

Together with

n1 · z(t) = n1 · x(t) + n1 · vr1y(t) for all t ∈ [0,T ],
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this defines a ([ar1,∞),n1 ·vr1)-regulation of n1 ·x over [0,T ]. The oscillation estimates
in the theorem then follow easily from (4.5) and the fact that z = x + vr1y. That is,
for r > r0,

Osc
(
y, [t1, t2]

)
6 1
n1 · vr1

Osc
(
x, [t1, t2]

)
6 2
n1 · v1

Osc
(
x, [t1, t2]

)
,

Osc
(
z, [t1, t2]

)
6 1 +

||vr1 ||
(n1 · vr1)

Osc
(
x, [t1, t2]

)
6 1 +

2||v1||
(n1 · v1)

Osc
(
x, [t1, t2]

)
.

Thus the theorem holds for |J | = 1 with r̂ = r0 and

κ = max

{(
1 +

2||v1||
n1 · v1

)
,

2
n1 · v1

}
.

For the induction step, suppose that the theorem is true for 1 6 |J | < m. Now
consider a state space S with |J | = m. Our proof of the induction step is separated
into several parts.

Part (a). We claim that there exists a constant C1 that depends only on (N ,R) and
a constant r0 > 0 such that for r > r0 and each K ∈ C\{J} (see lemma 4.6 for the
definition of C), if yJ\K does not increase on [t1, t2), then one has:

Osc
(
y, [t1, t2]

)
6C1

(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
, (4.6)

Osc
(
z, [t1, t2]

)
6C1

(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
. (4.7)

To see this, note that under the assumptions of the claim, for t ∈ [0, t2 − t1),

z(t+ t1) = z(t1) + x(t+ t1)− x(t1) +
∑
i∈K

vri
(
yi(t+ t1)− yi(t1)

)
. (4.8)

For any t′2 such that t1 6 t′2 < t2, it follows that (z(·+ t1), yK(·+ t1)− yK(t1)) is an
(SrK ,RrK)-regulation of z(t1) + x(· + t1) − x(t1) over [0, t′2 − t1]. If K = ∅, then y
does not increase on [t1, t′2] and the oscillation estimate trivially holds with C1 = 1.
If K 6= ∅, then K is maximal and so by Dai and Williams [18, lemma 4.2], (S.a)
and (S.b) hold for (NK ,RK). Then, by the induction assumption, since |K| < m, we
have that there exist constants CK > 1 and r0,K > 0 that depend only on (NK , RK),
such that for r > r0,K

Osc
(
y, [t1, t′2]

)
= Osc

(
yK(·+ t1), [0, t′2 − t1]

)
6CK

(
Osc
(
x(·+ t1)− x(t1),

[
0, t′2 − t1

])
+ sup
t1<s6t′2

∣∣∆yK(s)
∣∣)

6CK
(

Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

∣∣∆y(s)
∣∣).

Letting t′2 ↑ t2,

Osc
(
y, [t1, t2)

)
6 CK

(
Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

|∆y(s)|
)
.
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Therefore,

Osc
(
y, [t1, t2]

)
6Osc

(
y, [t1, t2)

)
+
∣∣∆y(t2)

∣∣
6 2CK

(
Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

∣∣∆y(s)
∣∣).

It follows from z(t) = x(t) +Rry(t) that

Osc
(
z, [t1, t2]

)
6Osc

(
x, [t1, t2]

)
+ ||Rr||Osc

(
y, [t1, t2]

)
6
(
1 + ‖Rr‖2CK

)
Osc
(
x, [t1, t2]

)
.

Because Rr → R as r →∞, we can choose r0 such that r0 is at least the maximum
of the r0,K’s for K running through C\{J} and ||Rr|| 6 ||R|| + 1 for r > r0. Let
C1 be the maximum of 1 + (||R|| + 1)2CK for K running through C\{J}. Then
inequalities (4.6) and (4.7) follow.

For parts (b) and (c), we let

ε =
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
.

Without loss of generality we assume that ε > 0. By lemma 4.6, z(t1) ∈ FC1ε
K for

some K ∈ C.

Part (b). Suppose that the K found above is not J . Then, for all i ∈ J\K,

d
(
z(t1),Fi

)
> ni · z(t1)− ari > C1ε,

where d(x,F ) is the distance from a point x to a set F . We claim that ni ·z(s)−ari > 0
for s ∈ [t1, t2] and i ∈ J\K. Assume, on the contrary, that there exist i ∈ J\K and
s ∈ [t1, t2] such that ni · z(s)− ari = 0. Let

t′2 = inf
{
s ∈ [t1, t2]: ni · z(s)− ari = 0

}
.

By the right continuity of z, ni · z(t′2)− ari = 0. From the definition of t′2, ni · z(s)−
ari > 0 for s ∈ [t1, t′2), and hence yi does not increase on [t1, t′2) by lemma 4.4. By
part (a), we have

ni · z
(
t′2
)
− ari =ni ·

(
z
(
t′2
)
− z(t1)

)
+ ni · z(t1)− ari

>−C1
(

Osc
(
x,
[
t1, t′2

])
+ sup
t1<s6t′2

∣∣∆y(s)
∣∣)+ C1ε > 0

contradicting ni · z(t′2)− ari = 0. Thus, z does not reach F ri for any i ∈ J\K during
the interval [t1, t2] and therefore yJ\K does not increase on [t1, t2].

Then part (a) implies that (4.6) holds in this case.

Part (c). Suppose that the K described before part (b) is equal to J . Since z(t1) ∈
FC1ε
J , by [18, lemma B.1], d(z(t1),Fi) 6 C2ε, where C2 = C1Cm. Now one of the

following two situations holds.
(i) For every i ∈ J , d(z(t),Fi) 6 2C2 ε for all t ∈ [t1, t2]. Then for each i ∈ J ,

0 6 ni · z(t)− ari 6 d
(
z(t),Fi

)
6 2C2ε for all t ∈ [t1, t2], (4.9)
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and so

Osc
(
ni · z, [t1, t2]

)
6 2C2ε. (4.10)

Now, since K = J is maximal, there is an x0 ∈ FJ and by (S.b) there exists a positive
linear combination η =

∑
i∈J γini (γi > 0 for all i) of the {ni, i ∈ J} such that

η · vi > 0 for all i ∈ J . Then

η ·
(
z(t)− x0

)
= η ·

(
x(t)− x0

)
+
∑
i∈J

(
η · vri

)
yi(t) for all t ∈ [0,T ]. (4.11)

Thus,

min
i∈J

(
η · vri

)
Osc
(
y1 + · · ·+ ym, [t1, t2]

)
6 Osc

(
η · z, [t1, t2]

)
+ Osc

(
η · x, [t1, t2]

)
6
∑
i∈J

γi
(
Osc
(
ni · z, [t1, t2]

)
+ Osc

(
ni · x, [t1, t2]

))
. (4.12)

Since

min
i∈J

(
η · vri

)
→ min

i∈J
(η · vi) > 0

as r →∞, using (4.10) and z = x+Rry, we see that one can choose a constant C3

depending only on (N , R) and an r1 > r0 such that

Osc
(
y, [t1, t2]

)
6 C3ε, Osc

(
z, [t1, t2]

)
6 C3ε.

