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Preface

These notes were written for a concentrated course on \Queueing Network
Theory" given in November 1988 at the Centre for Mathematical Physics and
Stochastics (MaPhySto, http://www.maphysto.dk/) at the University of Aarhus,
Denmark. The main subject is stability of uid models and its connection with
stability of queueing networks. There are many active research areas related to
uid models. Two such topics are notably missing in these notes. One is the op-
timal draining of a uid network and its connection with dynamic control of the
corresponding queueing network. The other concerns stability and state space
collapse for a \critical" or \balanced" uid model, and their connection with
the Brownian approximation of the corresponding queueing network. Interested
readers can �nd references for these topics at the end of Chapter 2.

These notes eventually will become two chapters in the book \Brownian
models of Stochastic Processing Networks" being written by Jim Dai, Michael
Harrison and Ruth Williams. A tentative table of contents of that book is
included as an appendix. Please be aware that these notes are still preliminary.
Some of the proofs are not complete. They will be completed and polished in
the book. If you have comments or suggestions on these notes, please send them
to dai@isye.gatech.edu.

I would like to acknowledge the �nancial support from MaPhySto and the
Georgia Tech Foundation that made possible my sabbatical leave in Fall 1998.
I would like to thank John Hasenbein from University of Texas at Austin for
suggesting numerous improvements on the early drafts of these notes. Thanks
also go to Soren Asmussen and Ole Barndor�-Nielsen for arranging my visit to
Aarhus and to Wenjiang Jiang and Oddbjorg Wethelund for making our stay
at Aarhus most enjoyable.

Jim Dai
December 28, 1998
Palo Alto, California
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Chapter 1

Open Multiclass Networks

In this chapter, we introduce a class of stochastic processing networks called
multiclass queueing networks. These networks may be used to model computer
systems, telecommunication networks, and complex manufacturing systems like
wafer fabrication facilities.

1.1 Informal Description of the Basic Model

For our purposes, there are J service stations in the network. Each station has
a single server with unlimited waiting space. There are K � J classes of jobs or
customers. Each job arrives at the network from the outside, receives services
at a number of stations and eventually leaves the network. Throughout the
lifetime of the job in the network, the job belongs to one of the K job classes.
The job changes classes as it moves through the network. It changes classes
each time a service is completed on the job. All jobs within a class are served
at a unique station. There can be multiple job classes served at a station.
The term multiclass queueing network means that there is at least one station
serving more than one job class. Otherwise, the network is called a single-class
network. An ordered sequence of classes that a job visits is called a route. We
assume that jobs initially arriving at class k all follow that same route, at least
probabilistically. Each job is assumed to eventually leave the network. Such a
network is called an open queueing network.

An example of a multiclass queueing network is a manufacturing system
having 3 stations producing 2 types of products as pictured in Figure 1.1. Type
A jobs need 3 stages of processing, with stage i being processed at station i.
Type B jobs need 6 stages of processing, with stages 1, 2 and 3 being processed
at stations 1, 2 and 3, respectively, and stages 4, 5 and 6 being processed again at
stations 1, 2 and 3, respectively. One can de�ne a combination of type and stage
as a class so that jobs within the same type and the same stage of processing
are in the same class. For example, we can designate type A jobs in stages 1,
2 and 3 as in classes 1, 2 and 3, respectively, and type B jobs in stage i, as in

1



2 CHAPTER 1. OPEN MULTICLASS NETWORKS

- - - -

.- - -

- - - -

Type A

Type B

m1 m2 m3

m4 m5 m6

m7 m8 m9

Station 1 Station 2 Station 3

Figure 1.1: A 2-type 9-class network

class 3 + i, i = 1; : : : ; 6. For this network, J = 3 and K = 9. A job initially
enters the network either as a class 1 or class 4 job. Jobs initially entering class
1 visit classes 1, 2 and 3 and then exit the network. Jobs initially entering class
4 visit classes 4 through 9 and then exit the network.

When there are multiple job classes served at a station, the server needs
a policy to select the next job to work on. Such a policy is called a service
discipline. For example, �rst-in-�rst-out (FIFO) is a popular service discipline.

1.2 Open Multiclass Queueing Networks

In this section, we de�ne open multiclass queueing networks under a variety of
service disciplines.

1.2.1 Primitive Cumulatives

The network under study has J single-server stations andK job classes. Stations
are labelled j = 1; : : : ; J , and classes by k = 1; : : : ;K. Class k jobs are served
at a unique station. We use C(j) to denote the set of classes belonging to station
j, and s(k) to denote the station to which class k belongs; when j and k appear
together, we implicitly set j = s(k).

For each class k, there are three cumulative processes Ek = fEk(t); t � 0g,
Vk = fVk(n) : n = 1; 2; : : :g and �k = f�k(n) : n = 1; 2; : : : g. For each time
t � 0, Ek(t) counts the number of external arrivals to class k in [0; t]. For each
positive integer n, Vk(n) is the total service requirement (in terms of the server's
time) for the �rst n class k jobs. (When a preemption service discipline is used,
preempt-resume is assumed. See service discipline section for more discussion.)
For each positive integer n, �k(n) is a K-dimensional vector taking values in
ZK
+ . For each class `, �k

` (n) is the total number of jobs going to class ` among
the �rst n jobs �nishing services at class k. By convention, we assume

Ek(0) = 0; Vk(0) = 0 and �k(0) = 0:

For each time t � 0, we extend the de�nitions of Vk(t) and �k(t) as

Vk(t) = Vk(btc) and �k(t) = �k(btc);
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where btc denotes the largest integer less than or equal to t. Note that the
processes Vk and �k are right continuous having left limits in time. We also
assume that Ek is right continuous having left limits. As we have seen in
Figure 1.1, not all classes have external arrivals. We use E to denote the set
of classes that have external arrivals. By convention, for k 62 E , Ek(t) = 0 for
all t � 0. We denote E = fE(t); t � 0g, V = fV (t); t � 0g, � = f�(t); t �
0g with E(t) = (E1(t); : : : ; EK(t))

0, V (t) = (V1(t); : : : ; VK(t))
0 and �(t) =

(�k
` (t); k; ` = 1; : : : ;K). (All vectors are envisioned as column vectors and prime

denotes transpose.) The triple (E; V;�) is called the primitive cumulatives. It
is a part of the speci�cation of the network. We assume that the strong law
of large numbers holds for the primitive cumulatives, namely, with probability
one,

lim
t!1

E(t)=t = �; lim
n!1

V (n)=n = m and lim
n!1

�(n)=n = P; (1.1)

where � = (�1; : : : ; �K)
0 and m = (m1; : : : ;mK)

0 are K-dimensional vectors,
and P = (Pk`) is a K�K matrix. For each class k, mk is the mean service time
for class k jobs and �k is the external arrival rate to class k. For classes k and
`, Pk` is the long-run fraction of jobs departing class k which become class `
jobs. It is also called the routing probability from class k to class `. The K�K
matrix P = (Pk`) is the routing matrix of the network. We assume that the
network is open, i.e., the matrix

Q
def
= I + P 0 + (P 0)2 + : : :

is �nite, which is equivalent to the fact that (I � P 0) is invertible and Q =
(I � P 0)�1.

Assumption (1.1) is the minimal assumption we impose on the network. It
allows basic terms like arrival rates, average service times and routing proba-
bilities to be properly de�ned. Proposition 1.2.4 below strengthens assumption
(1.1) to a functional strong law of large numbers. Before stating the proposition,
we need to introduce the Skorohod path space.

For an integer d � 1, recall that D d [0;1) is a set of functions x : [0;1)! R
d

that are right continuous on [0;1) having the left limits on (0;1). For t > 0,
we use x(t�) to denote lims"t x(s). By convention, x(0�) = x(0).

We endow the function space D d [0;1) with the Skorohod J1-topology, or
simply the Skorohod topology. We will not introduce a metric on D d [0;1) that
induces the Skorohod topology here. Rather we provide an equivalent de�nition
for a sequence of functions in D d [0;1) to converge. We use � to denote the
set of strictly increasing, continuous functions x : R+ ! R+ such that x(0) = 0
and limt!1 x(t) =1.

De�nition 1.2.1. A sequence fxng � D d [0;1) is said to converge to x 2
D d [0;1) in the Skorohod topology if for each t > 0, there exists fng � �
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(possibly depending on t) such that

lim
n!1

sup
0�s�t

jn(s)� sj = 0; (1.2)

lim
n!1

sup
0�s�t

jxn(n(s)) � x(s)j = 0: (1.3)

De�nition 1.2.2. For a sequence of functions fxng � D d [0;1), the sequence
is said to converge uniformly on compact intervals (u.o.c.) to x 2 D d [0;1) as
n!1, denoted by xn ! x u.o.c., if for each t > 0,

lim
n!1

sup
0�s�t

jxn(s)� x(s)j = 0:

Clearly, if xn ! x u.o.c., xn converges to x in the Skorohod topology. The
converse is not true in general. Consider, for example, xn(t) = 1 for t 2 [1=2 +
1=n;1) and xn(t) = 0 for t 2 [0; 1=2+1=n). It can be shown that xn ! x in the
Skorohod topology, where x(t) = 1 for t 2 [1=2;1) and x(t) = 0 for t 2 [0; 1=2).
Clearly, xn does not converge uniformly on compact sets to x. When the limit
point x is continuous, the two notions of convergence are equivalent. This fact
will repeatedly be used in the remainder of this chapter. Let C d [0;1) be the
set of continuous functions x : [0;1! Rd .

The following lemma is needed to prove Proposition 1.2.4.

Lemma 1.2.3. Let ffng be a sequence of nondecreasing functions on R+ and
f be a continuous function on R+ . Assume that fn(t) ! f(t) for all rational
t � 0. Then fn ! f u.o.c.

Proof. First, because fn is nondecreasing and f is continuous, one can easily
check that fn(t) ! f(t) for every t 2 R+ . Next, suppose that fn does not
converge to f uniformly on compact sets. Then there exist � > 0, t > 0 and
ftnlg such that tnl � t and

jfnl(tnl)� f(tnl)j � � for all l. (1.4)

Because ftnlg is bounded, we may assume that tnl ! t0 � t. Thus for any
Æ > 0, tnl eventually is less than t0 + Æ. Hence for l large enough,

fnl(tnl)� f(tnl) � fnl(t0 + Æ)� f(tnl)

= fnl(t0 + Æ)� f(t0 + Æ) + f(t0 + Æ)� f(t0) + f(t0)� f(tnl):

Therefore,
lim sup
l!1

(fnl(tnl)� f(tnl)) � f(t0 + Æ)� f(t0):

Because f is continuous and Æ is arbitrary, we have

lim sup
l!1

(fnl(tnl)� f(tnl)) � 0:

When t0 > 0, one can similarly prove that

lim inf
l!1

(fnl(tnl)� f(tnl)) � 0:
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When t0 = 0,

lim inf
l!1

(fnl(tnl)� f(tnl)) � lim
l!1

(fnl(0)� f(tnl)) = 0:

Thus we have
lim
l!1

(fnl(tnl)� f(tnl)) = 0;

which contradicts (1.4). Hence the lemma is proved.

For each class k, r > 0 and t � 0, de�ne

�Er(t) =
1

r
E(rt); �V r(t) =

1

r
V (rt); and ��k;r(t) =

1

r
�k(rt):

For each r > 0, the processes �Er, �V r and ��k;r take values in the Skorohod path
space DK [0;1). With a slight abuse of notation, we de�ne functions �k(�),
mk(�) and Pk`(�) by

�k(t) = �kt; mk(t) = mkt and Pk`(t) = Pk` t for t � 0:

The following functional strong law of large numbers follows from Lemma 1.2.3
immediately.

Proposition 1.2.4. Assume that (1.1) holds. With probability one, as r !1,

�Er
k(�)! �k(�) u.o.c:; k = 1; : : : ;K; (1.5)

�V r
k (�)! mk(�) u.o.c:; k = 1; : : : ;K; (1.6)

��k;r
` (�) = Pk`(�) u.o.c:; k; ` = 1; : : : ;K: (1.7)

Often the network assumptions are more naturally imposed on incremen-
tal random variables. For this purpose, we let uk = fuk(i); i � 1g and vk =
fvk(i); i � 1g be two sequence of nonnegative random variables, and �k =
f�k(i); i � 1g be a sequence of random vectors. For each i, uk(i) is the interar-
rival time between the (i � 1)th and the ith externally arriving job to class k,
and vk(i) is the service time for the ith class k job. We assume that the rout-
ing vector �k(i) takes values in fe0; e1; : : : ; eKg, where e0 is the K-dimensional
vector of all 0's and for ` = 1; : : : ;K, e` is the K-dimensional vector with the
`th component 1 and all other components 0. When �k(i) = e`, the ith job
departing class k becomes a class ` job, ` = 1; : : : ;K. When �k(i) = e0, the ith
class k job departs from the network.

The triple (u; v; �) is called the primitive increments. Given primitive incre-
ments (u; v; �), one can uniquely de�ne primitive cumulatives (E; V;�) via the
following equations: for each class k, each time t � 0 and each positive integer
n,

Ek(t) = maxfi : uk(1) + : : :+ uk(i) � tg; (1.8)

Vk(n) =

nX
i=1

vk(i); (1.9)

�k(n) =

nX
i=1

�k(i): (1.10)
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When the primitive increments are independent, iid sequences, the network is
called a network with iid increments. In this case, Ek is a renewal process, Vk
and �k are random walks. For a network with iid increments, assumption (1.1)
is satis�ed. If, furthermore, all interarrival and service time distributions are
exponential, the network is called a network with exponential increments or sim-
ply an exponential network. When K = J , an exponential network is a Jackson
network. For this reason, when K = J , we call a network with iid increments a
Jackson type network or a generalized Jackson network. A re-entrant line is a
multiclass queueing network in which exactly one class, say class 1, has exter-
nal arrivals and transitions among classes are deterministic. Re-Entrant lines
can be used to model many production systems including semiconductor wafer
fabrication facilities.

1.2.2 Service Disciplines

A service discipline dictates the order in which jobs are served at each station.
A service discipline is non-idling (or work conserving) if a server is never idle
when there are jobs waiting to be served at its station. Examples of non-idling
service disciplines include �rst-in-�rst-out (FIFO) and last-in-�rst-out (LIFO).

We restrict our disciplines to non-idling head-of-the-line (HL) disciplines.
Under an HL service discipline, each class has at most one job (the leading job)
receiving service at any given time. Jobs within a class are served on FIFO
basis. Each class receives a proportion (possibly zero) of the associated server's
time, where this proportion may be random but it is kept constant between
changes in the arrival or departure processes. Furthermore, these proportions
should depend in a measurable way on the \state" of the queueing network, and
they should not anticipate (external) interarrival times, service times or routing
vectors for future arrivals. The FIFO discipline is an HL discipline, whereas the
LIFO discipline is not. We allow di�erent stations to employ di�erent service
disciplines.

As said before, a popular service discipline is FIFO. Under FIFO jobs among
all classes at a station are ranked according the current arrival time to the
station. A family of service disciplines that has been studied extensively in the
literature are static bu�er priority (SBP) disciplines. Under a SBP discipline,
classes at each station have a �xed ranking. For simplicity, we assume that the
ranking is strict, i.e., there is no tie in the ranking. When the server switches
attention from one job to another, the new job is taken from the head-of-the-
line of the highest ranking non-empty class at the server's station. We consider
preempt-resume static bu�er priority service. Under this service, if a job arrives
at a station having a higher rank than a job currently being served, the service
of the current job is interrupted until service of all jobs with higher ranks is
completed, at which time the interrupted service continues from where it left
o� (preempt then resume).

Many families of service disciplines fall under the name processor sharing
(PS). Under such a discipline, several jobs may simultaneously share the server's
service capacity. The portion of service capacity that each job receives may
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di�er from job to job. Di�erent speci�cations of the proportions or weights
give rise to di�erent PS disciplines. When a PS service discipline is employed,
each server's capacity is assumed to be in�nitely divisible. This, of course, is
a mathematical idealization that is rarely met by realistic models. However,
such service disciplines approximate more \implementable PS" disciplines, like
round-robin polling disciplines. PS disciplines are popular in telecommunication
networks. They allow \fair" access to resources (servers). Short jobs can be
completed even in the presence of long jobs.