(ii) There is an i ∈ J and t3 ∈ [t1, t2] such that d(z(t3),Fi) > 2C2ε. Define

t′1 = inf
{
t > t1: d

(
z(t),Fi

)
> 2C2ε for some i ∈ J

}
.

By the definition of t′1, for any δ > 0, over [t1, t′1−δ] we have the situation in part (c)(i)
above. That is,

Osc
(
y,
[
t1, t′1 − δ

])
6 C3ε, Osc

(
z, [t1, t′1 − δ

])
6 C3ε.

Letting δ → 0+, we have

Osc
(
y,
[
t1, t′1

))
6 C3ε, Osc

(
z,
[
t1, t′1

))
6 C3ε.

Over [t′1, t2], by lemma 4.6, we have z(t′1) ∈ FC1ε
K for some K ∈ C\{J}, and then

we have the situation in part (b). Thus,

Osc
(
y,
[
t′1, t2

])
6 C1ε, Osc

(
z,
[
t′1, t2

])
6 C1ε.
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Therefore,

Osc
(
y, [t1, t2]

)
6 Osc

(
y,
[
t1, t′1

))
+
∣∣∆y(t′1)∣∣+ Osc

(
y,
[
t′1, t2

])
6 (1 + C1 + C3)ε.

Hence, there is a constant C4 depending only on (N , R) such that

Osc
(
y, [t1, t2]

)
6 C4ε, Osc

(
z, [t1, t2]

)
6 C4ε.

Thus, the theorem holds for κ = max{C1,C3,C4} and r̂ = r1. �

5. Network dynamics and preliminaries

For each t > 0, i ∈ I and j > 0 let Ui(0) = Vi(0) = 0,

Ui(j) = ui1 + · · ·+ uij , Vi(j) = vi1 + · · · + vij ,

Ei(t) = max{k > 0: ui1 + · · ·+ uik 6 t},

Si(t) = max{k > 0: vi1 + · · · + vik 6 t}.
Let

Êi(t) = Ei(t)− t and Ŝi(t) = Si(t)− t for i ∈ I.
Let

Ê(t) =
(
Ê1(t), . . . , Êd(t)

)′
and Ŝ(t) =

(
Ŝ1(t), . . . , Ŝd(t)

)′
.

The two d-dimensional processes {Ê(t), t > 0} and {Ŝ(t), t > 0} contain all the
randomness in the queueing network. It is known that they satisfy the Functional
Strong Law of Large Numbers [23, lemma V.2.1]: P-a.s, as r→∞,

1
r
Ê(r·)→ 0 u.o.c.,

1
r
Ŝ(r·)→ 0 u.o.c. (5.1)

and the Functional Central Limit Theorem [4, section 17]: as r →∞,(
1√
r
Ê(r·), 1√

r
Ŝ(r·)

)
=⇒

(
E∗,S∗

)
, (5.2)

where E∗ and S∗ are two independent, d-dimensional Brownian motions with drift
zero and covariance matrices diag(ca1 , . . . , cad) and diag(cs1, . . . , csd), respectively.

Recall that we are considering a sequence of networks indexed by n. In particular,
αni and µni are the external arrival rate to station i and the service rate of server i for
the nth network. Let

Eni (t) = Ei
(
αni t
)
, Sni (t) = Si

(
µni t
)
.

If server i has been busy all the time in [0, t], Sni (t) is the number of services completed
by time t at station i. Similarly, if buffer i has never been full in [0, t], Eni (t) is the
number of arrivals by time t to station i. Recall that Fni (t) is the cumulative amount
of time that buffer i is not full by time t. From our model assumption, Eni (Fni (t))
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is the number of external arrivals to station i by time t in the nth network. Also,
Bn
i (t) is the cumulative amount of time that server i has been working by time t and

Sni (Bn
i (t)) is the number of departures from station i by time t in the nth network.

Now we can write down the main equation that governs the dynamics of the queue
length process. Namely,

Zni (t) = Zni (0) +Eni
(
Fni (t)

)
+

∑
j∈I,σ(j)=i

Snj
(
Bn
j (t)
)
− Sni

(
Bn
i (t)
)
, i ∈ I, (5.3)

where Zni (0) is the initial queue length at station i. Let

En
(
Fn(t)

)
=
(
En1
(
Fn1 (t)

)
, . . . ,End

(
Fnd (t)

))′
and

Sn
(
Bn(t)

)
=
(
Sn1
(
Bn

1 (t)
)
, . . . ,Snd

(
Bn
d (t)
))′
.

Recall that the routing matrix is defined as

Pij =
{

1 if station i customers go to station i,
0 otherwise.

Then we have the vector form of (5.3):

Zn(t) = Zn(0) +En
(
Fn(t)

)
− (I − P ′)Sn

(
Bn(t)

)
. (5.4)

Following Harrison [24], we introduce the centered processes

Ên(t) =
(
Ên1 (t), . . . , Ênd (t)

)′
and Ŝn(t) =

(
Ŝn1 (t), . . . , Ŝnd (t)

)′
,

where

Êni (t) = Eni (t)− αni t = Êi
(
αni t
)

and Ŝni (t) = Sni (t)− µni t = Ŝi
(
µni t
)
, i ∈ I.

(5.5)
It follows from (5.4) that

Zn(t) =Zn(0) + Ên
(
Fn(t)

)
−
(
I − P ′

)
Ŝn
(
Bn(t)

)
+ diag

(
αn
)
Fn(t)−

(
I − P ′

)
diag

(
µn
)
Bn(t). (5.6)

It follows from (5.6) and (2.2) that

Zn(t) = Zn(0) +Xn(t) +RnY n(t), (5.7)

where

Xn(t) = Ên
(
Fn(t)

)
−
(
I − P ′

)
Ŝn
(
Bn(t)

)
+
(
αn −

(
I − P ′

)
µn
)
t, (5.8)

Rn is the d× 2d matrix given by

Rn =
((
I − P ′

)
diag

(
µn
)
,
[(
I − P ′

)
diag

(
µn
)]
σ
− diag

(
αn
))
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and for a matrix A, Aσ is defined in (3.17). Let Sn be the d-dimensional box defined
by

Sn =
{
x ∈ Rd: 0 6 xi 6 bni ∀i ∈ I

}
.

One can check that for each sample path:

(i) Zn(t) = Zn(0) +Xn(t) +RnY n(t) for all t > 0,

(ii) Zn(t) ∈ Sn for all t > 0,

(iii) for each i = 1, . . . , 2d,

(a) Y n
i (0) = 0,

(b) Y n
i is nondecreasing and continuous,

(c) for i = 1, . . . , d, Yi increases only when Zni (t) = 0 and for i = d + 1,
. . . , 2d, Y n

i increases only when Zni (t) = bni .

It follows that for each sample path, the pair (Zn(·),Y n(·)) is an (Sn,Rn)-
regulation of Zn(0) +Xn(·).

Using the notion in section 4, for each boundary face of Sn, there is a unit
vector ni that is normal to the face. (We number faces such that the ith face is
{x ∈ Sn: xi = 0} for i = 1, . . . , d and {x ∈ Sn: xi = bni } for i = d + 1, . . . , 2d.)
Recall that N is a 2d × d matrix whose ith row is the row vector n′i. It is easy to
check that

N = (I ,−I)′,

where I is the d×d identity matrix. Under the assumptions (3.1), as n→∞, Rn → R
as defined in (3.16).

Lemma 5.1. The completely-S assumption in theorem 4.2 holds for (N ,R).

Proof. Because the state space Sn is simple, by proposition 1, it is enough to show
that for each maximal K ⊂ J ≡ {1, . . . , 2d}, (NR)K is an S-matrix. Let R0 and Rb
be two d× d submatrices of R such that R = (R0,Rb). It is easy to check that

NR =

(
R0 Rb
−R0 −Rb

)
.

A K ⊂ J is maximal if
⋂
i∈K Fni is non-empty. Because Fni and Fni+d are parallel

to each other, a non-empty K is maximal if and only if for each i ∈K, i+ d /∈ K.
Let M = (NR)K . Then M has the following form:

M =

(
M1 M2

M3 M4

)
=

(
M1 0
0 M4

)
+

(
0 M2

M3 0

)
,

where M1 is a principal submatrix of R0, M4 is a principal submatrix of −Rb, M2

is a submatrix of Rb and M3 is a submatrix of −R0. Because K is maximal, M3
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does not contain any diagonal elements of −R0. Hence, M3 is a nonnegative matrix.
Similarly, M2 is a nonnegative matrix. Because R0 is a completely-S matrix, hence,
M1 is an S-matrix. Because −Rb is an upper triangular matrix with positive diagonal
elements, M4 is an S-matrix. Thus, M is an S-matrix. �

We end this section by presenting an example in which the associated Skorohod
problem does not have a unique solution. Consider, for example, a network of two
stations in tandem. The routing matrix

P =

(
0 1
0 0

)
.

Assume that αn = (1, 0)′ and µn = (1, 1)′ for each n. Then the corresponding
reflection matrix

R =

(
1 0 −1 1
−1 1 0 −1

)
.

We claim that the (S,R)-regulation of x(·) is not unique for some path x(·). Here
the state space S is a box, say, {x ∈ R2: 0 6 xi 6 1 for i = 1, 2}. Note that the
directions of reflection that correspond to the corner (0, 1)′ are parallel, both being
(1,−1)′. Let x1(t) = −t and x2(t) = 1 + t for t > 0. One can check that both (z, y)
and (ẑ, ŷ) are (S,R)-regulations of x(·), where, for t > 0,

z1(t) = 0, z2(t) = 1, y1(t) = t, y2(t) = y3(t) = y4(t) = 0,

ẑ1(t) = 0, ẑ2(t) = 1, ŷ1(t) = ŷ2(t) = ŷ3(t) = 0, and ŷ4(t) = t.

Thus, the conventional continuous mapping approach for proving heavy traffic
limit theorems cannot be applied to the network.

6. Fluid limits

Theorem 6.1 (Fluid limit theorem). Assume that (3.1)–(3.3) in theorem 3.1 hold.
Then, for each sample path such that (5.1) holds,

1
n
Fn(n·) −→ et u.o.c., and

1
n
Bn(n·) −→ et u.o.c. (6.1)

Proof. Fix a sample path such that (5.1) holds. For a sequence of paths fn, recall
that

f̄n(t) =
1
n
fn(nt).

By (5.1),

Ên(nt)
n

=
Ê(αnt)
n

→ 0 u.o.c. and
Ŝn(nt)
n

=
Ŝ(µnt)
n

→ 0 u.o.c. (6.2)
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Let ω be a fixed sample path such that (6.2) holds. We claim that as n→∞,

X
n

(t)→ 0 u.o.c.

In fact, for s > 0,∣∣X n
(s)
∣∣ 6 1

n

∣∣Ên(Fn(ns)
)∣∣+

∥∥(I − P ′)∥∥ 1
n

∣∣Ŝn(Bn(ns)
)∣∣+

∣∣αn − (I − P ′)µn∣∣s,
where for a matrix A, ||A|| = maxi

∑
j |Aij |. Thus,

sup
06s6t

∣∣X n
(s)
∣∣ 6 1

n
sup

06s6t

∣∣Ên(ns)
∣∣+∥∥(I−P ′)∥∥ 1

n
sup

06s6t

∣∣Ŝn(ns)
∣∣+∣∣αn−(I−P ′)µn∣∣t

and sup06s6t |X
n

(s)| → 0 as n→∞.
It is easy to check that (Z

n
(·),Y n

(·)) is an (S
n

,Rn)-regulation of Z
n

(0)+X
n

(·),
where

S
n

=
{
x ∈ Rd: 0 6 xi 6 bni /n ∀i ∈ I

}
.