The �rst family of PS disciplines are the generalized head-of-the-line proces-
sor sharing (GHLPS) disciplines. There is a proportion vector � = (�1; : : : ; �K) >
0 associated with a GHLPS discipline. The server simultaneously serves the jobs
at the head-of-the-line of each (non-empty) class with service e�ort to class k
in proportion to �k. If there are no empty classes, the proportion of e�ort
that each class receives is static (independent of the network dynamics). When
some classes are empty, e�orts to these empty classes are redistributed to the
non-empty classes. When � = (1; : : : ; 1), the GHLPS discipline is called the
head-of-the-line processor sharing (HLPS) discipline.

The second family of PS disciplines are the generalized head-of-the-line pro-
portional processor sharing (GHLPPS) disciplines. Under a GHLPPS service
discipline with weight vector � = (�1; : : : ; �K) > 0, the server simultaneously
serves the jobs at the head-of-the-line of each (non-empty) class. The server
allocates its e�ort to each class in proportion to �k multiplying the number of
jobs in that class. Thus, the higher the jobcount in a class is, the more ser-
vice e�ort that the leading job in the class receives. When the weight vector
� = (1; : : : ; 1), the GHLPPS discipline becomes the head-of-the-line propor-
tional processor sharing (HLPPS) service discipline.

The earliest PS discipline studied allows every job in the network simultane-
ously receives service with equal proportions among all jobs. Such a discipline
is not an HL discipline.

1.3 Performance Processes

The following descriptive processes Z, D, W , Y will be used to measure the
performance of our queueing network. The processes Z = fZ(t); t � 0g and
D = fD(t); t � 0g are K-dimensional with Zk(t) denoting the number of class
k jobs that are in queue or being served at station s(k) at time t and Dk(t)
denoting the number of departures from class k in [0; t]. They are called the
jobcount process and departure process, respectively. The other two processes,
W = fW (t); t � 0g and Y = fY (t); t � 0g, are J-dimensional. For each station
j,Wj(t) denotes the amount of work for server j (measured in units of remaining
service time) embodied in those jobs who are at station j at time t. If no more
arrivals (external or internal) are allowed to station j after time t, server j has
to work an additional Wj(t) units of time to �nish her work. The process W
is called the (immediate) workload process. For each station j, Yj(t) denotes
the total amount of time that the sever at station j has been idle in the time
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interval [0; t]. Y is called the cumulative idletime process. The jobcount and
workload processes measure congestion and delay in the network. The idletime
process measures utilization of the resources (servers) in the network.

For a class k, if there is a constant e�k such that

P

n
lim
t!1

Dk(t)=t = e�ko = 1; (1.11)

we call e�k the throughput from class k. For a re-entrant line, e�K , if it exists, is
the throughput of the system. Obviously, the throughput is less than or equal
to the input rate �1. If, for a station j, there is a constant e�j such that

P

n
lim
t!1

Yj(t)=t = 1� e�jo = 1; (1.12)

we call e�j the utilization of server j and 1 � e�j the idle rate of server j. Per-
formance measures like throughput and utilization are �rst order measures.
Often they depend on the �rst moments of primitive increments. Fluid models
introduced in Chapter 2 are relevant to study �rst order performance measures.

For a class k, if there exists a constant E [Zk (1)] such that

P

�
lim
t!1

t�1

Z t

0

Zk(s) ds = E [Zk (1)]

�
= 1; (1.13)

E [Zk (1)] is called the (long-run) average jobcount in bu�er k. Similarly, for a
station j, if there exists a constant E [Wj (1)] such that

P

�
lim
t!1

t�1

Z t

0

Wj(s) ds = E [Wj (1)]

�
= 1; (1.14)

E [Wj (1)] is called the (long-run) average workload at station j. It is often
called (average) virtual waiting time because under FIFO, a job arriving at
station j at time t would have to wait Wj(t) units of time before being served.
One can de�ne the actual average waiting time and relate it with the average
jobcount via Little's formula. For example, for a re-entrant line, let S(i) be the
total time in the system for the ith job. If there exists a constant E [S(1)] such
that

P

n
lim
n!1

n�1
nX
i=1

S(i) = E [S(1)]
o
= 1; (1.15)

E [S(1)] is called the average time in system. Notice that the average in (1.15)
is over the number of jobs whereas the average in (1.13) is over the time inter-
vals. The Little's law alluded earlier asserts that E [S(1)] exists if and only if
E [jZ(1)j] exists, and when they exist, they are related by

E [jZ(1)j) = �1E [S(1)]; (1.16)
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where E [jZ(1)j] is a number determined by

P

n
lim
t!1

t�1

Z t

0

jZ(s)j ds = E [jZ(1)j]
o
= 1;

and jZ(s)j =
P

k Zk(s). Performance measures like E [Zk (1)] are second or-
der measures. They often heavily depend on the variability of the primitive
increments. Fluid models are relevant to the existence of these performance
measures. Brownian models introduced in a later chapter can often be used to
predict second order performance measures when the network is heavily loaded.

1.4 TraÆc Equations

To investigate open multiclass queueing networks, one employs the solution �`,
` = 1; : : : ;K, of the traÆc equations

�` = �` +

KX
k=1

�kPkl: (1.17)

or equivalently, in vector form, of � = �+P 0�. Since P is transient, the unique
solution in (1.17) of � is then given by � = Q�. The term �k is referred to as
the nominal total arrival rate to class k due the external and internal arrivals.
The quali�er nominal is used here because the traÆc equation (1.17) implicitly
assumes that for each class k there is a long run average rate �k of ow into
and out of that class and that this does not exceed the maximal mean service
rate �k = 1=mk for class k.

Employing m and �, one de�nes the traÆc intensity �j for the jth server as

�j =
X

k2C(j)

mk�k ; (1.18)

with � being the corresponding vector. We interpret �j as the nominal average
amount of work brought to server j per unit of time. When �j � 1, it is
also called the nominal fraction of time that server j is busy. When Brownian
models are considered, we are interested in the network when the system is in
heavy traÆc whose precise de�nition will be given in a later chapter. Roughly
speaking, the system is in heavy traÆc when �j is close to one for each station
j.

When

�j < 1; j = 1; : : : ; J; (1.19)

is satis�ed, we say that the usual traÆc condition is satis�ed. The issue of
whether the nominal total arrival rate �k is actually a long run average departure
rate or throughput e�k is related to the stability of the network. We leave this
subject for Chapter 2.
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1.5 Dynamics of Queueing Networks

In this section, we de�ne queueing network equations and queueing network
processes.

To specify the dynamics of the queueing network, we introduce two additional
K-dimensional processes A = fA(t); t � 0g and T = fT (t); t � 0g with Ak(t)
denoting the total number of arrivals to class k (external and internal arrivals) in
[0; t] and Tk(t) denoting the amount of time that server s(k) has spent serving
class k jobs in [0; t]. One can check that A;D; T;W; Y and Z satis�es the
following queueing network equations:

A(t) = E(t) +
X
k

�k(Dk(t)); (1.20)

Z(t) = Z(0) +A(t)�D(t); (1.21)

W (t) = CV (A(t) + Z(0))� CT (t); (1.22)

CT (t) + Y (t) = et; (1.23)

Yj(t) can only increase when Wj(t) = 0; j = 1; : : : ; J; (1.24)

for all t � 0. Here, C is the constituency matrix de�ned as

Cjk =

�
1 if k 2 C(j);
0 otherwise;

(1.25)

e denotes the J-vector of all 1's. We note that T and Y are continuous, and that
A, D, W and Z are right continuous with left limits. All of the variables are
nonnegative in each component, with A, D and T and Y being nondecreasing.
By assumption, one has

A(0) = D(0) = T (0) = 0 and Y (0) = 0: (1.26)

In (1.24), we mean that Yj(t2) > Yj(t1) implies Wj(t) = 0 for some t 2 [t1; t2],
which reects the non-idling property. Since Y is continuous, this can also be
written as Z 1

0

Wj(t) dYj = 0; j = 1; : : : ; J: (1.27)

HL queueing networks satisfy

V (D(t)) � T (t) � V (D(t) + e) (1.28)

in addition to (1.20)-(1.24), where the inequalities are componentwise and e
denotes the K-vector of all 1's. In fact, for each class k, Vk(Dk(t)) � Tk(t) for
t � 0 holds for any service discipline. Because the (Dk(t) + 1)th job has not
departed from class k yet by time t, and only the leading job receives service,
we have Tk(t) � Vk(Dk(t) + 1).

From our perspective, the 6-tuple

X(t) = (A(t); D(t); T (t);W (t); Y (t); Z(t)); t � 0; (1.29)
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contains all of the essential information on the evolution of the system. We refer
to X as the queueing network process, or in the HL setting, as the HL queueing
network process.

We have presented (1.20)-(1.24) and (1.28) that X must satisfy. Additional
equations which are satis�ed by X will be introduced when speci�c service dis-
ciplines are given.

1.5.1 FIFO Queueing Networks

We recall that FIFO queueing networks are those networks where jobs are served
in the order of their arrival at a station. This property can be written as

Dk(t+Wj(t)) = Zk(0) +Ak(t); k = 1; : : : ;K; (1.30)

for all t � 0. Together, (1.20)-(1.24), (1.28)and (1.30) form the FIFO queueing
network equations. The corresponding 6-tuple X will be referred to as the FIFO
queueing network process. One can check that the behaviors of (E; V;�) and

fDk(t) for t �Wj(0); k = 1; : : : ;Kg (1.31)

determines X(t) for all t � 0 through the FIFO queueing network equations.
Thus, the quantity in (1.31) serves the role of the initial data for these equations.

1.5.2 SBP Queueing Networks

Recall that under a SBP discipline, classes at each station are assigned a �xed
ranking, with jobs from higher ranking classes being served �rst. For each class
k, we denote by Z+

k (t) the total number of jobs at time t in classes whose
priorities are at least as great as k, and by T+

k (t) the cumulative time that
server s(k) has spent on classes whose priorities are at least as great as k. Since
the discipline is assumed to be preempt-resume, the SBP property is given by

t� T+
k (t) can only increase when Z+

k (t) = 0; k = 1; : : : ;K; (1.32)

for all t � 0. Similar to (1.27), one can instead write this as

Z 1

0

Z+
k (t) d(t� T+

k (t)) = 0; k = 1; : : : ;K: (1.33)

Together, (1.20)-(1.24), (1.28) and (1.33) form the SBP queueing network equa-
tions. The corresponding 6-tuple X will be referred to as the SBP queueing
network process. One can check that the values taken by (E; V;�) and Z(0)
determine X(t) for all t � 0 through the SBP queueing network equations; Z(0)
therefore serves the role of the initial data for these equations.
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1.5.3 GHLPS Queueing Networks

We recall that under a GHLPS discipline with proportion vector � = (�`),
all nonempty classes present at a station are served simultaneously, with the
fraction of time spent serving a non-empty class, say k, being proportional to
�k. All service goes into the �rst job of each class with the job departing from
the station when his service requirement is attained.

The GHLPS property can be written as

Tk(t) =

Z t

0

�k1fZk(s)>0gP
`2C(j) �`1fZ`(s)>0g

ds (1.34)

for all t � 0 and each class k, where, for a set B, 1B is the indicator function of
B. (By convention 0=0 = 0.) The term �k1fZk(s)>0g=

P
`2C(j) �`1fZ`(s)>0g is the

proportion of e�ort received from server s(k) at time s. Together, (1.20)-(1.24),
(1.28) and (1.34) form the GHLPS queueing network equations. The correspond-
ing 6-tuple X will be referred to as the GHLPS queueing network process. One
can check that the values taken by (E; V;�) and Z(0) determine X(t) for all
t � 0 through the GHLPS queueing network equations; Z(0) therefore serves
the role of the initial data for these equations.

1.5.4 GHLPPS Queueing Networks

We recall that under a GHLPPS discipline with weight vector � = (�`), all
nonempty classes present at a station are served simultaneously, with the frac-
tion of time spent serving a class, say k, being proportional to �k times the
number of jobs in the class. All service goes into the �rst job of each class to
arrive at the station, with the job departing from the station when his service
requirement is attained.

The GHLPPS property can be written as

Tk(t) =

Z t

0

�kZk(s)P
`2C(j) �`Z`(s)

ds (1.35)

for all t � 0. The term

�kZk(s)P
`2C(j) �`Z`(s)

is the proportion of e�ort received from server s(k) at time s. Together, (1.20)-
(1.24), (1.28) and (1.35) form the GHLPPS queueing network equations. The
corresponding 6-tuple X will be referred to as the GHLPPS queueing network
process. One can check that the values taken by (E; V;�) and Z(0) determine
X(t) for all t � 0 through the GHLPPS queueing network equations; Z(0)
therefore serves the role of the initial data for these equations.
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1.6 Steady-State Distributions for FIFO Kelly

Networks

An exponential network is said to be a FIFO Kelly network if the service
discipline is FIFO and for each station, the mean processing times for each
class at the station are the same. For an exponential FIFO network, knowing
Z(t) is not enough to predict the future evolution of the network. Therefore,
Z = fZ(t); t � 0g is not a Markov process. The state of the network is the
order in which jobs are lined up at each station. Let Nj(t) be the total number
of jobs at station j at time t. Let

Xj(t) = (kj;1; kj;2; kj;Nj(t));

where kj;i is the class number of the ith job at station j at time t. (When
Nj(t) = 0, Xj(t) is the empty list.) Let X(t) = (X1(t); : : : ; XJ(t)). It can be
checked that X = fX(t); t � 0g is a continuous time Markov chain living in

the state space
QJ

j=1

�
Z
1
C(j)

�J
, where Z1C(j) is the space of �nitely terminating

sequences of integers in C(j). The state space is in�nite dimensional. The
process X is irreducible. When the exponential network is FIFO Kelly, the
recurrence condition for X is surprisingly simple. Furthermore, the stationary
distribution of X exhibits a product form. Let X(1) = (X1(1); : : : ; XJ(1))
be the random variable having the stationary distribution of X . The stationary
distribution is of product form if

PfX1(1) = x1; : : : ; XJ(1) = xJg = PfX1(1) = x1g � � �PfXJ(1) = xJg

for any state x = (x1; : : : ; xJ ).

Theorem 1.6.1. For a FIFO Kelly network, if the usual traÆc condition (1.19)
is satis�ed, the continuous time Markov chain X is positive recurrent. Further,
the stationary distribution of X is of product form with

PfXj(1) = xjg = (1� �j)
Y

k2C(j)

(�kmk)
zk ; (1.36)

where zk is the number of jobs in class k in state xj .

Proof. The theorem can be veri�ed by checking the balance equations for the
stationary distribution of a continuous time Markov chain.

To interpret (1.36), recall that for an M=M=1 queue with a Poisson arrival pro-
cess with rate � and exponential service times with rate �, the traÆc intensity
� is simply �=�. The one-dimensional jobcount process Z = fZ(t); t � 0g is a
birth-death process with reection at origin. When � < 1, one can check that
the stationary distribution of Z is geometric. Namely,

PfZ(1) = ig = (1� �)�i for i = 0; 1; : : : :
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Let Nj(1) and Zk(1) be the number of jobs at station j and in class k, re-
spectively, in state Xj(1). First,

PfNj(1) = njg = (1� �j)�
nj
j for nj = 0; 1; : : : :

Therefore, in steady state, the total number of jobs at station j has the same
distribution as an M=M=1 queue with traÆc intensity �j . Next,

PfZk(1) = zk; k 2 C(j)jNj(1) = njg =
nj !Q

k2C(j)(zk!)

Y
k2C(j)

�
�kmk=�j

�zk

for any integer zk � 0 with
P

k2C(j) zk = nj . Thus, given Nj(1) = nj , Zk(1),

k 2 C(j), has multinomial distribution with parameters �kmk=�j , k 2 C(j).
Last,

PfXj(1) = xj jZk(1) = zk; k 2 C(j)g =

Q
k2C(j)(zk!)

nj !
;

where nj =
P

k zk. Therefore, given Zk(1) = zk for k 2 C(j), Xj(1) is equally
likely to take any feasible sequence.

1.7 Problems, Notes and Complements

Multiclass queueing networks with dynamic control capability were introduced
by Harrison [28]. Many of the queueing network equations were also �rst in-
troduced in that paper. Brownian models of FIFO queueing networks were
studied in Harrison and Nguyen [31, 32] in which the FIFO queueing network
equations were introduced, although it is diÆcult to determine who �rst intro-
duced the FIFO equation (1.30). Bramson [6] introduced the HLPPS network
and its queueing network equations. General HL networks were introduced by
Bramson [7]. Section 1.6 contains classic materials; see for example, Kelly [36]
or Baskett, Chandy, Muntz and Palacios [2].