By lemma 5.1, theorem 4.2 and the fact that Y
n

(·) is continuous, there exist constants
κ > 0 and n0 > 0 such that for each t1 < t2 and n > n0,

Osc
(
Y
n

(·,ω), [t1, t2]
)
6 κOsc

(
X

n
(·), [t1, t2]

)
. (6.3)

Since |Y n
(t) − Y n

(s)| 6 2d(t− s) for all n and t > s > 0, the sequence {Y
n

(·)} is
precompact in C([0,∞),R2d). Let Y be a limit of this sequence. Because X

n
(·,ω)→

0 u.o.c. as n→∞, it follows from (6.3) that Osc(Y , [t1, t2]) = 0 for any 0 6 t1 < t2.
Since Y (0) = 0, Y (t) = 0 for all t > 0. Because each limit point Y is identically
zero, Y

n
(·)→ 0 u.o.c. as n→∞. The lemma then follows from (2.2). �

7. A stopping time property

In this section we prove a stopping time property that is essential to the proof
of the main theorem. Let p, q ∈ Zd+ be d-dimensional indexes. We use Ui(· ∧ j)
to denote process {Ui(k ∧ j), k > 0}. For a d-dimensional index p, let U (· ∧ p) =
(U1(· ∧ p1), . . . ,Ud(· ∧ pd)). For any p, q ∈ Zd+, let

Gnp,q = σ
{
U
(
· ∧ (p+ e)

)
,V
(
· ∧ (q + e)

)
,Zn(0)

}
, (7.1)

where e is the d-dimensional vector of ones. We assume that Gnp,q has been augmented
with all P-null sets. Recall that Eni (Fni (t)) is the number of external arrivals to station i
by time t and Sni (Bn

i (t)) is the number of departures from station i by time t.

Lemma 7.1 (Stopping time property). For any p, q ∈ Zd+ and t > 0,{
En
(
Fn(t)

)
= p, Sn

(
Bn(t)

)
= q
}
∈ Gnp,q. (7.2)
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Proof. Since we are going to prove (7.2) is true for each n > 1, we drop the
superscript n in this proof. Let

A(t) = E
(
F (t)

)
and D(t) = S

(
B(t)

)
.

When the event Ai(t) = pi occurs, the dynamics of the network in [0, t] does not
depend on the interarrival times ui` for ` > pi+1. Similarly, when the event Di(t) = qi
occurs, the dynamics of the network in [0, t] does not depend on the service times vi`
for ` > qi + 1. Thus, the lemma is intuitively obvious. However, a rigorous proof
is needed to show that A(t) and D(t) measurably depend on interarrival and service
times. The proof essentially requires us to go through the detailed construction of A(t)
and D(t) from the primitive interarrival and service times.

We mimic the proof in Williams [38], where open multiclass queueing networks
with unlimited buffer size were considered. An event time is the instant when a
service completion or an arrival has just occurred. Let e0 = 0 and el be the lth event
time. Because the mean interarrival times and mean service times are positive, with
probability one, el →∞ as l→∞. Thus, we have, with probability one,{

A(t) = p, D(t) = q
}

=
⋃
k>1

⋂
l>k

{
A(t ∧ el) = p, D(t ∧ el) = q

}
.

Therefore, to show (7.2), it is enough to show{
A(t ∧ el) = p, D(t ∧ el) = q

}
∈ Gp,q.

for each t > 0, l > 0 and p, q ∈ Zd+. (Here we used the fact that each Gp,q has been
augmented with all P-null sets.) For each t > 0 and i ∈ I , let Rai (t) be the remaining
time (from time t) for the next external arrival to station i to occur if the arrival will
never be turned off. Similarly, let Rsi (t) be the remaining time for the next service at
station i to complete if the service will never be interrupted. If there is no customer
in service at time t, Rsi (t) = ∞. We adopt the convention that ∞ − a = ∞ and
min{∞, a} = a for any constant a. We want to use induction to show that for each
l > 0

Cl,p,q ≡
{
A(t ∧ el) = p, D(t ∧ el) = q

}
∈ Gp,q, (7.3)

1{A(t∧el)=p,D(t∧el)=q}ξl ∈ Gp,q (7.4)

hold for each t > 0 and p, q ∈ Zd+, where

ξl =
(
Z(t ∧ el), Ra(t ∧ el), Rs(t ∧ el), t ∧ el

)
.

From our model assumption, Ai(0) = 0 and Di(0) = 0, Rai (0) = ui1/αi and

Rsi (0) =

{
mivi1 if Zi(0) > 0,

∞ if Zi(0) = 0.

Thus, ξ0 = (Z(0),Ra(0),Rs(0), 0) ∈ G0,0. For any (p, q) 6= (0, 0),

1{A(t∧e0)=p,D(t∧e0)=q}ξ0 = 0 ∈ Gp,q.
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Therefore, (7.3) and (7.4) hold for l = 0.
We now make the induction assumption that Cl,p,q ∈ Gp,q and 1Cl,p,qξl ∈ Gp,q

for all p, q ∈ Zd+ and t > 0. We would like to show that Cl+1,p,q ∈ Gp,q and
1Cl+1,p,qξl+1 ∈ Gp,q for all p, q ∈ Zd+ and t > 0. We first show that 1Cl+1,p,qξl+1 ∈ Gp,q.
Note that

1Cl+1,p,qξl+1 = 1Cl+1,p,qξl+11{t6el} + 1Cl+1,p,qξl+11{el<t}.

It is clear that

1Cl+1,p,qξl+11{t6el} = 1Cl,p,qξl1{t=t∧el} ∈ Gp,q

by the induction assumption. It remains to be shown that

1Cl+1,p,qξl+11{el<t} ∈ Gp,q.

On {t > el},

el+1 = t ∧ el + min
i∈I\F , j∈I\B

{
Rai (t ∧ el), Rsj (t ∧ el)

}
, (7.5)

where F ⊂ I is the set of buffers that are full at time t ∧ el, i.e.,

F ≡
{
i ∈ I: Zi(t ∧ el) = bi

}
,

and B ⊂ I is the set of stations are blocked at time t ∧ el, i.e.,

B ≡
{
i ∈ I: Zσ(i)(t ∧ el) = bσ(i)

}
.