Chapter 2

Fluid Networks and

Stability Analysis

In this chapter we study uid models and their role in the study of stability of
queueing networks.

2.1 Introduction

Consider the 2-station 5-class re-entrant line in Figure 2.1. For a production
manager of this line, he might be interested in �nding the maximum input rate
possible so that the system still \functions normally" or \is stable". The last
terms are admittedly vague. They will be made precise later on. The maximum
input rate is related to the maximum throughput or maximum production rate
of this system. Whatever our notion of the stability is, it is intuitively clear
that the maximum input rate �1 is constrained by the traÆc condition:

�1 = �1(m1 +m3 +m5) � 1 and �2 = �1(m2 +m4) � 1;

- -

-

-

-

-

m1 m2

m3 m4

m5

Station 1 Station 2

�1

Figure 2.1: A 2-station 5-class re-entrant line
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or

�1 � min
n
1=(m1 +m3 +m5); 1=(m2 +m4)

o
: (2.1)

Here, as before, mk is the mean processing time for class k jobs. Equation (2.1)
says that the maximum input rate, and hence the maximum throughput, of the
system is constrained by the service speed of the slower server or the bottleneck
station. The fact that the maximum throughput can be calculated using such
static models is hardly surprising and these static models are used routinely in
many production systems.

To be concrete, let us assume that the network has iid exponential increments.
The service discipline is the SBP discipline

� = f(5; 3; 1); (2; 4)g (2.2)

that gives the highest priority to class 5, the next priority to class 3 and the
lowest priority to class 1 at station 1, and the highest priority to class 2 and
the lowest priority to class 4 at station 2. Then, the 5-dimensional jobcount
process Z = fZ(t); t � 0g is a continuous time Markov chain with state space
Z5
+. Note that state 0 (empty system) can be reached from any other state

when a long interarrival time occurs. Therefore, the Markov chain is irreducible
among the set of states that are reachable from state 0. It is easy to specify
the transition rates for the Markov chain. For example, if the current state
is (6; 3; 1; 4; 2), the Markov chain can jump to (7; 3; 1; 4; 2) due to an external
arrival with rate �1, to (6; 2; 2; 4; 2) due to a service completion of a class 2 job
with rate �2 = 1=m2, and to (6; 3; 1; 4; 1) due to a service completion of a class 5
job with rate �5 = 1=m5. For this Markov chain, we have the following theorem
whose proof is delayed to later sections of this chapter.

Theorem 2.1.1. (a) If

�1 < 1; (2.3)

�2 < 1; (2.4)

�v
def
= �1(m2 +m5) < 1; (2.5)

then Z is positive recurrent, and hence possesses a unique stationary distribu-
tion.
(b) Conversely, if one of the following conditions is satis�ed:

�1 > 1;

�2 > 1;

�v > 1;

then with probability one, jZ(t)j ! 1 as t!1.

For the moment, let us call a system stable if Z is positive recurrent. Theo-
rem 2.1.1 asserts that the stability region constrained by (2.3)-(2.5) is sharp in



2.1. INTRODUCTION 17

some sense. Notice that condition (2.5) is unconventional. It links the average
processing time m2 in class 2 at station 2 with the average processing time m5

in class 5 at station 1. Condition (2.5) is a so-called virtual station condition to
be explained shortly in this section.

Assume that �1 = 1, m1 = m3 = m4 = 0:1 and m2 = m5 = 0:6. Then,
�1 = 0:8, �2 = 0:7, and �v = 1:2. A computer simulation was performed
on this network. The simulation starts the system empty and terminates at
time 1600. Plotted in Figure 2.2 is one sample of jobcounts at stations 1 and
2 over the time period. Notice that the jobcount at each station shows an
almost periodic pattern except that the magnitude of each period gets higher
and higher as the period moves on. Also, in many of the time intervals, when
one station has a lot of jobs, the other station is empty. This mutual blocking
by the two servers somehow reduces the service capacity of both servers. To see
the utilization of each server, a longer simulation run was performed. Table 2.1
shows the utilizations of both servers averaged at times when the number of
jobs that leave the system is 100, 1; 000, 10; 000 and 100; 000, respectively. The

Number of jobs departed 100 1K 10K 100K
Utilization 1 0.65 0.60 0.61 0.65
Utilization 2 0.59 0.68 0.67 0.61

Table 2.1: Utilizations at two stations

utilizations of both servers are signi�cantly below the nominal utilizations of
0:80 and 0:70 while the total number of jobs in the system grows higher and
higher.

A naive calculation using (2.1) gives a maximum possible throughput of
1=0:8 = 1:25 jobs per unit of time. However, Theorem 2.1.1 asserts that the
maximum throughput possible is 1=1:2 = 0:833, a 50% relative di�erence. The
theorem shows that production capacity calculated by using static models can
be misleading.

To understand constraint (2.5), we need the following lemma.

Lemma 2.1.2. Assume that Z2(0)Z5(0) = 0. With probability one,

Z2(t)Z5(t) = 0 for all t � 0: (2.6)

Proof. Since interarrival times and service times are exponentially distributed,
with probability one, there will be no simultaneous arrivals at any given time.
Consider a sample path for which there are no simultaneous arrivals. Assume,
on the contrary, that (2.6) does not hold for the sample path. Let � be the
�rst time that Z2(�)Z5(�) > 0 or equivalently, Z2(�) > 0 and Z5(�) > 0. Since
� is the �rst such time, we have Z2(��)Z5(��) = 0. Thus, either Z2(��) or
Z5(��) is 0. Let us assume that Z2(��) = 0. In this case, at time � there is
an arrival to class 2. Since Z5(�) > 0 and there are no simultaneous arrivals,
Z5(��) > 0. Because class 5 has preempt-resume priority over classes 3 and 1,
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there is a Æ > 0 such that server 1 has been working on class 5 jobs during the
time interval (� � Æ; � ]. Thus, it is impossible for a class 1 job to enter class 2
at time � , leading to a contradiction. Assuming Z5(��) = 0 leads to a similar
contradiction.

Given a proper policy of handling simultaneous arrivals to classes, one can
in fact show that (2.6) holds for every sample path. Lemma 2.1.2 shows that
at any given time t, either bu�er 2 or bu�er 5 is empty. (They can both be
empty.) One can imagine that there is a virtual server either serving class 2 or
class 5 jobs, but never both. In this sense, classes 2 and 5 form a virtual station.
Thus, the usual traÆc condition applies to the virtual station, which leads to
constraint (2.5). This explains, but does not prove, the necessity part of the
virtual station condition. A rigorous proof of the necessity of the theorem is
given in Corollaries 2.5.4 and 2.5.5. It turns out that both the suÆciency and
necessity proofs rely heavily on the uid model of the network.

2.2 Fluid Model Equations

The formal deterministic analog of the queueing network process X has compo-
nents which satisfy the equations

A(t) = �t+ P 0D(t); (2.7)

Z(t) = Z(0) +A(t)�D(t); (2.8)

W (t) = CM(A(t) + Z(0))� CT (t); (2.9)

CT (t) + Y (t) = et; (2.10)

Yj(t) can only increase when Wj(t)=0; j = 1; : : : ; J; (2.11)

for all t � 0. In the HL setting, one includes

T (t) =MD(t); (2.12)

where M = diag(m).
Equation (2.11) means that whenever Wj(t) > 0, Yj(�) is \at" at t. More

precisely, for each t > 0, whenever Wj(t) > 0, there exists a Æ > 0 such that
Yj(t+ Æ) = Yj(t� Æ), or equivalently, Yj(�) is constant on s 2 (t� Æ; t+ Æ). One
obtains (2.7)-(2.12) from (1.20)-(1.24) and (1.28) by replacing E, V and � by
their respective asymptotic means �, M and P . The display (2.7)-(2.11) are
known as uid model equations ; their solutions, written as

X(t) = (A(t); D(t); T (t);W (t); Y (t); Z(t)); t � 0;

will be referred to as uid model solutions. When (2.12) is included with (2.7)-
(2.11), we refer to the corresponding quantities as HL uid model equations and
HL uid model solutions. Unless speci�ed otherwise, all uid models are HL
uid models in this book.
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We have intentionally reused symbols A, D, T , W , Y , Z and X for the uid
model description. The re-usage emphasizes the parallel between stochastic
discrete queueing networks and their corresponding deterministic continuous
uid models. It should be clear from the context whether these symbols are
associated with queueing networks or uid models. Occasionally, when it is
necessary, we add a bar to the uid quantities. Therefore,

�X = ( �A; �D; �T ; �W; �Y ; �Z)

will sometime denote a uid model solution. When convenient, we will employ
the same vocabulary for the uid model analogs of queueing network quantities,
such as the workload W . We prefer to call Z in the uid model the uid level
or bu�er level process.

We will assume that the components T and Y of a uid model solution X

are nondecreasing. One can check that A and D are also nondecreasing with

A(0) = D(0) = T (0) = 0 and Y (0) = 0:

It follows from (2.8), (2.9) and (2.12) that

W (t) = CMZ(t) for all t � 0 (2.13)

Using (2.7)-(2.12), it is easy to show that each component of X is Lipschitz
continuous. That is, for some N > 0 (depending on (�;m; P )),

jf(t2)� f(t1)j � N jt2 � t1j for all t1; t2 � 0;

if f is any of the above functions. (When dealing with vectors, we always employ
the L1 norm, although this is merely a matter of convenience.) In particular,
each component of X is absolutely continuous, and hence di�erentiable almost
everywhere with respect to Lebesgue measure on [0;1). A time t > 0 is said to
be a regular point for the uid model solution X if X is di�erentiable at time t.
Whenever the derivative of a component of X at t is involved, we always assume
that t is a regular point for the uid model solution X. We use _f(t) to denote
the derivative of f at t.

Again, for each service discipline, there are additional equations for the uid
model solution X to satisfy. The FIFO uid model equations consist of (2.7)-
(2.12) and

Dk(t+Wj(t)) = Zk(0) +Ak(t); k = 1; : : : ;K; (2.14)

for all t � 0. The initial data are given by

fDk(t) for t �Wj(0); k = 1; : : : ;Kg: (2.15)

By (2.10)-(2.12), X
k2C(j)

mkDk(t) = t for t �Wj(0);
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which serves as a consistency condition for the initial data. Most uid model
solutions are not unique even though their queueing network counterparts often
determine the evolution of the queueing network uniquely.

The SBP uid model equations consist of (2.7)-(2.12), together withZ 1

0

Z+
k (t) d(t� T+

k (t)) = 0; k = 1; : : : ;K; (2.16)

which is equivalent to

_T+
k (t) = 1 when Z+

k (t) > 0; k = 1; : : : ;K; (2.17)

for all regular t's. (In this setting, (2.11) is redundant, since it is equivalent
to (2.17) when k is the lowest ranked class at its station.) The corresponding
6-tuples X are the SBP uid model solutions. Here, Z(0) serves the role of the
initial data for these equations.

The GHLPS uid model equations consist of (2.7)-(2.12), together with

_Tk(t) =
�kP

`2C(j):Z`(t)>0 �`

�
1�

X
`2C(j):Z`(t)=0

_A`(t)m`

�
(2.18)

when Zk(t) > 0. Note that server s(k) spends the fraction _A`(t)m` of its e�ort
to keep bu�er ` empty. Thus,

1�
X

`2C(j):Z`(t)=0

_A`(t)m`

is the remaining fraction of the server's capacity available to nonzero bu�ers.
The equality (2.18) states that among nonzero bu�ers, they receive the server's
e�ort that is proportional to �k. (When a station is empty, _Tk(t) may still be
positive, and so (1.34) need not hold for the uid model.) Here, Z(0) serves
the role of the initial data for the GHLPS uid model equations. An additional
inequality which holds for the GHLPS uid model is

_Tk(t) �
�kP

`2C(j) �`
when Zk(t) > 0: (2.19)

It turns out that in some situations it is more productive to work with (2.19)
than (2.18); see Corollary 2.4.11.

The GHLPPS uid model equations consist of (2.7)-(2.12), together with

_Tk(t) = Z�
k (t) when

X
`2C(j)

�`Z`(t) > 0; k = 1; : : : ;K; (2.20)

where

Z�
k (t) =

�kZk(t)P
`2C(j) �`Z`(t)

when
X
`2C(j)

�`Z`(t) > 0:
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The equality (2.20) states that when a station j is nonempty, the server allo-
cation rates _Tk(t) exist and are proportional to the weighted uid level of each
class k present. (When a station is empty, _Tk(t) may still be positive, and so
(1.35) need not hold for the uid model.) Here, Z(0) serves the role of the initial
data for the GHLPPS uid model equations.

We end this section with a proposition that holds for any HL uid model.

Proposition 2.2.1. Let X be a uid model solution satisfying (2.7)-(2.12). For
each station j,

�j(t) = inffs � t :Wj(s) = 0g:

Assume that for some station j, �j < 1. There exists a constant c that depends
on �, m and P such that

�j(t) � cWM (t);

where

WM (t) = max
j

Wj(t):

Proof. Let X be a uid model solution satisfying (2.7)-(2.12). Then, for any
s > t,

CM(I � P 0)�1Z(s) = CM(I � P 0)�1Z(t) + (�� e)(s� t) + Y (s)� Y (t):

Let fj(s) be the jth component of CM(I�P 0)�1Z(s). It is the amount of work
for server j embodied in the uids that are currently anywhere in the network.
If no future arrivals are allowed, server j has to work at least fj(s) units of time
before she can go home. Since Wj(s) > 0 for s 2 (t; t+ �j(t)), Y (s) = Y (t) for
s 2 (t; t+ �j(t)). Therefore, by the continuity of the uid model solution,

fj(t+ �j(t)) = fj(t) + (�j � 1)�j(t):

Since fj(t+ �j(t)) � 0, we have

�j(t) � fj(t)=(1� �j) � cWM (t):

2.3 Fluid Limits

For an HL queueing network process X and r > 0, de�ne the uid scaling of X
via

�Xr(t) = r�1
X(rt):

Sometimes, the queueing network process Xmay depend on r (see Section 2.6.2).
For example, r can be the initial number of jobs in the queueing network. In
this case,

�Xr(t) = r�1
X
r(rt);
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where Xr is the queueing network process associated with the rth queueing
network. Recall that the queueing network process X is random in general. How-
ever, given a realization of the primitive increments, denoted by (u(!); v(!); �(!)),
the evolution of X is completely determined (modulo tie break policies dealing
with simultaneous arrivals or departures). To explicitly state the dependency
on the randomness !, we sometimes use X(�; !) to denote the realization of X
when the sample path is !. For each sample path !, X 2 D 4K+2J [0;1).

Theorem 2.3.1. Assume that (1.1) holds for a sample !. If

jZr(0; !)j=r is bounded as r !1;

then �Xr(�; !) is pre-compact as r !1 in the Skorohod path space D 4K+2J [0;1)
endowed with the u.o.c. topology.

Proof. Note that for any r > 0, any sample ! and any class k,

�T r
k (t; !)� �T r

k (s; !) � (t� s) for any t � s � 0:

Therefore, the family f �T r(�; !) : r > 0g is equi-continuous in DK [0;1) under the
u.o.c. topology. Also �T r(0; !) = 0 for all r > 0. Therefore, f �T r(�; !) : r > 0g is
tight. Now, for the ! satisfying (1.1), the functional strong law of large numbers
(1.5) holds. The lemma follows from the pre-compactness of jZr(0; !)j=r as
r !1, the head-of-the-line assumption (1.28) and the functional strong law of
large numbers for the primitive cumulatives (E; V;�).

When �Xr(�; !) is tight as r ! 1, for each sequence rn ! 1, there is a
subsequence rnk !1 such that

�Xr(�; !)! �X u.o.c:

for some �X 2 D 4K+2J [0;1). The process �X is called a uid limit. We let X (!)
be the set of uid limits associated with sample path !. Whenever a uid limit
�X is concerned, it is always assumed that �X 2 X (!) for some ! satisfying the
strong law of large numbers (1.1). Under an HL discipline, the collection of all
uid limits is sometimes called the uid limit model of the discipline.