It follows from (7.5) and the induction assumption that

1Cl,m,n1{t>el}el+1 ∈ Gm,n (7.6)

for all m,n ∈ Zd+.
Now,

1Cl+1,p,qξl+11{t>el} =
∑
(a,s)

1Cl,p̃,q̃ξl+11{t>el}1Ba,s ,

where

Ba,s=
⋂
i∈a

{
Rai (t ∧ el) = el+1 − t ∧ el

}
×
⋂
i/∈a

({
Rai (t ∧ el) > el+1 − t ∧ el

}
∪
{
Zi(t ∧ el) = bi

})
×
⋂
i∈s

{
Rsi (t ∧ el) = el+1 − t ∧ el

}
×
⋂
i/∈s

({
Rsi (t ∧ el) > el+1 − t ∧ el

}
∪
{
Zσ(i)(t ∧ el) = bσ(i)

})
,
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p̃i =

{
pi − 1 if i ∈ a,

pi if i /∈ a,
q̃i =

{
qi − 1 if i ∈ s,

qi if i /∈ s,

Zi(t ∧ el+1) =


Zi(t ∧ el) + 1 if i ∈ a \ s,

Zi(t ∧ el)− 1 if i ∈ s \ a,

Zi(t ∧ el) otherwise,

Rai (t ∧ el+1) =

{
ui,pi if i ∈ a,

Rai (t ∧ el)− (t ∧ el+1 − t ∧ el) if i ∈ I \ a,

Rsi (t ∧ el+1) =

{
vi,qi if i ∈ s,

Rsi (t ∧ el)− (t ∧ el+1 − t ∧ el) if i ∈ I \ s,

and the summation is over all pairs (a, s) with a ⊂ I and s ⊂ I. The set a∪s is the set
of indexes whose clocks “expire” exactly at el+1. If a∪s = ∅, then the (l+1)th event
has not yet happened by time t. It follows from (7.6) and the induction assumption
that 1Cl+1,p,qξl+1 is Gp,q measurable. Similarly, we can show that 1Cl+1,p,q ∈ Gp,q. �

8. Proof of the heavy traffic limit theorem

For a sequence of functions fn, recall that

f̃n(t) =
1√
n
fn(nt).

Lemma 8.1. Under the assumptions (3.1)–(3.3) in theorem 3.1, as n→∞,(
Ẽn, S̃n, X̃n

)
=⇒

(
E∗,S∗,X∗

)
,

where E∗ and S∗ are independent Brownian motions as in (5.2),

X∗(t) = E∗(αt)−
(
I − P ′

)
S∗(µt) + θt, (8.1)

and X∗ is a Brownian motion with drift θ and covariance matrix Γ given in (3.16).

Proof. Let Ẽn(t) = (1/
√
n)Ê(αnnt) and S̃n(t) = (1/

√
n)Ŝ(µnnt). It follows

from (5.2), (3.1), (6.1) and the Random Change of Time Theorem [4, section 17]
that (

Ẽn
(
F
n

(·)
)
, S̃ n

(
B
n

(·)
))

=⇒
(
E∗(α·),S∗(µ·)

)
.

By the continuous mapping theorem,

X̃n(·) = Ẽn
(
F
n

(·)
)
−
(
I − P ′

)
S̃n(B

n
(·)
)
−
(
I − P ′

)
µn ·

=⇒E∗(α·)−
(
I − P ′

)
S∗(µ·) + θ · .
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It is easy to check that X∗ is a Brownian motion with drift θ and covariance matrix Γ
given in (3.16). �

A sequence of stochastic processes {Xn} in D([0,∞),Rk) is said to be relatively
compact if for every sequence {nk}, there is a subsequence {nkj} such that Xnkj

converges in distribution.

Lemma 8.2. Under the assumptions (3.1)–(3.4) in theorem 3.1, the sequence
{X̃n, Z̃n, Ỹ n} is relatively compact.

Proof. To prove the lemma it suffices to verify conditions (a) and (b) in corollary 7.4
in chapter 3 of Ethier and Kurtz [21]. To state the conditions, we need to define the
modulus of continuity of a path x(·). For T > 0 and δ > 0, let

w
(
x(·), δ,T

)
= inf

ti
max
i

Osc
(
x(·), [ti−1, ti)

)
, (8.2)

where the infimum extends over the finite sets {ti} of points satisfying 0 = t0 < t1 <
· · · < tr = T and tj − tj−1 > δ for j = 1, . . . , r.

(a) For every η > 0 and rational t > 0, there exists a constant c(η, t) > 0 such that

lim inf
n→∞

P
{∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)∣∣ 6 c(η, t)
}
> 1− η.

(b) For every η > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P
{
w
((
X̃n, Z̃n, Ỹ n), δ,T

)
> η
}
6 η.

To verify condition (a), by lemma 8.1, X̃n converges in distribution. Hence, it
follows from remark 7.3 in chapter 3 of Ethier and Kurtz [21] that {X̃n} satisfies the
following compact containment condition: for every η > 0 and T > 0, there is a
constant M1 > 0 such that

inf
n
P
{∣∣X̃n(t)

∣∣ 6M1, 0 6 t 6 T
}
> 1− η/2.

By assumption (3.4), there exists a constant M2 > 0 such that supn P{|Z̃n(0)| >
M2} 6 η/2. It is easy to check that for each sample path, (Z̃n, Ỹ n) is an (S̃n,Rn)-
regulation of Z̃n(0) + X̃n, where

S̃
n

=
{
x ∈ Rd: 0 6 xi 6 bni /

√
n ∀i ∈ I

}
.

Therefore by theorem 4.2 and the continuity of Ỹ n, there exist constants κ > 0 and
n0 > 0 such that for all 0 6 t1 < t2 and all n > n0,

Osc
((
X̃n, Z̃n, Ỹ n

)
, [t1, t2]

)
6 κOsc

(
X̃n, [t1, t2]

)
. (8.3)
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Thus, we have, for n > n0,∣∣(X̃n(t), Z̃n(t), Ỹ n(t)
)∣∣

6
∣∣(X̃n(0), Z̃n(0), Ỹ n(0)

)∣∣+
∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)
−
(
X̃n(0), Z̃n(0), Ỹ n(0)

)∣∣
6
∣∣Z̃n(0)

∣∣+ Osc
((
X̃n, Z̃n, Ỹ n

)
, [0, t]

)
6
∣∣Z̃n(0)

∣∣+ κOsc
(
X̃n, [0, t]

)
6
∣∣Z̃n(0)

∣∣+ κ sup
06t6T

∣∣X̃n(t)
∣∣.

Hence, for n > n0

P
{∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)∣∣ > M2 + κM1 for some t ∈ [0,T ]
}

6 P
{∣∣Z̃n(0)

∣∣ > M2
}

+ P
{∣∣X̃n(t)

∣∣ > M1 for some t ∈ [0,T ]
}
6 η.

Therefore, {(X̃n, Z̃n, Ỹ n)} satisfies the containment condition. Thus, condition (a) in
corollary 7.4 holds.

To verify condition (b) in corollary 7.4, because {X̃n} is relatively compact, for
each η > 0 and T > 0, there exists a δ > 0 such that

lim sup
n→∞

P
{
w
(
X̃n, δ,T

)
> η

κ+ 1

}
6 η

κ+ 1
.

From (8.3), for n > n0,

w
((
X̃n, Z̃n, Ỹ n

)
, δ,T

)
6 κw

(
X̃n, δ,T

)
.

Therefore, for n > n0,

P
{
w
(((

X̃n, Z̃n, Ỹ n), δ,T
)
> η
}
6P
{
κw
(
X̃n, δ,T

)
> η
}

6P
{
w
(
X̃n, δ,T

)
> η

κ+ 1

}
6 η

κ+ 1
6 η.

Thus, condition (b) in corollary 7.4 holds. �

Lemma 8.3. Suppose zn converges to z in D([0,∞),Rd), yn converges to y in
D([0,∞),R+) and y is continuous. Assume that for each n, yn(·) is nondecreas-
ing. Then, for any f ∈ Cb(Rd), we have∫ t

0
f
(
zn(s)

)
dyn(s)→

∫ t

0
f
(
z(s)

)
dy(s) as n→∞ (8.4)

uniformly for t in any compact subset of [0,∞).

Proof. Noting that zn → z in D([0,∞),Rd), by proposition 3.5.3 and remark 3.5.4
in Ethier and Kurtz [21] or Billingsley [4, p. 112], there exists a sequence {γn}
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of continuous, strictly increasing functions from [0,∞) onto [0,∞) such that, as
n→∞,

zn
(
γn(t)

)
→ z(t) u.o.c. and γn(·)→ t u.o.c. (8.5)

Now, fix t > 0 and observe that for each u ∈ [0, t],∫ u

0
f
(
zn(s)

)
dyn(s)−

∫ u

0
f
(
z(s)

)
dy(s)

=

∫ γ−1
n (u)

0

(
f
(
zn
(
γn(s)

))
− f

(
z(s)

))
dyn
(
γn(s)

)
+

∫ γ−1
n (u)

u
f
(
z(s)

)
dyn
(
γn(s)

)
+

∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s). (8.6)

The first term on the right side of (8.6) is bounded by

max
06s6γ−1

n (t)

∣∣f(zn(γn(s)
))
− f

(
z(s)

)∣∣ yn(t),

which converges to zero as n→∞ uniformly on u ∈ [0, t] because f ∈ Cb(Rd), y(t)
is continuous, and yn(t)→ y(t).

The second term on the right side of (8.6) is dominated by

‖f‖∞ sup
06u6t

∣∣yn(u)− yn
(
γn(u)

)∣∣
6 ‖f‖∞

(
sup

06u6t

∣∣yn(u)− y(u)
∣∣+ sup

06u6t

∣∣y(u)− y
(
γn(u)

)∣∣
+ sup

06u6t

∣∣y(γn(u)
)
− yn

(
γn(u)

)∣∣),

which converges to zero because y(t) is continuous, and yn(t)→ y(t) u.o.c.
Finally, we claim that the third term on the right side of (8.6) converges to

zero. In fact, since f (z(·)) ∈ D([0,∞),R), by theorem 3.5.6, proposition 3.5.3 and
remark 3.5.4 of Ethier and Kurtz [21], there is a sequence of step functions {gk(·)}∞k=1
of the form

gk(·) =

lk∑
i=1

gk
(
tki
)
I[tki ,tki+1)(·), (8.7)

where 0 = tk1 < tk2 < · · · < tklk+1
<∞, I[s,t) is the indicator function on [s, t), and

sup
06s6t

∣∣f(z(s)
)
− gk(s)

∣∣→ 0 as k →∞.
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Notice that∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣
6
∣∣∣∣ ∫ u

0

(
f
(
z(s)

)
− gk(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣+

∣∣∣∣ ∫ u

0
gk(s) d

(
yn(γn)− y

)
(s)

∣∣∣∣
6 sup

06s6t

∣∣f(z(s)
)
− gk(s)

∣∣(yn(γn)(t) + y(t)
)

+ sup
06u6t

lk∑
i=1

∣∣gk(tki ∧ u)∣∣
×
∣∣(yn(γn)− y

)(
tki+1 ∧ u

)
−
(
yn(γn)− y

)(
tki ∧ u

)∣∣. (8.8)

Because yn(·) → y(·) u.o.c. and y is continuous, for each t > 0, there exists M > 0
such that

lim sup
n→∞

sup
06s6t

∣∣yn(s)
∣∣ 6M.

Letting n →∞ in (8.8), noticing that for fixed k, the last term of (8.8) converges to
zero, we have

lim sup
n→∞

sup
06u6t

∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣ 6 2M sup
06s6t

∣∣f(z(s)
)
− gk(s)

∣∣. (8.9)

Let k →∞, we have

lim sup
n→∞

sup
06u6t

∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣ = 0, (8.10)

thus proving the lemma. �

Lemma 8.4. For i ∈ I and any t > 0,
(a)

E
[

1√
n

max
16j6Ei(nt)+1

uij

]
→ 0 as n→∞.

(b) {
1√
n

sup
06s61

∣∣Ei(ns)− ns∣∣: n > 1

}
is uniformly integrable.

Proof. Noting that Ei(t) + 1 is a stopping time for the discrete filtration {Gj} with

Gj = σ{ui1, . . . ,uij},



J.G. Dai, W. Dai / A heavy traffic limit theorem 33

we can write

Ei(nt)− nt√
n

=
Ei(nt) + 1− Ui(Ei(nt) + 1)√

n
− 1√

n
+
Ui(Ei(nt) + 1)− t√

n
. (8.11)

The first term on the right, denoted by Mn
i (t), is a square integrable martingale with

E
[
Mn
i (t)2] = cai

E[Ei(nt) + 1]
n

. (8.12)

Since the right-hand side of (8.12) is bounded in n [23, theorem II.5.1], by [21,
corollary 2.2.17] the sequence E[sup06t61 |Mn

i (t)|]2 is bounded, hence,{
sup

06t61

∣∣Mn
i (t)

∣∣, n > 1
}

is uniformly integrable. Using the fact that

sup
06t61

∣∣Mn
i (t)−Mn

i (t−)
∣∣ 6 2 sup

06t61

∣∣Mn
i (t)

∣∣,
for 0 6 t 6 1, the last term on the right of (8.11) (the overshoot of the renewal
process) is bounded by

max
06j6Ei(n)+1

uij√
n
6 2 sup

06t61

∣∣Mn
i (t)

∣∣+
1√
n
.