Each uid limit must satisfy uid model equations (2.7)-(2.12). In fact,
(2.12) follows from (1.28). Equations (2.7)-(2.10) follow from (1.20)-(1.23).
We now show that (2.11) is satis�ed for a uid limit �X. Let t > 0. As-
sume that �Wj(t) > 0. By the continuity of �X, there exists a Æ > 0 such that
� � mins2(t�Æ;t+Æ) �Wj(s) > 0. Since �X is a uid limit, there exists a sample path
! and a sequence rn !1 such that�

�W rn(�; !); �Y rn(�; !)
�
! ( �W; �Y ) u.o.c:

as n!1. In particular, there exists integer N such that

inf
s2(t�Æ;t+Æ)

�W rn
j (s; !) � �=2
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for n � N . Therefore, W rn
j (s; !) > 0 for s 2 (rn(t � Æ); rn(t + Æ)) and n � N .

Thus, when n � N , under a non-idling service discipline, Y rn
j (s; !) is at for

s 2 (rn(t � Æ); rn(t + Æ)) or equivalently, �Y rn
j (s; !) is at for s 2 (t � Æ; t + Æ).

Letting n! 1, we have that �Yj(s) is at for s 2 (t � Æ; t+ Æ), and thus prove
(2.11).

For a FIFO queueing network process X, one can check that each uid limit
satis�es the FIFO uid equation (2.14). Likewise, for a SBP queueing network
process X, one can check that each uid limit satis�es the SBP uid equation
(2.16) using a proof similar to the proof of (2.11). For a GHLPS queueing
network process, one can show that each uid limit satis�es (2.18) and (2.19).
In fact, a proof is needed here. Similarly, one can show that for a GHLPPS
queueing network process, each uid limit satis�es (2.20). Hence we have the
following theorem.

Theorem 2.3.2. For each of the HL queueing network considered in Chapter 1,
each uid limit is a uid model solution.

One wonders that, for a given HL service discipline, what additional uid
model equations should be added? A sensible approach is to add whatever uid
model equations that are satis�ed by uid limits. Therefore, Theorem 2.3.2
should be generally true. In fact, for a given HL discipline, Theorem 2.3.2 should
be the guiding principle in adding uid model equations for the discipline.

2.4 Calculus for Fluid Models

Let us �x an HL discipline. In this section, whenever a uid model is mentioned,
it is associated with the service discipline.

De�nition 2.4.1. The uid model is stable if there exists a Æ > 0 such that for
each uid solution X with jZ(0)j � 1, Z(t) = 0 for t � Æ.

De�nition 2.4.2. The uid model is weakly stable if for each uid solution X
with Z(0) = 0, Z(t) = 0 for t � 0.

De�nition 2.4.3. A uid model solution X is unstable if there exists a sequence
ftng with tn ! 1 such that Z(tn) > 0 for each n. The uid model is unstable
if there exists an unstable uid model solution.

De�nition 2.4.4. The uid model is weakly unstable if there exists a Æ > 0
such that for every uid solution X with Z(0) = 0, Z(Æ) 6= 0.

Notice that the uid model being unstable is equivalent to the uid model
being not stable. However, the uid model being weakly unstable is often much
stronger than the uid model being not weakly stable. The gap between them
is subtle, important and somewhat annoying. There is a considerable amount
of current current research activity devoted to the subject. The term \weakly
unstable" is not standard. A more descriptive, but cumbersome term perhaps
is \strongly not-weakly-stable".
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To show the instability of the uid model, it is enough to construct one
unstable uid model solution. To show stability of the uid model, one needs
to show that all uid model solutions drain to zero uniformly fast. Since it is
diÆcult to follow the exact dynamics of each uid model solution, we need to
develop a calculus for the uid model.

Recall that each component of a uid model solution X is absolutely continu-
ous and hence di�erentiable almost everywhere in [0;1) and a time t is regular
for X if each component of X is di�erentiable at t. Whenever the derivative of
a component at t is considered, t is assumed to be a regular point. Our �rst
lemma is a general result from analysis.

Lemma 2.4.5. Let f : R+ ! R+ be an absolutely continuous function, and
� > 0. Assume that whenever f(t) > 0 and f(t) is di�erentiable at t, _f(t) � ��.
Then

f(t) = 0 for t � f(0)=�:

Let ak(t) = _Ak(t) and dk(t) = _Dk(t). In the following proposition

X = (A;D; T;W; Y; Z)

is a uid model solution satisfying (2.7)-(2.12), and t is a regular point.

Lemma 2.4.6. (a) If Zk(t) = 0, then ak(t) = dk(t); (b) if Wj(t) > 0,X
k2C(j)

mkdk(t) = 1;

and (c) ak(t) = �k +
P

` P`kd`(t).

Proof. If Zk(t) = 0, Zk attains a minimum at t. Since Zk is di�erentiable at t,
_Zk(t) = 0 or equivalently, ak(t) = dk(t). This proves part (a).
For part (b), when Wj(t) > 0, it follows from (2.11) that _Yj(t) = 0. Hence

by (2.10) that X
k2C(j)

_Tk(t) = 1:

From (2.12), mkdk(t) = _Tk(t), and thus part (b) is proved. Part (c) follows
from (2.7) immediately.

A function g : RK+ ! R+ is said to be locally Lipschitz continuous if for any
compact set B, there exists a constant �(B) such that for any x; y 2 B,

jg(x)� g(y)j � �(B)jx� yj:

Lemma 2.4.7. Let g : RK+ ! R+ be a locally Lipschitz function such that
g(x) = 0 if and only if x = 0. Let � > 0 be a constant. For each uid model
solution X, let f(t) = g(Z(t)). Assume that whenever Z(t) 6= 0 and t is regular
for both X and f ,

_f(t) � ��:

then the uid model is stable.
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Proof. Let X be a uid model solution with jZ(0)j � 1. Since Z is Lipschitz
(with Lipschitz constant N), for any t > 0,

jZ(s)j � jZ(0)j+ jZ(s)� Z(0)j � 1 +Nt for 0 � s � t:

Therefore, for any 0 � u � s � t

jf(s)� f(u)j � �(B)jZ(s)� Z(u)j � �(B)N(s� u);

where B = fz 2 RK+ : jzj � 1 + Ntg. Thus, f is locally Lipschitz, and hence
absolutely continuous. Since f(t) = 0 i� Z(t) = 0, it follows Lemma 2.4.5 that
f(t) = 0 and Z(t) = 0 for t � f(0)=�. Let

Æ = max
z2RK

+
:jzj�1

g(z):

Then f(0) = g(Z(0)) � Æ. Thus, Z(t) = 0 for t � Æ=�, proving the stability of
the uid model.

De�nition 2.4.8. The function g in Lemma 2.4.7 is called a Lyapunov func-
tion.

One nice thing about a Lyapunov function is that one need not know exactly
how the dynamics of each uid model solution behaves, yet all uid model
solutions are \driven" down to zero by the Lyapunov function uniformly fast.

To show the power of Lemmas 2.4.6 and 2.4.7, we present the following
example.

Example. For a re-entrant line operating under the last-bu�er-�rst-serve (LBFS)
service discipline, if the usual traÆc condition (1.19) is satis�ed, the uid model
is stable.

Proof. Let X be a LBFS uid model solution with jZ(0)j � 1. The LBFS
discipline is a SBP discipline which gives higher priority to higher numbered
classes. Let

f(t) =

KX
k=1

Zk(t) = f(0) + �1t�DK(t)

be the total amount of uid in the system at time t. Notice that f(t) = g(Z(t))
for the linear function g(z) = jzj. Assume that Z(t) 6= 0. Let k be the last bu�er
such that Zk(t) > 0 at (regular) time t. By parts (a) and (c) of Lemma 2.4.6,
we have dk(t) = dk+1(t) = : : : = dK(t). Thus,

_f(t) = �1 � dk(t):

Since Zk(t) > 0, by Part (b) of Lemma 2.4.6,X
`2C(j)

m`d`(t) = 1;
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where j = s(k). Using (2.17), we have d`(t) = 0 for each ` < k with �(`) = s(k).
Thus, X

`2C(j)

m`d`(t) = dk(t)
X

`2C(j):`�k

m`;

and

dk(t) =
1P

`2C(j):`�km`

:

Thus,

_f(t) = �1 �
1P

`2C(j):`�km`

� �1 �
1P

`2C(j)m`

= �1(1� 1=�j) = �(�1=�j)(1� �j):

Let
� = min

j
(�1=�j)(1� �j) > 0:

Then f is a Lyapunov function satisfying the conditions in Lemma 2.4.7.

We end this section by proving the following theorem.

Theorem 2.4.9. Let � > 0. Assume that X is a uid model solution satisfying
(2.7)-(2.8) and

_Dk(t) � �k + � whenever Zk(t) > 0: (2.21)

Then Z(t) = 0 for t � j(I � P 0)�1Z(0)j=�.

Proof. Let
f(t) = e0(I � P 0)�1Z(t):

In the queueing network analogs, the kth component of (I � P 0)�1Z(t) is the
total expected number of class k services required by the jobs currently anywhere
in the network. Thus f(t) is the total expected number of services generated by
the jobs currently anywhere in the network.

From (2.7)-(2.8), we have

f(t) = f(0) + e0�t� e0D(t):

Thus, for Z(t) 6= 0,

_f(t) =

KX
k=1

(�k � _Dk(t))

=
X

k:Zk(t)6=0

(�k � _Dk(t)) +
X

k:Zk(t)=0

(�k � _Dk(t))

� ��jfk : Zk(t) 6= 0gj+
X

k:Zk(t)=0

(�k � _Dk(t)) (2.22)

� ��; (2.23)
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where, for a �nite set S, jSj is the cardinality if S. Note that (2.22) follows from
(2.21), and (2.23) follows from Z(t) 6= 0 and the following claim:

_Dk(t) � �k when Zk(t) = 0: (2.24)

Assuming (2.24) for the moment, then, f is a Lyapunov function satisfying the
conditions in Lemma 2.4.7. Thus, Z(t) = 0 for t � j(I � P 0)�1Z(0)j=�.

To prove (2.24), we introduce the following convention. For a vector x 2 RK

and a set k � f1; : : : ;Kg, we let xk denote the sub-vector (xk); k 2 k. For a
K �K matrix B, we use Bk;k0 to denote the submatrix Bk;` with k 2 k and
` 2 k0. Now, let k = fk : Zk(t) = 0g. Since t is a �xed regular point, we omit
the dependency on t in the de�nition of k. We let kc denote the complement of
k. Since

_Z(t) = �+ (P 0 � I) _D(t);

we have
_Zk(t) = �k + ((P 0)k;k � I) _Dk(t) + (P 0)k;kc _Dkc(t):

By Part (a) of Lemma 2.4.6, _Zk(t) = 0. Thus,

_Dk(t) = (I � (P 0)k;k)
�1�k + (I � (P 0)k;k)

�1(P 0)k;kc _Dkc(t)

� (I � (P 0)k;k)
�1�k + (I � (P 0)k;k)

�1(P 0)k;kc�kc

= �k;

where we have used the facts that each entry of (I � (P 0)k;k)
�1(P 0)k;kc is non-

negative and _Dkc(t) � �kc to get the inequality, and the traÆc equation (1.17)
to get the last equality.

The following corollary holds for Jackson type networks.

Corrollary 2.4.10. For K = J , if the usual traÆc condition (1.19) holds, the
uid model is stable.

Proof. Let

� = minf�j � �j : j = 1; : : : ; Jg;

where �j = 1=mi. If Zj(t) > 0, by (2.11) and (2.12), _Dj(t) = �j � �j+�. Thus,
the corollary follows from Theorem 2.4.9.

Corrollary 2.4.11. Assume the usual traÆc condition (1.19) holds. Let � =
(�1m1; : : : ; �KmK). The GHLPS uid model with the proportion vector � is
stable.

Proof. Condition (2.21) follows from (1.19) and the additional GHLPS uid
model equation (2.19).
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2.5 Instability of Fluid and Queueing Networks

The signi�cance of the weak instability of a uid model lies in the following
theorem.

Theorem 2.5.1. If the uid model is weakly unstable, the queueing network is
unstable in the sense that, with probability one,

jZ(t)j ! 1 as t!1;

where, for a vector x 2 R
K , jxj =

P
jxkj.

Proof. Let ! be �xed so that (1.1) is satis�ed. Let X! be the set of uid limits
for the sample !. If the uid model is weakly unstable, there is a Æ > 0 such
that for each �X 2 X!, �Z(Æ) 6= 0. We claim that

lim inf
r!1

jZ(rÆ; !)=rj > 0; (2.25)

which, of course, implies that limt!1 jZ(t; !)j = 1. To prove (2.25), suppose
that

lim inf
r!1

jZ(rÆ; !)=rj = 0:

There exists a sequence frng with rn !1 as n!1 such that

jZ(rnÆ; !)=rnj ! 0: (2.26)

Because fX(r�; !)=rg is pre-compact as r ! 1, there exists a subsequence
frnmg � frng such that X(rnm �; !)=rnm converges u.o.c to a limit �X(�) 2 X! .
Hence,

jZ(rnmÆ; !)=rnm j ! j �Z(Æ)j > 0;

which contradicts (2.26).

Note that the theorem still holds if the weak instability assumption is weakened
so that for almost all !, there exists Æ = Æ(!) > 0 such that for each �X 2 X! ,
�Z(Æ) 6= 0. This remark applies to Corollary 2.5.2 as well.
Stolyar [48] proved that the set of uid limits X! is pre-compact or tight.

Therefore, the weak instability implies the stronger condition

inf
�X2X!

j �Z(Æ)j > 0; (2.27)

where Æ > 0 is as in De�nition 2.4.4.

Corrollary 2.5.2. Assume that the uid model is weakly unstable with Æ > 0
as in De�nition 2.4.4. For each ! satisfying (1.1) and each � > 0 with

� < inf
�X2X!

j �Z(Æ)j;

there exists an M(!) > 0 such that

jZ(t; !)j �
�

Æ
t for t �M(!):
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The following proposition provides one way to check the weak instability of
a uid model.

Proposition 2.5.3. If there exists a set B of job classes and positive constants
ak, k 2 B, such that X

k2B

ak�kmk > 1 (2.28)

and for each uid model solution X,X
k2B

ak _Tk(t) � 1; (2.29)

then the uid model is weakly unstable.

Proof. It follows from (2.7), (2.8) and (2.12) that

Z(t) = Z(0) + �t� (I � P 0)M�1T (t): (2.30)

Next, let
L(t) = (I � P 0)�1Z(t):

The kth component of L(t) is the total amount of uid anywhere in the network
at time t that will eventually go through class k. Thus, the kth component of
ML(t) is the amount of time that server s(k) spends on class k to clear out this
amount uid. It follows from (2.30) that

ML(t) =ML(0) +M�t� T (t):

Let
f(t) =

X
k2B

akmkLk(t):

Then
f(t) = f(0) +

X
k2B

akmk�kt�
X
k2B

akTk(t):

By assumptions (2.28) and (2.29), we have

_f(t) �
�X
k2B

akmk�k � 1
�
> 0:

Thus, f(t) � (
P

k2B akmk�k � 1)t for any t � 0, proving the weak instability
of the uid model.

Corrollary 2.5.4. Assume that �j > 1 for some station j. The uid model
under any HL discipline is weakly unstable.

Proof. The proof follows from Proposition 2.5.3 by taking B = C(j) and ak = 1
for k 2 B.
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Corrollary 2.5.5. For the 2-station 5-class re-entrant line pictured in Fig-
ure 2.1 operating under the SBP discipline (2.2), if �v > 1, with probability
one, the total number of jobs in the system goes to in�nity.

Proof. Assume that the queueing network is initially empty. By Lemma 2.1.2,

t� (T2(t) + T5(t))

is nondecreasing. This property carries over to each uid limit. Thus, each uid
limit �X satis�es

_�T 2(t) +
_�T 5(t) � 1; (2.31)

in addition to (2.7)-(2.12) and (2.17). Let B = f2; 5g and a2 = a5 = 1. It
follows from Proposition 2.5.3 that the uid model, augmented with (2.31), is
weakly unstable. Thus, with probability one, the total number of jobs goes to
in�nity.

2.6 Stability of Queueing Networks

Di�erent notions of stability for a queueing network exist. Rate stability is
perhaps the easiest one to study. It requires very weak assumptions on the
primitive cumulatives. When the network has iid increments, one can consider
positive Harris recurrence of the network.

2.6.1 Rate Stability

De�nition 2.6.1. The queueing network is said to be rate stable if for each
�xed initial data, with probability one,

lim
t!1

Dk(t)=t = �k for k = 1; : : : ;K: (2.32)

Therefore, the queueing network is rate stable if the throughput rate or
departure rate from a class is equal to the nominal total arrival rate to the
class.