We then have

sup
06t61

∣∣∣∣Ei(nt)− nt√
n

∣∣∣∣ 6 3 sup
06t61

∣∣Mn
i (t)

∣∣+
2√
n

,

and (a) and (b) follow from the uniform integrability of {sup06t61 |Mn
i (t)|, n > 1}. �

Proof of theorem 3.1. By lemma 8.2 the sequence{(
Z̃n, X̃n, Ỹ n

)
, n > n0

}
is precompact. Therefore,{(

Ẽn, S̃n, Z̃n, X̃n, Ỹ n
)
, n > n0

}
is precompact. Let (E∗,S∗,Z∗,X∗,Y ∗) be a weak limit defined on a probability space
(Ω∗,F∗,P∗). That is, there is a sequence {nk} such that as nk →∞(

Ẽnk , S̃nk , Z̃nk , X̃nk , Ỹ nk
)

=⇒
(
E∗,S∗,Z∗,X∗,Y ∗

)
.

By lemma 8.1,

X∗(t) = E∗(αt)−
(
I − P ′

)
S∗(µt) (8.13)

is a d-dimensional Brownian motion with drift θ and covariance matrix Γ. We will
show that Z∗, together with Y ∗, is an RBM associated with the Brownian motion X∗.
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Because the (Γ, θ,R,S)-RBM with initial distribution P∗Z∗(0)−1 is unique in distrib-
ution (see Dai and Williams [18]), we have(

Z̃n, X̃n, Ỹ n
)

=⇒
(
Z∗,X∗,Y ∗

)
,

as n→∞, thus proving the theorem.
To show Z∗ is an RBM, notice that

(i) Z̃n(t) = Z̃n(0) + X̃n(t) +RnỸ n(t) for all t > 0,

(ii) 0 6 Z̃ni (t) 6 bni /
√
n for all t > 0 and i = 1, . . . , d,

(iii) for each i = 1, . . . , 2d,

(a) Ỹ n
i (0) = 0,

(b) Ỹ n
i is nondecreasing,

(c) for i = 1, . . . , d, Ỹ n
i increases only when Z̃ni (t) = 0 and for i = d + 1,

. . . , 2d, Ỹ n
i increases only when Z̃ni (t) = bni /

√
n.

To show that the limit process (Z∗,X∗,Y ∗) satisfies (3.7)–(3.15), we invoke the
Skorohod representation theorem [21, theorem 3.1.8]. Therefore, we assume that
{(Z̃nk , X̃nk , Ỹ nk ), n > n0} and (Z∗,X∗,Y ∗) are defined on the same probability
space (Ω∗,F∗,P∗) such that P∗-a.s., (i)–(iii) hold and(

Z̃nk , X̃nk , Ỹ nk
)
→
(
Z∗,X∗,Y ∗

)
u.o.c. as nk →∞. (8.14)

It follows from (3.4) that Z∗(0) has the same distribution as ξ. Clearly, (3.10) is
satisfied with

F∗t ≡ σ
{(
Z∗(s),X∗(s),Y ∗(s)

)
, 0 6 s 6 t

}
.

It easy to check that (3.7), (3.8), and (3.11) follow from (i), (ii), (iii)(a) and (iii)(b).
Because Ỹ n

i+d(t) increases only at times t such that Z̃ni (t) = bni /
√
n, we have for each

T > 0 ∫ T

0

(
bni√
n
− Z̃ni (t)

)
∧ 1 dỸ n

i+d(t) = 0. (8.15)

Let

f : (b, z) ∈ R2 → f (b, z) = (b− z) ∧ 1.

Clearly, f ∈ Cb(R2). By lemma 8.3 and (8.14),∫ T

0

(
bi − Z∗i (t)

)
∧ 1 dỸ ∗i+d(t) = 0, for all T > 0.

Therefore, Y ∗i+d(·) increases only at times t such that Z∗i (t) = bi, showing (3.13).
Similarly, we can show that Y ∗i (·) increases only at times t when Z∗i (t) = 0, i.e.,
(3.12) holds.
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It remains to prove (3.15), i.e., {X∗(t)− θt, t > 0} is an {F∗t }-martingale. It is
enough to show that for each i ∈ I, each r > 1, any 0 6 s1 < s2 < · · · < sr 6 s < t,
and any fk, gk,hk ∈ Cb(Rd),

E∗
[(
X∗i (t+ s)−X∗i (s)− θit

) r∏
k=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0. (8.16)

Let p, q ∈ Zd+ be d-dimensional indexes. Let

Ûni (pi) =

pi+1∑
k=2

uik − 1
αni

, V̂ n
i (qi) =

qi+1∑
k=2

vik − 1
µni

.

Recall the definition of Gnp,q in (7.1). Because Zn(0) is assumed to be independent of
the interarrival time and service time sequences, it easy to check that{(

Ûn(p), V̂ n(q)
)
, Gnp,q, (p, q) ∈ Zd+ × Zd+

}
is a multiparameter martingale (see [21, section 2.8] for the definition). Let

An(t) = En
(
Fn(t)

)
, Dn(t) = Sn

(
Bn(t)

)
, τn(t) =

(
An(t),Dn(t)

)
.

By lemma 7.1, for each fixed t, τn(t) is a multidimensional stopping time with respect
to the filtration {Gnp,q}. Define

Gnτn(t) ≡
{
B ∈ F , B ∩

{
τn(t) 6 (p, q)

}
∈ Gnp,q for all (p, q) ∈ Zd+ × Zd+

}
.

It is clear that τn(t) ∈ Fnτn(t). Because Zn(0) ∈ Gn0,0, it follows from (5.4) that
Zn(t) ∈ Gnτn(t). From (2.1) Y n(t) ∈ Gnτn(t) and from (5.7) Xn(t) ∈ Gnτn(t). Let

Ûn,k(p) =
(
Ûn1 (p1 ∧ k), . . . , Ûnd (pd ∧ k)

)
,

V̂ n,k(q) =
(
V̂ n

1 (q1 ∧ k), . . . , V̂ n
d (qd ∧ k)

)
.