Theorem 2.6.2. The queueing network is rate stable if and only if for each
�xed initial data, with probability one, the uid limit �X is uniquely given by

�A(t) = �t; �D(t) = �t;
�T (t) =M�t; �W (t) = 0;

�Y (t) = (e� �)t; �Z(t) = 0:

Proof. Assume that the queueing network is rate stable. Let �X be a uid limit
taken with the initial data �xed. Then, �Z(0) = 0. Since, with probability one,
each uid limit is a uid solution, the uid limit satis�es (2.7)-(2.12). Because
the queueing network is rate stable, it follows from Lemma 1.2.3 that �D(t) = �t



32 CHAPTER 2. FLUID NETWORKS AND STABILITY ANALYSIS

for t � 0. From (2.7) and the traÆc equation (1.17), �A(t) = �t. Since �Z(0) = 0,
from (2.8), we have �Z(t) = 0 for t � 0. Equation (2.12) gives �T (t) = M�t for
t � 0 and (2.13) gives �W (t) = 0 for t � 0. Finally, �Y (t) = (e � �)t for each
t � 0 follows from (2.10).

Conversely, assume that, with probability one, the uid limit is unique. Let
us �x a sample ! such that the uid limit along the sample is unique and the
strong law of large numbers (1.1) holds. Thus,

r�1Dk(r�; !)! �k � u.o.c: as r !1:

In particular, we have

r�1Dk(r; !)! �k as r !1:

Thus, the queueing network is rate stable.

Corrollary 2.6.3. Assume that a queueing network is rate stable. Then, with
probability one,

lim
t!1

Tk(t)=t = �kmk; k = 1; : : : ;K; (2.33)

lim
t!1

Yj(t)=t = 1� �j ; j = 1; : : : ; J: (2.34)

As a consequence,

�j � 1 j = 1; : : : ; J:

Thus, if the queueing network is rate stable, the fraction of time that server s(k)
spends on class k jobs is equal to �kmk, the nominal amount of class k work
brought to the server per unit of time. Conversely, if one can allocate servers'
e�ort such that (2.33) holds, one can show from (2.7)-(2.12) that the uid limit
is unique and hence the queueing network is rate stable. This criterion should
give us a guiding principle to construct stable service disciplines.

Corrollary 2.6.4. If the uid model is weakly stable, the queueing network is
rate stable.

Proof. The proof follows from Theorem 2.3.2.

Corrollary 2.6.5. If the uid model is weakly unstable, the queueing network
is not rate stable.

Proof. Suppose that the queueing network is rate stable. By Theorem 2.3.2,
for each uid limit X, the uid level is always zero. Since the uid limit is
a uid solution, this contradicts the de�nition of weak instability of the uid
model.



2.6. STABILITY OF QUEUEING NETWORKS 33

2.6.2 Positive Harris Recurrence

In this section, we consider HL queueing networks with iid increments. We now
de�ne a Markov process X = fX(t); t � 0g which describes the dynamics of a
queueing network. The Markov property requires that given X(t) at time t, the
future evolution of the queueing network in (t;1) can be determined, at least
in probabilistic distributions. This requires us to carefully de�ne the states or
the values that X(t) may take. The state of the process at any time is given by
a point

x 2 R
K
+ �

�
ZK

�1
� R

jEj
+ � R

K
+ = Z

1
+ � R

2K+jEj
+ ; (2.35)

where ZK = f1; : : : ;Kg, Z1K is the set of �nitely terminating sequences in ZK,
and jEj is the cardinality of E . The component in the �rst RK+ , denoted by
� = (�1; : : : ; �K), determines the proportion of service e�ort that each class
receives from its server. We require thatX

k2C(j)

�k = 1 for j = 1; : : : ; J:

The component in (ZK)
1, denoted by ~k = (k1; : : : ; kjzj), determines the order

of all jobs in the network, where z = (z1; : : : ; zK) is the number of jobs in each
class and jzj =

P
k zk is the total number of jobs in the state. The component

ki is the class number of the ith job. The component in R
jEj
+ , denoted by

u = (uk); k 2 E , determines the residual external interarrival times. Finally,
the component in the last RK+ , denoted by v = (v1; : : : ; vK), determines the
residual service times for the leading job of each class.

For notational convenience, we have maintained the global order list ~k in our
description of a state. It is indeed suÆcient to just keep track of the order of
the jobs at each station. Under certain service disciplines, like SBP or HLPS
disciplines, there is no need to keep track of the order of jobs at all. In these
cases, it is enough to keep track of the jobcount z instead of ~k and the state
space is a subset of

Z
K
+ � R

2K+jEj ;

which is �nitely dimensional. Often, only one class at a station receives service
at a time. In this case, there is no need to keep track of the entire vector
v of residual service times. However, in this case, one needs to keep track
of which class is currently being served. Again, for notational convenience,
we simply keep track of the entire vector v. If interarrival and service times
are exponentially distributed, we can drop components u and v in the state
description. The metric on the state space is determined by a \norm" j � j, which
is de�ned to be

jxj = jzj+ juj+ jvj;

where jvj =
P

k vk and juj is de�ned similarly.
We assume that the server's e�orts � do not change between arrivals and

departures. After an arrival or a departure at t, we may assign new service rates
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�(t) which depend measurably on (~k; u; v) at time t. All the service disciplines
considered in Chapter 1 satisfy this assumption on �.

We assume that the process X = fX(t); t � 0g is right continuous. One
can check that X is Markov for each of the HL disciplines discussed. Notice
that as time t goes on, all components of u and some components of v decrease
deterministically while the remainder of the state remains constant. When one
of these residual processes reaches zero (corresponding to the time of an external

arrival or a departure), a jump occurs for � and ~k and the residual time is reset
to a new random variable. Hence X is a piecewise deterministic Markov (PDM)
process that conforms to Assumption 3.1 of Davis [22]. It follows from Davis [22,
page 362] that

Proposition 2.6.6. The process X = fX(t); t � 0g is a strong Markov process.

We use Xx to denote the process with X(0) = x. Let S be the state space
with the Borel �-�eld BS. Let P

t(x; �) be the transition probability of X . That
is

P t(x;B) = PfXx(t) 2 Bg for B 2 BS:

A nonzero measure � on (S;BS) is invariant for X if � is �-�nite, and for each
t � 0,

�(B) =

Z
S

P t(x;B)�(dx); for all B 2 BS:

An invariant measure � is said to be unique if the only invariant measures for X
are positive scalar multiples of �. For B � S, let �xB = infft � 0 : Xx(t) 2 Bg.

De�nition 2.6.7. The process X is Harris recurrent if there exists some �-
�nite measure � on (S;BS), such that whenever �(B) > 0 and B 2 BS,

Pf�xB <1g = 1 for x 2 S:

Harris recurrence implies an apparently stronger condition that

P

�Z 1

0

1B(X
x(s)) ds =1

�
= 1 for x 2 S (2.36)

whenever �0(B) > 0 for some �-�nite measure �0. Thus, for a Harris recur-
rent chain X , with probability one, it spends an in�nite amount of time in all
\nonzero" sets. It is known that if X is Harris recurrent then an essentially
unique invariant measure � exists, see for example Getoor [27].

De�nition 2.6.8. For a Harris recurrent Markov process X , if the invariant
measure is �nite, then it may be normalized to a probability measure; in this
case X is called positive Harris recurrent .

Assume that X = fX(t); t � 0g is positive Harris recurrent with unique
stationary probability distribution �. For any measurable function f on (S;BS),
let

�(f) =

Z
S

f(x)�(dx)
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whenever the integral makes sense. Positive Harris recurrence implies the fol-
lowing ergodic property: for every measurable f on Swith �(jf j) <1,

P

�
lim
t!1

1

t

Z t

0

f(Xx(s)) ds = �(f)

�
= 1 for each x 2 S.

Take f(x) to be the number of class k jobs when the state is in x. Because f is
nonnegative, positive Harris recurrence for X implies that for each job class k,

P

�
lim
t!1

1

t

Z t

0

Zk(s) ds = �(f)

�
= 1 for each x 2 S.

Note that in general �(f) may be in�nite.

De�nition 2.6.9. A distribution � on [0;1) is said to be unbounded if

�([t;1)) > 0 for each t > 0; (2.37)

the distribution is said to be spread out if there exist some positive integer i
and some nonnegative function q : R+ ! R+ with

R1
0

q(t) dt > 0 such that

v�i(dt) � q(t) dt; (2.38)

where v�i is the ith convolution of �.

Theorem 2.6.10. Consider an HL open queueing network with iid increments.
Assume that all distributions have �nite mean and each interarrival time distri-
bution is unbounded and spread out. If the corresponding uid model is stable,
then X is positive Harris recurrent.

We outline some of the key steps in the proof of the theorem before we discuss
some extensions to the theorem.

Suppose that a is a probability distribution on R+ . De�ne the Markov tran-
sition function Ka as

Ka(x; �) �

Z 1

0

P t(x; �) a(dt):

A non-empty set B 2 BS is called �a-petite if �a is a non-trivial measure on
(S;BS) and a is a probability distribution on (0;1) satisfying,

Ka(x; �) � �a(�)

for all x 2 B. The distribution a is called the sampling distribution for the petite
set B. A petite set B has the property that all sets A are \equally accessible"
from any x 2 B. It provides some form of \irreducibility" in the continuous
state space for the Markov process to have a unique invariant measure.

The following is a result for general Markov process fromMeyn and Tweedie [43,
Theorem 4.1].



36 CHAPTER 2. FLUID NETWORKS AND STABILITY ANALYSIS

Lemma 2.6.11. Let B be a closed petite set, suppose that P(�xB <1) = 1 for
x 2 S, and that for some Æ > 0

sup
x2B

E [�xB(Æ)] <1; (2.39)

where �xB(Æ) = infft � Æ : Xx(t) 2 Bg. Then, X is positive Harris recurrent.

Lemma 2.6.12. Under the unboundedness and spread out assumptions (2.37)-
(2.38) on interarrival time distributions,

B = fjxj � �g is a closed petite set for any � > 0. (2.40)

This is the only place where the unboundedness and spread out assumptions
are used. When these assumptions are unnecessarily restrictive, one can replace
them by condition (2.40).

Theorem 2.6.13. If there exists a Æ > 0 such that

lim
jxj!1

1

jxj
E jXx(jxjÆ)j = 0; (2.41)

then (2.39) holds for B = fx 2 S : jxj � �g with some � > 0. In particular, X
is positive Harris recurrent.

Proof. Let 0 < � < 1, for example, 1=2. From (2.41) there exists � � 1 such
that

1

jxj
E jXx(jxjÆ)j � 1� � (2.42)

for all x such that jxj > �. Let B = fx 2 S : jxj � �g. It follows that, for some
constant b > 0,

E jXx(jxjÆ)j � (1� �)jxj+ b1B(x) (2.43)

for all x. Let

n(x) =

�
jxjÆ if x 62 B
Æ if x 2 B:

(2.44)

Because � � 1, n(x) � Æ for all x 2 S, it follows from (2.43) that

E jXx(n(x))j � (1� �)jxj+ b1B(x) � jxj �
�

Æ
n(x) +eb1B(x)

for some eb > 0 and all x 2 S. Proceeding exactly the same as in the proof of
Theorem 2.1(ii) of Meyn and Tweedie [44], we have for each x 2 S,

E [�xB (Æ)] �
Æ

�

�
jxj+eb� <1

and

sup
x2B

E [�xB(Æ)] �
Æ

�

�
sup
x2B

jxj+eb� =
Æ

�
(�+eb) <1:

Thus, P(�xB < 1) = 1 for each x 2 S and it follows from Lemmas 2.6.11
and 2.6.12 that X is positive Harris recurrent.
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An outline of the proof of Theorem 2.6.10. Assume that the uid model is sta-
ble. Let Æ be the constant in the stability de�nition (De�nition 2.4.1). Then,
with probability one, each uid limit �X ofn

jxj�1
X
x(jxj�)

o
taken along u = v = 0 as jxj ! 1 has the property that �Z(Æ) = 0. Since the
limit point is unique (equal to 0), this leads to

P

�
lim

jxj!1
jxj�1Zx(jxjÆ) = 0

�
= 1

with x restricted to u = v = 0. Some uniform integrability analysis leads to

lim
jxj!1

jxj�1
E

�
jZx(jxjÆ)j

�
= 0

with x restricted to u = v = 0. Some careful analysis leads to (2.41) with
jxj ! 1 along arbitrary initial states. For more details of the proof, see Dai [14,
Theorem 4.2] and Bramson [7].

2.7 Non-Uniqueness of Fluid Solutions

Consider the 2-station 5-class network pictured in Figure 2.1 operating under
the SBP discipline � in (2.2). For concreteness, we assume that �1 = 1, m1 =
m3 = m4 = 0:1 and m2 = m5 = 0:6. We will construct two uid solutions to
uid equations (2.7)-(2.12) and (2.17), one unstable and the other stable.

Both solutions start with one unit of uid in bu�er 1, namely, Z(0) =
(1; 0; 0; 0; 0). To specify a uid solution, it is enough to specify dk(t) for all
t � 0 and k = 1; : : : ; 5. One can then construct Z and T via

Tk(t) = mk

Z t

0

dk(s) ds; (2.45)

Zk(t) = Zk(0) +

Z t

0

(dk�1(s)� dk(s)) ds (2.46)

for k = 1; : : : ; 5, where, by convention, d0(t) = t for t � 0. Clearly, one needs
to show that the resulting (Z; T ) satis�es (2.7)-(2.12) and (2.17).

We �rst construct an unstable solution. Let t1 be the �rst time that bu�er
1 empties. In [0; t1], bu�er 1 is draining, bu�er 2 and bu�er 3 remain empty,
bu�er 4 is accumulating and bu�er 5 remains empty. Server 2 is fully working
on bu�er 2, and thus d2(t) = �2 = 5=3. Server 1 spends just enough e�ort
to keep bu�er 3 empty and the remaining e�ort is spent on bu�er 1. Since
d3(t) = d2(t) = 5=3, server 1 spends a fraction (5=3)(0:1) = 1=6 of its e�ort on
bu�er 3. The remaining fraction, 5=6, of its e�ort is spent on bu�er 1, pumping



38 CHAPTER 2. FLUID NETWORKS AND STABILITY ANALYSIS

uid at the rate of d1(t) = �1(5=6) = 25=3. During this period, both servers
are 100% busy. At time

t1 =
1

25=3� 1
=

3

22
;

bu�er 1 empties. Let t2 be the �rst time (after t1) that bu�er 2 empties. In
[t1; t2], all bu�ers at station 1 remain empty, bu�er 2 is draining, and bu�er 4
is accumulating. Thus, d1(t) = �1 to keep bu�er 1 empty. Server 2 is working
fully on bu�er 2, pumping uid at the rate of d2 = �2 = 5=3. To keep bu�er 3
empty, d3(t) = d2(t) = 5=3. Thus, the fraction of time that server 1 is busy is

d1(t)m1 + d3(t)m3 = 0:1 + 5=3(0:1) =
4

15
:

At the end of this time interval, all the uid (the initial amount plus the newly
arrived uid) has moved into bu�er 4. Thus, the state of the uid network at
time t2 is

Z(t2) = (0; 0; 0; 1+ t2; 0):

During the entire interval [0; t2], the departure rate from bu�er 3 is d3(t) =
�2 = 5=3 and the arrival rate to bu�er 1 is �1 = 1. Hence, the pipe of bu�ers
1-3 empties at time

t2 =
1

�2 � 1
=

3

2

and

Z4(t2) = 1 + t2 =
1

1�m2
=

5

2
:

At time t2, server 2 begins to serve the bu�er 4 uid that accumulates in bu�er
5, keeping server 1 100% busy. Let t3 be the �rst time (after t2) that bu�er 4
empties. During [t2; t3], bu�ers 1 and 5 are accumulating, bu�er 4 is draining
and bu�ers 2 and 3 remain empty. Thus, d4(t) = �4 = 10, d5(t) = �5 = 5=3
and t3 � t2 = (5=2)=10 = 1=4. Both servers are 100% busy during this interval.
At t3, bu�er 5 continues to drain. Let t4 is the �rst time (after t3) that bu�er
5 empties. During [t3; t4], all bu�ers at station 2 and bu�er 3 remain empty.
Bu�er 1 accumulates while bu�er 5 is draining. During this interval, server 2 is
100% idle while server 1 is 100% busy. Since, during [t2; t4], d5(t) = �5 = 5=3,
we have

t4 � t2 =
1

1�m2
(1=�5) =

m5

1�m2
= 3=2

or t4 = 3. At time t4, all bu�ers are empty except that bu�er 1 has accumulated
3=2 units of uid, namely,

Z(3) = (3=2; 0; 0; 0; 0);

which is similar to the initial state except that bu�er 1 has 3=2 units of uid
instead of 1 unit. Using mathematical induction, one can construct a uid
solution Z = fZ(t); t � 0g such that for each integer n � 1,

Z(sn) =
��3

2

�n
; 0; 0; 0; 0

�
;
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where

sn = 6
��3

2

�n
� 1

�
:

Since jZ(sn)j ! 1 as n!1, Z is an unstable uid solution.

The uid solution Z diverges linearly in the sense that there exists a c > 0
such that jZ(t)j � ct for t � 0. In fact, from the construction in each cycle
[sn�1; sn], bu�ers 2 and 5 have never been served simultaneously, namely,

d2(t)d5(t) = 0; t � 0:

Therefore,

m2D2(t) +m5D5(t) � t; t � 0:

Recall that Lk(t) =
P

`�k Z`(t). One can check that

m2L2(t) +m5L5(t) = m2L2(0) +m5L5(0)

+ (m2 +m5)t� (m2D2(t) +m5D5(t))

� (0:2)t

for t � 0. Hence, jZ(t)j � ct for some c > 0.

The second uid solution is much easier to describe. We start with initial
state,

Z(0) = (1; 0; 0; 0; 0):

We keep all bu�ers empty except bu�er 1. Thus, d1(t) = d2(t) = d3(t) = d4(t) =
d5(t) for all t � 0. Let t1 be the �rst time that bu�er 1 empties. Since

d1(t)m1 + d3(t)m3 + d5(t)m5 = 1

for t 2 [0; t1], we have

d1(t) = 1=(0:8) = 1:25 for t 2 [0; t1]:

Thus, t1 = 1=(1:25�1) = 4 and Z(4) = 0. In [4;1), let d1(t) = : : : = d5(t) = 1,
we have Z(t) = 0 for t � 4. One can check that the corresponding Z and T
constructed via (2.46) and (2.45) is a uid solution satisfying (2.7)-(2.12) and
(2.17). Notice that (2.17) is trivially satis�ed by the uid solution. In fact, this
uid solution is a uid solution under the HLPPS discipline and many other
non-idling disciplines.

In our presentation of the uid solutions, we have used the terms \draining"
and \accumulating" in an intuitive sense. A formal mathematical veri�cation
involves (a) specifying dk(t) in each time interval, k = 1; : : : ; 5, (b) constructing
Z and T via (2.46) and (2.45) and (c) verifying that Z and T satisfy (2.7)-
(2.12) and (2.17). Since this veri�cation is tedious and intuitively obvious, we
have chosen to omit the details. Readers are encouraged to �ll in the details
themselves.
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Can both of th above uid solutions be uid limits, obtained from the queue-
ing network under a uid limit procedure? The answer is no. By Lemma 2.1.2,
we know that for each uid limit, we have

m2D2(t) +m5D5(t) � t; t � 0: (2.47)

But, for the second solution, we have

m2d2(t) +m5d5(t) =
1:2

0:8
=

3

2
> 1 for t 2 [0; t1]:

Thus,
m2D2(t) +m5D5(t) � (3=2)t

for t 2 [0; t1] contradicting (2.47).
We have presented two uid solutions for the uid network. Clearly, one can

construct in�nitely many uid solutions from these two solutions by alternately
\running" stable and unstable solutions. In a general queueing network, it is
diÆcult to rule out those uid solutions that cannot be obtained from uid lim-
its. This fact makes formulating a practical, sharp converse to Theorem 2.6.10
diÆcult, if not impossible.

2.8 Stability of Fluid Models

Sections 2.5 and 2.6 have established strong connections between the stability
of a stochastic queueing network and that of the corresponding deterministic
uid model. Studying the stability of the uid model is certainly a great sim-
pli�cation. It is by no means trivial, however, at least in the multiclass setting.

De�nition 2.8.1. For a uid model with given routing matrix P and a non-
idling HL discipline, the stability region of the discipline is the set of parameters
� and m > 0 for which the uid model under the discipline is stable.

For a discipline �, we use D� to denote the stability region of �. When the
discipline is clear from the context, we simply use D to denote the stability
region. To avoid trivial complications,, we require m > 0 when m 2 D�.

De�nition 2.8.2. For a uid model with given routing matrix P , the global
stability region of the uid model is the set of parameters � and m > 0 for
which the uid model is stable under any non-idling HL discipline.

We use D1 to denote the global stability region of a uid model. Clearly,

D � D� (2.48)

for any discipline �.
Researchers have had limited success in determining the stability or global

stability region for a given network. Most of this work uses some form of Lya-
punov function. Determining stability regions is currently a very active area.
Since the area is quite new, it is quite likely that motivated newcomers can make
signi�cant contributions.
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2.8.1 FIFO Fluid Model of Kelly Type

We recall that a FIFO uid model is of Kelly type if for each station j, the
mean processing times for each class at the station are the same. With a slight
abuse of notation, we use mj to denote the mean processing time at station j.
Throughout this section, we assume X is a FIFO uid model solution of Kelly
type.

Theorem 2.8.3. Assume that the usual traÆc condition (1.19) is satis�ed.
The FIFO uid model of Kelly type is stable, i.e, assuming mk = m` when-
ever s(k) = s(`),

DFIFO = f(�;m) : m > 0; �j < 1; j = 1; : : : ; jg:

The main tool used in proving Theorem 2.8.3 is an entropy type Lyapunov
function. For the uid solution X, such a Lyapunov function is a functional of
the paths D and W , not just a function of Z(t) for a �xed time t. Entropy
type Lyapunov functions have proven to be quite e�ective in demonstrating the
stability of FIFO and HLPPS uid models. It is conceivable that other type of
Lyapunov functions may be equally e�ective for these uid models.

To de�ne the Lyapunov functions used for FIFO uid models of Kelly type,
let

h(x) = x log(x) for x � 0 (2.49)

be the entropy function. Then h is a continuous function in [0;1) with h(0) =
h(1) = 0. Taking derivatives,

dh(x)=dx = logx+ 1 for x > 0; (2.50)

d2h(x)=dx2 = 1=x > 0 for x > 0: (2.51)

Thus, h is a convex function on (0;1). Note that h(x) < 0 for 0 < x < 1.
For the FIFO uid model solution X, we de�ne

f(t) =
X
k

Z t+Wj(t)

t

�kh( _Dk(s)=�k) ds: (2.52)

Recall that the symbol j denotes a station whereas k denotes a class. When
they appear together, j is implicitly assumed to be s(k). Note that we hope
that Z eventually reaches an equilibrium where the ow rate out of bu�er k is
equal to the nominal total arrival rate �k to bu�er k. Therefore, in equilibrium,
_Dk(s) = �k or h( _Dk(s)=�k) = 0. Thus, f(t), in some sense, measures the
imbalance between the current state at time t and the equilibrium state.

Our primary purpose in introducing the entropy Lyapunov function (2.52)
is to show the stability of the FIFO uid model of Kelly type when the usual
traÆc condition holds. Our �rst observation is that f is well de�ned and is a
Lipschitz function because Dk is Lipschitz and hence h( _Dk(s)=�k) is bounded
for almost all s under Lebesgue measure on (0;1).

Next, we show in the following lemma that f(t) � 0 for t � 0. Clearly,
f(t) = 0 when W (t) = 0.



42 CHAPTER 2. FLUID NETWORKS AND STABILITY ANALYSIS

Lemma 2.8.4. Let X be a FIFO uid model solution of Kelly type with initial
data satisfying (2.15). Assume that the usual traÆc condition (1.19) is satis�ed,
Then f(t) > 0 when W (t) 6= 0.

Proof. Assume that W (t) 6= 0. Let

��j =
X

k2C(j)

�k:

Then

f(t) =
X

j:Wj (t)>0

��j

Z t+Wj (t)

t

X
k2C(j)

(�k=�
�
k )h( _Dk(s)=�k) ds:

By Jensen's inequality, f(t) is at least

X
j:Wj (t)>0

��j

Z t+Wj(t)

t

h

0
@��k X

k2C(j)

_Dk(s)

1
A ds: (2.53)

When Wj(t) > 0, it is clear that Wj(s) > 0 for s 2 (t; t +Wj(t)). By Part (b)
of Lemma 2.4.6 and the initial condition (2.15) that

mj

X
k2C(j)

_Dk(s) = 1:

Thus,

h

0
@��k X

k2C(j)

_Dk(s)

1
A = h(1=�j) > 0

for almost all s on (t; t+Wj(t)), and hence

f(t) �
X
j

��j h(1=�j)Wj(t) > 0: (2.54)

Now, we show that f is nonincreasing.

Lemma 2.8.5. Under the assumptions in Lemma 2.8.4, for each point t that
is regular for both the uid model solution X and f , _f(t) � 0.
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Proof. Taking the derivative with respect to f ,

_f(t) =
X
k

h
(1 + _Wj(t))�kh( _Dk(t+Wj(t))=�k)� �kh( _Dk(t)=�k)

i

=
X
k

h
(1 + _Wj(t))�kh

�
( _Ak(t)=�k)=(1 + _Wj(t))

�
� �kh( _Dk(t)=�k)

i

=
X
k

h
_Ak log

�
( _Ak(t)=�k)=(1 + _Wj(t))

�
� �kh( _Dk(t)=�k)

i

=
X
k

h
�kh( _Ak(t)=�k)� _Ak(t) log(1 + _Wj(t))� �kh( _Dk(t)=�k)

i

=
X
k

h
�kh( _Ak(t)=�k)� �kh( _Dk(t)=�k)

i

�
X
j

0
@ X
k2C(j)

_Ak(t)

1
A log(1 + _Wj(t));

where, in the second equality, we have used the FIFO equation (2.14) to obtain

(1 + _Wj(t)) _Dk(t+Wj(t)) = _Ak(t):

From (2.11), _Yj(t) > 0 implies Wj(t) = 0 and hence _Wj(t) = 0. Thus,0
@ X
k2C(j)

_Ak(t)

1
A log(1 + _Wj(t)) =

0
@ X
k2C(j)

_Ak(t) + �j _Yj(t)

1
A log(1 + _Wj(t)):

If follows from (2.9) that0
@ X
k2C(j)

_Ak(t) + �j _Yj(t)

1
A log(1 + _Wj(t)) = �jh(1 + _Wj(t)):

We are going to show thatX
j

�jh(1 + _Wj(t)) �
X
k

_Zk(t); (2.55)

X
k

�
�kh( _Ak(t)=�k)� �kh( _Dk(t)=�k)

�
�
X
k

_Zk(t): (2.56)

It is clear that (2.55) and (2.56) imply _f(t) � 0.
To show (2.55), recall that h is convex with h(1) = 0 and _h(1) = 1. Thus,

�jh(1 + _Wj(t)) � �j _Wj(t);

and using (2.13), we have (2.55). To show (2.56), we notice that

�kh( _Ak(t)=�k) = �kh

�
��1
k

h
�k +

X
`

(�`P`k)( _D`(t)=�`)
i�

:
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By the traÆc equation (1.17),

��1
k

h
�k +

X
`

(�`P`k)
i
= 1:

So by Jensen's inequality and h(1) = 0, �kh( _Ak(t)=�k) is less than or equal to

�kh(1) +
X
`

�`P`kh( _D`(t)=�`) =
X
`

�`P`kh( _D`(t)=�`):

Thus, for all k,

�kh( _Ak(t)=�k) �
X
`

�`P`kh( _D`(t)=�`):

Summing over k, we haveX
k

�
�kh( _Ak(t)=�k)� �kh( _Dk(t)=�k)

�
� �

X
k

(1�
X
`

Pk`)�kh( _Dk(t)=�k):

Using the convexity of h(x) again, the right-hand side is less than equal to

�
X
k

(1�
X
`

Pk`)�k( _Dk(t)=�k � 1) = �
X
k

(1�
X
`

Pk`)( _Dk(t)� �k)

=
X
k

�
�k � (1�

X
`

Pk`) _Dk(t)
�

=
X
k

_Zk(t):

Now we are ready to prove Theorem 2.8.3.

Proof of Theorem 2.8.3. First, we observe that (2.55) can be strengthened toX
j

�jh(1 + _Wj(t)) �
X
k

_Zk(t) + c
X
j

( _Wj(t))
2;

for some constant c. This follows from the fact that

h(1 + x) � x+ c(N)x2 for x 2 [�1; N ];

for some constant c = c(N), where N is the Lipschitz constant for W . Thus,
following the proof of Lemma 2.8.5,

_f(t) � �c
X
j

( _Wj(t))
2:

By Chebyshev's inequality,

f(t)� f(t0) � c

Z t0

t

( _Wj(s))
2 ds �

c

t0 � t
(Wj(t

0)�Wj(t))
2
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for 0 � t < t0 and any j. Suppose that Wj(t) 6= 0 for given t and j. Setting
t0 = t+ �j(t), where t+ �j(t) is the �rst time s after t such that Wj(s) = 0, then

f(t)� f(t+ �j(t)) �
c (Wj(t))

2

�j(t)
:

By Proposition 2.2.1 there exists a constant c1 such that

�j(t) � c1W
M (t) � max

j
Wj(t):

Choosing j so that Wj(t) =WM (t), it follows from the monotonicity of f that

f(t)� f(t+ c1W
M (t)) � (c=c1)W

M (t) for t � 0: (2.57)

One can iterate (2.57) along times

ti+1 = ti + c1W
M (ti); (2.58)

i = 0; 1; : : : ; where t0 = 0. This gives

f(0)� f(ti) � c2ti for i = 0; 1; : : : ;

where c2 = (c=c21). Since f(ti) � 0, we have

t1 � lim
i!1

ti � f(0)=c2:

Taking limits in (2.58), we have W (t1) = 0 which implies f(t1) = 0. Thus,

W (t) = 0 for t � t1:

Assume that jZ(0)j � 1. We have f(0) � c3 for some constant c3. Therefore,

W (t) = 0 for t � c3=c2;

proving the stability of the uid model.

2.8.2 Piecewise Linear Lyapunov Functions

For any uid model solution X satisfying (2.7)-(2.12), as before, let

L(t) = (I � P 0)�1Z(t)

be the vector of potential uid levels for each class at time t. Using (2.7), (2.8)
and (2.12), we have

Lk(t) = Lk(0) + �kt� �kTk(t) for k = 1; : : : ;K: (2.59)

For a given x = (xk) > 0, let

fj(t) =
X

k2C(j)

xkLk(t): (2.60)
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be the generalized potential workload for station j at time t. If x = m, mkLk(t)
is the potential amount of class k work for server j = s(k) at time t. Thus,
when x = m, fj(t) is the potential workload or total workload for station j at
time t. For any x; z 2 RK , let

h(x; z) = C diag(x)(I � P )�1z; (2.61)

where diag(x) is the K �K diagonal matrix with diagonal entries given by xk,
k = 1; : : : ;K. For a �xed z, h(x; z) is a linear function of x. For a �xed x,
h(x; z) is a linear function of z. One can check that fj(t) = hj(x; Z(t)) for
j = 1; : : : ; J . By (2.59),

fj(t) = fj(0) +
X

k2C(j)

xk(�kt� �kTk(t)): (2.62)

De�ne

f(t) = max
j=1;::: ;J

fj(t): (2.63)

Since each fj is a linear function of Z(t), f is a piecewise linear Lyapunov
function of Z(t). For (xk) > 0, f(t) = 0 if and only if Z(t) = 0. One can check
that f(t) is a Lipschitz function of t, and is thus absolutely continuous. In this
section, t is said to be regular if both X and f are di�erentiable at t. As before,
whenever a derivative is used at time t, t is assumed to be a regular point.

Lemma 2.8.6. For a regular point t, if

fj(t) = max
i=1;::: ;J

fi(t);

_f(t) = _fj(t).

It is crucial that t is a regular point (for both f and X). Even if t is a regular
point for X and hence for fj , j = 1; : : : ; J , it is not necessarily regular for f .