By the multiparameter optional stopping theorem [21, theorem 2.8.7] we have that for
each n > n0 and k > 1,{(

Ûn,k(An(t)
)
, V̂ n,k(Dn(t)

))
,Gnτn(t), t > 0

}
is a martingale, or{(

1√
n
Ûn,k(An(nt)

)
,

1√
n
V̂ n,k(Dn(nt)

))
,Gnτn(nt), t > 0

}
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is a martingale. Therefore, for each n > n0 and k > 1,

E

[(
1√
n
Ûn,k
i

(
Ani
(
n(t+ s)

))
− 1√

n
Ûn,k
i

(
Ani (ns)

))

×
r∏
j=1

fj
(
X̃n(sj)

)
gj
(
Ỹ n(sj)

)
hj
(
Z̃n(sj)

)]
= 0. (8.17)

For a fixed n and for each k > 1,

∣∣Ûn,k
i

(
Ani (ns)

)∣∣6 (Ani (ns)∧k)+1∑
j=2

uij
αni

+
Ani (ns) ∧ k

αni

6
Ani (ns)+1∑
j=1

uij
αni

+
Ani (ns)
αni

6
Eni (ns)+1∑
j=1

uij
αni

+
Eni (ns)
αni

.

Letting k →∞ in (8.17), by [23, theorem III.3.1],

E

[Eni (ns)+1∑
j=1

uij
αni

+
Eni (ns)
αni

]
<∞,

it follows from the dominated convergence theorem that for each n > 1,

E

[(
1√
n
Ûni
(
Ani
(
n(t+ s)

))
− 1√

n
Ûni
(
Ani (ns)

))

×
r∏
j=1

fj
(
X̃n(sj)

)
gj
(
Ỹ n(sj)

)
hj
(
Z̃n(sj)

)]
= 0. (8.18)

Ûni
(
Ani (ns)

)
=

Ani (ns)+1∑
j=2

uij
αni
− Ani (ns)

αni
=

Eni (Fni (ns))+1∑
j=2

uij
αni
− Eni (Fni (ns))

αni

=

Eni (Fni (ns))+1∑
j=2

uij
αni
− Fni (ns) + Fni (ns)− Eni (Fni (ns))

αni

= εn − Êni (Fni (ns))
αni

,

where

εn =

Eni (Fni (ns))+1∑
j=2

uij
αni
− Fni (ns).
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Because ∣∣εn∣∣6 ui1
αni

+ max
16j6En

i
(Fn
i

(ns))+1

ui,j
αni
6 ui1
αni

+ max
16j6En

i
(ns)+1

ui,j
αni

6 ui1
αni

+ max
16j6Ei(nαni s)+1

ui,j
αni

,

it follows from part (a) of lemma 8.4 that as n→∞,

E
[

1√
n

∣∣εn∣∣]→ 0.

Because αni → αi, by part (b) of lemma 8.4,{
1√
n

sup
06t6s

∣∣Êi(αni nt)∣∣, n > 1

}
is uniformly integrable. Notice that∣∣Êni (Fni (ns)

)∣∣ 6 sup
06t6s

∣∣Êni (nt)
∣∣

and, therefore, {
1√
n

∣∣Êni (Fni (ns)
)∣∣, n > 1

}
is uniformly integrable. Because(

1
√
nk
Ênki

(
Fnki (nks)

)
, X̃nk (·), Z̃nk(·), Ỹ nk (·)

)
=⇒

(
E∗i (αis),X

∗(·),Z∗(·),Y ∗(·)
)
,

we have

E

[(
1√
nk
Ûnki

(
Anki (nks)

)) r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk(sj)

)
hj
(
Ỹ nk(sj)

)]

→ E∗
[
− E∗i (αis)

αi

r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.

Similarly, we can show that

E

[(
1√
nk
Ûnki

(
Anki

(
nk(t+ s)

))) r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk (sj)

)
hj
(
Ỹ nk(sj)

)]

→ E∗
[
−
E∗i
(
αi(t+ s)

)
αi

r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.
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Therefore, we have

E

[(
1
√
nk
Ûnki

(
Anki

(
nk(t+ s)

))
− 1
√
nk
Ûnki

(
Anki (nks)

))

×
r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk(sj)

)
hj
(
Ỹ nk(sj)

)]

→ − 1
αi
E∗
[(
E∗i (αi(t+ s)−E∗i (αis)

)) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.

From (8.18), we have

E∗
[(
E∗i
(
αi(t+ s)

)
−E∗i (αis)

) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0.

By the exact same proof, we have

E∗
[(
S∗i
(
µi(t+ s)

)
− S∗i (µis)

) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0.

Therefore, (8.16) follows from the fact that

X∗i (t+ s)−X∗i (s)− θit = E∗i
(
αi(t+ s)

)
−E∗i (αis)−

(
S∗i
(
µi(t+ s)

)
−S∗i (µis)

)
. �

9. Extensions

Consider the queueing network described in section 2, except that probabilistic
routing is allowed. Assume that a customer leaving station i ∈ I goes to station j ∈ I
with probability Pij or exits the network with probability 1−

∑
j∈I Pij , independent

of all previous history. Assume the network is feedforward, i.e., the stations can be
numbered so that Pij = 0 for j 6 i. Furthermore, we assume that each station has at
most one predecessor. That is,

σ(i) ∩ σ(j) = ∅ for any i 6= j,

where σ(i) = {j ∈ I: Pij > 0}.
For this network, using the techniques developed in this paper, we can show that

the heavy traffic limit theorem in theorem 3.1 holds with Γ replaced by the formula

Γ = diag
(
α1c

a
1 , . . . ,αdc

a
d

)
+
(
I−P ′

)
diag

(
µ1c

s
1, . . . ,µdc

s
d

)
(I−P )+

∑
j∈I

µjΓj , (9.1)

where

Γjlk =

{
Pjl(1− Pjl) if l = k,
−PjlPjk if l 6= k.
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See [19, sections 2.2, 4.3] for more discussion on this network.
Consider another modification to the network in section 2, where general proba-

bilistic routing is allowed, but a customer arriving at a full buffer is lost. Therefore,
the network is a generalized Jackson network [40] except that a customer arriving at
a full buffer station is lost. It can be shown that the heavy traffic limit theorem in
theorem 3.1 holds with

R =
(
I − P ′,−I

)
,

and Γ given in (9.1).
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