Proposition 2.8.7. Suppose that there exist (xk) > 0 and � > 0 such that for
each j

Wj(t) > 0 implies _fj(t) � �� (2.64)

and

Wj(t) = 0 implies fj(t) � max
i6=j

fi(t): (2.65)

Then Z(t) = 0 for t � f(0)=�.

Proof. Assume that f(t) > 0. Then f(t) = fj(t) for some j. By assumption

(2.65), we can choose j such that Wj(t) > 0. By Lemma 2.8.6, _f(t) = _fj(t).

SinceWj(t) > 0, assumption (2.64) yields _f(t) = _fj(t) � ��. The lemma follows
from Lemma 2.4.5.
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Condition (2.64) leads to natural linear inequalities on (xk). In fact, we have
the following lemma.

Lemma 2.8.8. Suppose that there exist (xk) > 0 such that for each class k with
j = s(k) X

`2C(j)

�`x` < xk�k: (2.66)

Then condition (2.64) holds with some � > 0 for any uid model solution X

satisfying (2.7)-(2.12).

Proof. Assume that there exist (xk) > 0 satisfying linear constraints (2.66). Let

� = min
k

�
xk�k �

X
`2C(j)

�`x`

�
> 0:

If Wj(t) > 0, by condition (2.11),X
k2C(j)

_Tk(t) = 1: (2.67)

From (2.62),

_fj(t) =
X

k2C(j)

(xk�k � xk�k _Tk(t)): (2.68)

Since _Tk(t) � 0, the lemma follows from (2.67) and (2.68).

Condition (2.65) often generates non-linear constraints on (xk). However,
when J = 2, we again have linear inequalities on (xk).

Lemma 2.8.9. Assume that J = 2 and

h1(x; ek) � h2(x; ek) for each k 2 C(2); (2.69)

h2(x; ek) � h1(x; ek) for each k 2 C(1); (2.70)

where h is de�ned in (2.61) and ek is the K-dimensional vector with the kth
component 1 and all other components 0. Then (2.65) is satis�ed.

Proof. For a �xed x, h(x; z) is a linear function of z. Assume that W1(t) = 0.
Then

Z(t) =
X

k2C(2)

Zk(t)ek:

Therefore, by (2.69),

f1(t) = h1(x; Z(t)) =
X

k2C(2)

Zk(t)h1(x; ek)

�
X

k2C(2)

Zk(t)h2(x; ek) = h2(x; Z(t))

= f2(t):
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This proves (2.65) for j = 1. Similarly, one can prove that (2.65) holds for
j = 2.

Note that for a �xed z, h(x; z) is a linear function of x. Thus, (2.69)-(2.70)
are linear inequalities on (xk). Summarizing Lemmas 2.8.8 and 2.8.9, we have
the following theorem.

Theorem 2.8.10. For J = 2, assume that there exist (xk) > 0 satisfying (2.66)
and (2.69)-(2.70). Then the uid model is globally stable.

Consider the following linear program (LP):

max � (2.71)

with constraints X
`2C(j)

�`x` + � � xk�k; k = 1; : : : ;K; (2.72)

h1(x; ek) � h2(x; ek) for each k 2 C(2); (2.73)

h2(x; ek) � h1(x; ek) for each k 2 C(1); (2.74)

xk � 0; k = 1; : : : ;K; (2.75)

0 � � � 1: (2.76)

Since the constraints (2.72)-(2.75) are homogeneous in x and �, the LP (2.71)
has objective value either 0 or 1.

Corrollary 2.8.11. If LP (2.71) has objective value 1, the uid model is glob-
ally stable.

Proof. One can check that there exist (xk) > 0 satisfying (2.66) and (2.69)-
(2.70) if and only if there exist (xk) � 0 and � > 0 satisfying (2.72)-(2.75).

LP (2.71) has K + 1 variables and 2K constraints. For given input parameter
(�;m; P ), the LP can be solved numerically by eÆcient algorithms.

Example. Consider the 2-station 5-class network in Figure 2.1. Constraint (2.66)
gives rise to

�1(x1 + x3 + x5) < �1x1; (2.77)

�1(x1 + x3 + x5) < �3x3; (2.78)

�1(x1 + x3 + x5) < �5x5; (2.79)

�1(x2 + x4) < �2x2; (2.80)

�1(x2 + x4) < �4x4: (2.81)

Constraint (2.69) takes the form

x3 + x5 � x2 + x4; (2.82)

x5 � x4; (2.83)
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x2

x4

x5

x3 + x5

x4 =
1��1m2
�1m2

x2

x4 =
�1m4

1��1m4
x2

(x�2; x
�

4)

(b)

x2

x4

x5

x3 + x5

(a)

x1 + x3 + x5x1 + x3 + x5

Figure 2.3: (a) The region of (x2; x4) constrained by (2.88)-(2.89). (b) The
region in (a) intersects with region (2.87).

and constraint (2.70) takes the form

x2 + x4 � x1 + x3 + x5; (2.84)

x4 � x3 + x5; (2.85)

0 � x5: (2.86)

Since we require (xk) > 0, constraint (2.86) is redundant. To be consistent
with the notation for general networks, we retain the redundant constraint.

Proposition 2.8.12. There exist (xk) > 0 satisfying (2.77)-(2.86) if and only
(2.3)-(2.5) hold.

Proof. Assume that there exist (xk) > 0 satisfying (2.77)-(2.86). Conditions
(2.77)-(2.79) imply (2.3), and conditions (2.80)-(2.81) imply (2.4). Assume that
(2.3) and (2.4) hold. Note that (2.80)-(2.81) are equivalent to

x2
�1m4

1� �1m4
< x4 <

1� �1m2

�1m2
x2; (2.87)

and for a given (x1; x3; x5) > 0, (x2; x4) satisfying (2.82)-(2.86) is equivalent to
the fact that (x2; x4) belongs to the parallelogram bounded by

x5 � x4 � x3 + x5; (2.88)

x3 + x5 � x2 + x4 � x1 + x3 + x5; (2.89)

see the shaded region in Part (a) of Figure 2.3. Note that the line

x4 =
(1� �1m2)

�1m2
x2
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x1

x3 =
1��1m1
�1m1

x1 � x5

x1 + x3 =
1��1m5
�1m5

x5

x1 + x3 =
�1m2

1��1m2
x5

x3 =
�1m3

1��1m3
(x1 + x5)

x3

(x�1; x
�

3)

Figure 2.4: The region of (x1; x3) constrained by (2.77)-(2.79) and (2.90)

intersects the line
x2 + x4 = x1 + x3 + x5;

with (x1; x3; x5) �xed, at

(x�2; x
�
4) =

�
�1m2(x1 + x3 + x5); (1� �1m2)(x1 + x3 + x5)

�
:

Therefore, the region (2.87) and the parallelogram have a nonempty intersec-
tion, (the shaded region in Part (b) of Figure 2.3), if and only if x�4 > x5 or
equivalently

(1� �1m2)(x1 + x3 + x5) > x5: (2.90)

Finally, conditions (2.79) and (2.90) imply (2.5).
Conversely, assume that (2.3)-(2.5) hold. We would like to show that there

exist (xk) > 0 satisfying (2.77)-(2.86). The argument in the preceding paragraph
shows that it is enough to �nd (x1; x3; x5) > 0 satisfying (2.77)-(2.79) and (2.90).
For a �xed x5 > 0, (2.77)-(2.78) are equivalent to

�1m3

1� �1m3
(x1 + x5) < x4 <

1� �1m1

�1m1
x1 � x5: (2.91)

The region is nonempty in (x1; x3) > 0 and the two boundaries intersect at

(x�1; x
�
3) =

� �1m1

1� �1(m1 +m3)
x5;

�1m3

1� �1(m1 +m3)
x5

�
:

From (2.3),

x�1 + x�3 =
�1(m1 +m3)

1� �1(m1 +m3)
x5 <

1� �1m5

�1m5
x5:

Therefore, for any �xed x5 > 0, the region of (x1; x3) constrained by (2.77)-
(2.79) is nonempty; see the shaded region in Figure 2.4. Since (2.5) holds, this
region has a nonempty intersection with the region constrained by (2.90).
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2.8.3 Two-station Multi-type Networks

In this section, we show that the piecewise linear Lyapunov functions introduced
in Section 2.8.2 are sharp in determining the global stability of 2-station multi-
type uid models. A multiclass queueing network is said to be multi-type if Pk`
is either 1 or 0, namely, the routing is deterministic. In a multi-type queueing
network, there can be more than one external arrival source. When there is a
single external arrival source, the multi-type queueing network is a re-entrant
line.

For a multi-type uid model, the linear constraints (2.66) and (2.69)-(2.70)
can be solved explicitly. The resulting region in terms of (�;m; P ) happens to
characterize the global stability of the uid model. The global stability con-
ditions for a two-station uid network fall into two categories: the nominal
workload conditions (1.19) that arise because classes at the same station must
share the server's time; and the virtual workload conditions, generalizing condi-
tion �1(m2 +m5) < 1 for the uid network in Figure 2.1 that arise due to the
interactions between virtual stations and push starts (to be described shortly).

Two intuitively appealing phenomena give rise to the virtual workload con-
ditions. The intuition behind the �rst of these phenomena is best described
in the context of queueing networks. The second phenomenon is most easily
understood in the context of uid networks.

Consider the 2-station 5-class queueing network in Figure 2.1. If we give
highest priority to class 5 at Station 1 and to class 2 at Station 2, these two
classes can only be served simultaneously during a transient initial period, see
Lemma 2.1.2. Thus, these two classes form a \virtual station" and, although
they are served at di�erent stations, the workload per unit of time at these two
classes cannot exceed 1. This virtual station gives rise to the virtual workload
condition:

�1(m2 +m5) < 1;

which we refer to as a \virtual station condition". These conditions also apply
to uid networks.

The uid network of Figure 2.5 illustrates the second phenomenon giving rise
to virtual workload conditions. Assume that the nominal workload conditions
(1.19) hold. If we give highest priority to class 1 at Station 1 and to class
2 at Station 2 in this network, the uid levels in these two bu�ers will reach
zero and remain zero thereafter. For the sake of our discussion, we assume that
these two bu�ers are always empty. Then, the server at Station 1 will constantly
devote a fraction �1m1 of its time to class 1 to keep the bu�er empty, and hence
have only a fraction 1� �1m1 of its time left for the other classes at Station 1.
Similarly, the server at Station 2 will constantly devote a fraction �1m2 of its
time to class 2 and have only a fraction 1� �1m2 of its time left for the other
classes at Station 2. Note that in a queueing network we cannot anticipate a
constant, uninterrupted devotion of time to these classes, but we can in a uid
network. The fact that the servers are slowed due to their e�orts on classes 1
and 2 \magni�es" the time required to serve each unit of uid in the remaining
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�
m1 m2

m3 m4
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Figure 2.5: A seven class network

classes. In particular, the server at Station 1 will requirem7=(1��1m1) units of
time to complete one unit of class 7 uid and the server at Station 2 will require
m4=(1��1m2) units of time to complete one unit of class 4 uid. Since bu�ers
1 and 2 remain empty, uid passes through them as quickly as it arrives, and
hence arrives at bu�er 3 at rate �1. Thus, push starting the �rst two classes
magni�es the virtual station condition:

�1(m4 +m7) < 1

in the induced network (consisting of classes 3-7) to give the virtual workload
condition:

�1m4

1� �1m2
+

�1m7

1� �1m1
< 1;

which ensures that the virtual station can divide its time between serving the
two classes. We refer to this condition as a \push start condition".

Together, these two phenomena explain all the virtual workload conditions
of two-station uid networks. Although these ideas are intuitively appealing,
formalizing them is more involved. For the reminder of this section, only re-
entrant uid models are considered.

We formalize the conditions under which classes at di�erent stations cannot
receive service simultaneously in the following way. The �rst notion in our char-
acterization of virtual stations is the idea of an excursion or set of consecutive
classes at the same station.

We use symbol e to denote the eth excursion. Let c[e] denote the set of
classes in e. We partition c[e] into the last class and all the rest, which we call
�rst classes of the excursion. We let `[e] denote the last class and f [e] the set
of �rst classes in c[e]. If an excursion consists of only one class, that class is the
last class and the excursion has no �rst classes.



2.8. STABILITY OF FLUID MODELS 53

De�nition 2.8.13. A set of excursions is said to be separating if it contains
no consecutive excursions. A separating set is said to be strict if it does not
contain the �rst excursion.

Therefore, a set S of excursions is separating if and only if whenever e 2 S,
e� 1 62 S and e+ 1 62 S.

The set of excursions at Station 1, for example, is separating. Likewise, the
set of excursions at Station 2 is separating. We refer to these two separating
sets as trivial separating sets.

Each non-trivial separating set S of excursions induces a virtual station V (S)
or maximal collection of classes with the property that if we give highest priority
to these classes the two servers can simultaneously serve classes of V (S) only
during a transient initial period.

De�nition 2.8.14. Each separating set S of excursions induces a collection
V (S) consisting of the classes in excursions of S together with the �rst classes
of excursions whose immediate predecessor is not in S. Thus,

V (S) = ([e2Sc[e])
[

([e62Sf [e+ 1]) :

When S is strictly separating we refer to V (S) as a virtual station.

A virtual station V , then, is a set of classes satisfying:

1. No class of the �rst excursion is in V , i.e., c[1] \ V = ;.

2. If the last class of an excursion is in V , then every class of that excursion
is in V and if a �rst class of an excursion is in V , then every �rst class of
that excursion is in V . Thus, a virtual station must have either none of
the classes, all of the classes, or all but the last class of each excursion.

3. The last class of an excursion (except a last excursion) is in V if and only
if no class of the next excursion is in V , i.e., if e is not the last excursion,
`[e] 2 V if and only if c[e+ 1] \ V = ;.

In the network of Figure 2.1, the separating set S = f2, 5g of excursions
gives rise to the virtual station V (S) consisting of classes 2 and 5 (there are no
�rst classes in excursion 3). This is the only virtual station that is not itself a
subset of the classes at a station. The following proposition justi�es usage of
the term virtual station. The proof of the proposition is similar to the proof of
Lemma 2.1.2.

Proposition 2.8.15. Consider a multiclass queueing network. Assume thatQ
k2V (S) Zk(0) = 0. If the classes in V (S) have higher priority than the classes

that are not in V (S), thenY
k2V (S)

Zk(t) = 0 for all t � 0: (2.92)
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For each excursion e and a separating set S, let

V e
j (S) = fk 2 V (S) : k > `[e] and s(k) = jg; j = 1; 2:

Theorem 2.8.16. The following are equivalent. (a) A two-station uid net-
work is globally stable; (b) the parameter (�1;m) > 0 satis�es the usual traÆc
condition (1.19) and

�1

P
k2V e

1
(S)mk

1� �1

P
k<`[e];s(k)=1mk

+
�1

P
k2V e

2
(S)mk

1� �1

P
k<`[e];s(k)=2mk

< 1 (2.93)

for each excursion e and each separating set S. (c) there exist (xk) > 0 satisfying
the linear constraints (2.66) and (2.69)-(2.70).

We refer to the conditions (2.93) as the virtual workload conditions. When
the summations in the denominators are empty, we refer to the virtual workload
condition (2.93) as a virtual station condition. Otherwise, the condition involves
push starting classes fk : k < `[e]g and we refer to it as a push start condition.
For example, the virtual workload conditions of the uid network in Figure 2.5
are:

�1(m2 +m5 +m7) < 1;

�1(m2 +m4 +m7) < 1;
�1m3

1� �1m1
+ �1m6 < 1;

�1m4

1� �1m2
+

�1m7

1� �1m1
< 1:

Proof of Theorem 2.8.16. The equivalence of (b) and (c) was established in Dai
and Vande Vate [20]. Their proof, given for any two-station multi-type uid
model, involves converting the linear constraints (2.66) and (2.69)-(2.70) into a
parametric network ow problem. Proposition 2.8.12 o�ers a direct argument
for the 2-station 5-class uid model without using the network ow problem.
Theorem 2.8.10 asserts that (c) implies (a). To show that (a) implies (b), we
assume that either �j � 1 for some j or (2.93) is violated for some excursion e
and separating set S. If �j � 1 for some j, the proof of Corollary 2.5.4 leads to
the instability of the uid model. Now assume that

�1

P
k2V e

1
(S)mk

1� �1

P
k<`[e];s(k)=1mk

+
�1

P
k2V e

2
(S)mk

1� �1

P
k<`[e];s(k)=2mk

� 1

for some excursion e and separating set S. Then, Dai and Vande Vate [20] shows
that there exists a SBP discipline under which the uid model is unstable.

In fact, Dai and Vande Vate [20] proved the following theorem.
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Theorem 2.8.17. If there exist an excursion e and a separating set S such that

�1

P
k2V e

1
(S)mk

1� �1

P
k<`[e];s(k)=1mk

+
�1

P
k2V e

2
(S)mk

1� �1

P
k<`[e];s(k)=2mk

> 1; (2.94)

then there exists a uid solution X under a SBP discipline such that jZ(t)j ! 1
as t!1.

2.9 Stabilizing Queueing Networks

When the usual traÆc condition (1.19) is satis�ed, we o�er two techniques to
stabilize open queueing networks.

2.9.1 The Leaky-Bucket-Controlled Network

If one has no control over the service discipline at each station in a network,
one can add \leaky bucket" control stations to stabilize the network.

Example. Consider the 2-station 5-class re-entrant line pictured in Figure 2.1.
Assume that the traÆc conditions (2.3) and (2.4) are satis�ed, namely,

�1 = �1(m1 +m3 +m5) < 1 and �2 = �1(m2 +m4) < 1:

We construct a new network, called the leaky-bucket-controlled network, by
adding 5 new control stations, one station for each original job class. As pic-

- ...- - -

- - - -

- .- -

Station 1 Station 2

m1 m2

m3 m4

m5

m6 m7

m8 m9

m10

�1

Figure 2.6: The 2-station 5-class re-entrant line under a \leaky bucket" control
scheme

tured in Figure 2.6, stations 3-7 are leaky bucket control stations that serve
job classes 6-10. As indicated in the �gure, jobs in an original class k have to
come from a control station k + 2 that serves class k + 5, k = 1; : : : ; 5. In the
controlled network, jobs arrive to class 6 from the outside at rate �1.
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Proposition 2.9.1. Consider the 2-station 5-class re-entrant line. Assume
that �1 < 1 and �2 < 1, and the leaky-bucket-controlled network is constructed
as in Figure 2.6. Let

m6 = m8 = m10 = ��1
1 (1 + �1)=2 and m7 = m9 = ��1

1 (1 + �2)=2: (2.95)

Then the controlled uid network is stable under any non-idling service disci-
pline.

Proof. Let X be a uid solution to the controlled uid network with jZ(0)j � 1
and dk(t) = _Dk(t) be the departure rate from class k at time t. The input load
to station 1 at time t is

d6(t)m1 + d8(t)m3 + d10(t)m5:

Since dk(t) � �k = 1=mk for any class k, the input load to station 1 is bounded
above by the peak load

b�1 � �1

�
2

1 + �1

�
(m1 +m3 +m5) =

2�1
1 + �1

< 1:

Let

f1(t) = m1Z1(t) +m3Z3(t) +m5Z5(t) and

f2(t) = m2Z2(t) +m4Z4(t)

be the immediate workload at stations 1 and 2, respectively. One can check
that whenever f1(t) > 0, _f1(t) � b�1 � 1. Thus, f1(t) = 0 for t � f1(0)=(1� b�1).
Similarly, f2(t) = 0 for t � f2(0)=(1� b�2), where b�2 = 2�2=(1 + �2). Therefore,
there exists a Æ > 0 such that for any uid solution X to the controlled uid
network with jZ(0)j � 1, the uid levels at both stations 1 and 2 reach zero at
time Æ and remain zero afterwards.

Since

�3 = �5 = �7 = (1 + �1)=2 < 1;

�4 = �6 = (1 + �2)=2 < 1;

there exists an � > 0 such that for any class k, k = 6; : : : ; 10, 1=mk � �1 + �.
Thus, for k = 6; : : : ; 10, whenever Zk(t) > 0, _Dk(t) = 1=mk � �1 + �. Invoking
Theorem 2.4.9 in the time interval [Æ;1), we have Z(t) = 0 for

t � Æ + j(I � eP 0)�1Z(Æ)j=�;

where eP is the routing matrix for the controlled network. Since Zk(Æ) � Zk(0)+

Æ�k�1, k = 1; : : : ; 10, and (I � eP 0)�1 is a non-negative matrix, there exists a Æ1
such that for any uid solution X to the controlled uid network with jZ(0)j � 1,
Z(t) = 0 for t � Æ1.
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For the 2-station 5-class queueing network in Figure 2.1 operating under the
SBP discipline � in (2.2), assume that �1 = 1, m1 = m3 = m4 = 0:1 and m2 =
m5 = 0:6. It follows from Theorem 2.1.1 that the queueing network is unstable.
Yet, the corresponding leaky-bucket-controlled uid network, and hence the
leaky-bucket-controlled queueing network, is stable if m6 = m8 = m10 = 0:9
and m7 = m9 = 0:85. In fact, the leaky-bucket-controlled uid network is
globally stable or stable under any non-idling service discipline. Note that if we
set the service times at the control stations to be 0, the controlled network is
reduced to the original network that is unstable. Therefore, speeding up service
rates may turn the leaky-bucket-controlled 7-station network that is globally
stable into an unstable network.

Consider the following service variations in the controlled queueing network.
Instead of actually serving jobs at the control stations, each server at its control
station generates \tokens". If there is a token at class k (k = 1; : : : ; 5), the
leading class k job leaves the class instantaneously for the next class on its
route. The tokens are generated autonomously, regardless of whether there is a
job waiting at the station or not. The class k tokens are generated at the rate of
�k, say, deterministically, k = 6; : : : ; 10, and they are placed in a class k token
bu�er with bu�er size sk. Such a control scheme, with the use of control tokens,
is called leaky bucket control in the telecommunications literature. The leaky
bucket control scheme is used to smooth out the burstiness of arrival traÆc in
high speed telecommunications networks.

One can think of leaky bucket control stations as logical stations. It is not
necessary to perform actual services at the control stations. Nor is it necessary
to create new storage at the control stations. The role of the control stations
is merely to add arti�cial delays when jobs are ready to move from one class
to another class in the original network. Thus, it can be \inexpensive" to
implement the leaky bucket control scheme in a queueing network.

Consider now a general multiclass queueing network with J service stations
and K jobs classes. Recall that � is the vector of nominal total arrival rates in
the network. The corresponding leaky-bucket-controlled network is constructed
as follows. Preceding each class k, add a leaky bucket control station J+k that
serves class K + k jobs. The mean service time at this station is ��1

k (1+ �j)=2.
Jobs leaving class K + k always go next to class k, and jobs leaving class k go
next to class K + ` with probability Pk` and exit the network with probability
1�

P
` Pk`. Let

e� be the vector of nominal total arrival rates in the controlled
network. One can check that

e�K+k = e�k = �k:

Theorem 2.9.2. Assume that the usual traÆc condition (1.19) is satis�ed for
the original multiclass queueing network. Assume that the processing rate for
jobs in class K + k at station J + k is

�K+k = ��1
k

�
1 + �j
2

�
;

where j = s(k). Then the controlled uid network is stable.
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Proof. For j = 1; : : : ; J , the peak input load to station j is

b�j = X
k2C(j)

��1
K+kmk =

2�j
1 + �j

< 1:

The rest of the proof follows that of Proposition 2.9.1.

When the routing is deterministic, one can envision the leaky-bucket-controll-
ed queueing network as the original queueing network with input and output
bu�ers. For each class k, there are two bu�ers with unlimited bu�er sizes
associated with the class. One bu�er is the input bu�er for class k, holding jobs
that are yet to be processed at class k, and the other bu�er is the output bu�er
for class k, holding jobs that have been processed at class k, but have not left
station s(k). Jobs leave the output bu�er k one at a time with travel time, say,
deterministically, mK+` = ��1

` (1 + �j)=2, where ` is the next class that class
k jobs visit and j = s(`). A job begins to travel only when the preceding job
reaches its destination.

2.9.2 Generalized Round-Robin Discipline

If one has control over the service discipline used at each station in a network,
there are many service disciplines that stabilize the network. One such simple
discipline is a so-called generalized round-robin (GRR) discipline.

To explain the GRR discipline, recall that C(j) is the set of classes at station j.
For concreteness, we assume that the set is ordered in an increasing order accord-
ing to the class index. (Any other order works as well.) Let � = (�1; : : : ; �K)
be a vector of positive integers. Under the GRR discipline with weight vector
�, for a class k 2 C(j), once server j starts to serve class k jobs, server j serves
the �rst �k jobs in class k, then serves the �rst �` jobs in class ` and so on,
where ` is the class that follows class k. We make the convention that when k
is the last class in C(j), class ` is the �rst class in C(j). We assume that empty
bu�ers are always skipped. When the number of jobs served in a busy cycle at
class k is fewer than �k, the server immediately leaves the empty class at the
end of the busy cycle (i.e., it does not wait for new arrivals).

Theorem 2.9.3. Let � = (�1; : : : ; �K) be a vector of positive integers. Assume
that for each class k,

�kmkP
`2C(j) �`m`

> �kmk: (2.96)

Then the uid model operating under the GRR discipline with weight vector �
is stable.

Proof. Let �X be a uid limit of the queueing network. One can show that for
each regular t > 0,

_�T k(t) �
�kmkP

`2C(j) �`m`

when �Zk(t) > 0: (2.97)
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It follows from (2.96) and Theorem 2.4.9 that the uid network is stable.

2.10 Problems, Notes and Complements

Kumar and Seidman [37] presented the �rst example of a deterministic queueing
network that is unstable under a non-idling discipline when the traÆc intensity
at each station is less than 1. Their service discipline is somewhat complicated.
Shortly thereafter, Lu and Kumar [39] found that a SBP discipline is unstable in
the so called Lu-Kumar network, which is a slight variation of the network con-
sidered by Kumar and Seidman [37]. Rybko and Stolyar [46] studied a stochastic
version of the Kumar-Seidman network, and found that the SBP discipline used
in Lu and Kumar [39] is unstable in the stochastic setting. These pioneering
works on unstable networks are no doubt important. However, some of them, in-
cluding the paper by Kumar and Seidman, did not initially receive the attention
that they deserved. This is, perhaps, due to the fact that the service disciplines
studied in these papers were perceived as somewhat \arti�cial", although they
are nonetheless non-idling.

In 1994, Bramson [4] presented an exponential queueing network in which the
FIFO discipline is unstable, even when the usual traÆc conditions hold. Around
the same time, Seidman [47] independently found a deterministic queueing net-
work in which the FIFO discipline is unstable. Perhaps because FIFO is a
discipline that is commonly used in practice, the unstable FIFO network exam-
ples �nally inspired a wave of research that has led to the main body of this
chapter. The unstable example in Theorem 2.1.1 is taken from Dai and Vande
Vate [19].

Fluid models or uid approximations of queueing networks have been studied
for a long time, and were extensively studied by Chen and Mandelbaum [11].
The parallel between the stability of the Kumar-Seidman queueing network
and its corresponding uid model was �rst drawn by Rybko and Stolyar [46].
The rigorous connection between the positive Harris recurrence of a stochas-
tic queueing network and its corresponding uid model, in a form similar to
Theorem 2.6.10, was established by Dai [14]. Stolyar [48] independently estab-
lished a similar connection. The work of Dai was mainly inspired by a paper
by Dupuis and Williams [25] that provides the connection between the positive
recurrence of a high-dimensional reecting Brownian motion and the stability of
a corresponding deterministic Skorohod problem that is closely related to uid
models. Theorem 2.6.10 is from [14] with important re�nements and general-
izations from Chen [9] and Bramson [7]. The latter paper also �rst introduced
the formal notion of an HL discipline. Dai and Meyn [18] explored issues be-
yond the positive Harris recurrence of a queueing network. They established
suÆcient conditions, in terms of uid model stability and moment assumptions
on the primitive increments, for sample performance measures to converge to
the steady-state performance measures.

The connection between the stability of a queueing network and the stabil-
ity of its corresponding uid model is currently not complete, and will perhaps



60 CHAPTER 2. FLUID NETWORKS AND STABILITY ANALYSIS

remain so inde�nitely. It is conceivable that a complete connection can be
made between the stability of a queueing network and the stability of its corre-
sponding uid limit model. But a theorem of this generality would be of rather
limited use because it is diÆcult to understand the behavior of every uid limit.
Nevertheless, studying uid limits can be fruitful by leading to additional uid
equations like (2.31). Theorem 2.5.1, a partial converse to Theorem 2.6.10, is
taken from Dai [16]. A weaker result was proved earlier in Meyn [42]. A recent
generalization of Meyn's result is reported in Puhalskii and Rybko [45].

The virtual station phenomenon like the one in (2.6) was �rst observed by
Harrison and Nguyen [33], and was later independently discovered by Dumas [24]
who used the term \non-essential faces" to describe the phenomenon. Dai and
Vande Vate [19, 20] gave a general de�nition of a virtual station and connected
it to the global stability of 2-station uid and queueing networks. Section 2.8.3
is taken from [20].

Pathwise stability of a queueing network is summarized in a recent book by
El-Taha and Stidham [26]. Chen [9] made the connection between the pathwise
stability and the weak stability of the corresponding uid limit model. The
calculus for uid models was �rst developed in Dai [15] and Dai and Weiss [21].
The often used Theorem 2.4.9 is taken from Bramson [7] who attributes the
current proof to Vincent Dumas.

Lyapunov functions play a key role in proving the stability of a uid model.
Entropy type Lyapunov functions were introduced by Bramson to prove the
stability of FIFO Kelly type uid networks [5] and HLPPS uid networks [6].
Theorem 2.8.3 is due to Bramson [5]. Piecewise linear Lyapunov functions were
�rst used by Botvich and Zamyatim [3] to study the (global) stability region
of the Kumar-Seidman network. They were generalized independently by Dai
and Weiss [21] and Down and Meyn [23]. Section 2.8.2 on the formulation
of piecewise linear Lyapunov functions is taken from Dai and Weiss [21]. For
two-station multi-type networks, the linear constraints from these Lyapunov
functions were solved explicitly in Dai and Vande Vate [20]. Extensions and
limitations of piecewise linear Lyapunov functions were investigated in Dai,
Hasenbein and Vande Vate [17]. Linear Lyapunov functions have been promoted
by Chen [10] for reecting Brownian motions and by Chen and Zhang [12]
for uid networks. They have been shown to be sharp in characterizing the
stability region for some networks operating under SBP disciplines. However,
they cannot detect the stability region of a 3-station network operating under a
SBP discipline [17]. The theory of using Lyapunov functions to show instability
of a queueing/uid network is less developed. Proposition 2.5.3 can only be
used in some cases.

There are many service disciplines which can stabilize a queueing network.
Harrison's discrete-review policies or BIGSTEP approach [29] were shown by
Magalaras [41] to stabilize networks. Magalaras [40] further showed that these
policies are asymptotically optimal under a uid scaling. The leaky bucket
control in Section 2.9.1 is taken from Bramson [7]. Humes [34] developed a
similar control scheme earlier to stabilize deterministic queueing networks. The
generalized round-robin discipline introduced in Section 2.9.2 is taken from Jen-
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nings [35]. Jennings' work generalizes the work of Kumar and Seidman [37] from
deterministic queueing networks to stochastic queueing networks. Actually, the
networks considered in [37, 35] allow setup time to be incurred when a server
switches from one class to another class. The complete proof of Theorem 2.9.3
can be found in [35].

Many important, active subjects related to uid models have been left out of
this chapter. One such subject is to �nd the \cheapest" way to empty or drain a
uid network; see Avram, Bertsimas and Ricard [1] and Weiss [49, 50]. Chen and
Meyn [13] related the optimal draining of a uid network to the optimal control
of the corresponding multiclass queueing network under a long-run average cost
structure. Furthermore, they suggested that knowing the optimal value function
for the controlled uid network, either exactly or approximately, can greatly
speed up the value iteration procedure to �nd an optimal policy in a Markov
decision process formation of the optimal control of the multiclass queueing
network.

In a later chapter, we will introduce the notion of critical stability with state
space collapse for a uid model. Bramson [8] showed that critical stability of a
uid model implies a multiplicative state space collapse for the corresponding
queueing network. Together with Williams [51], these two papers provide a
powerful framework to prove heavy traÆc limit theorems for multiclass queueing
networks. Fluid model also plays a key role in proving asymptotic optimality of
some service disciplines in some queueing networks under di�usion scaling; see
Harrison [30] and Kumar [38].
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