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Abstract

This paper surveys recent work on the stability of open multiclass
queueing networks via fluid models. We recapitulate the stability result
of Dai [8]. To facilitate study of the converse of the stability result, we
distinguish between the notion of fluid limit and that of fluid solution.
We define the stability region of a service discipline and the global stabil-
ity region of a network. Examples show that piecewise linear Lyapunov
functions are powerful tools in determining stability regions.

Stability, queueing networks, fluid models, scheduling, performance analysis,
Harris recurrence, heavy traffic, Brownian models.

1 Introduction

There has been a recent surge in studying stability/instability of multiclass
queueing networks. See, for example, Lu and Kumar [21], Rybko and Stol-
yar [24], Whitt [27], Bramson [2, 3] and Seidman [25]. To show that the insta-
bility can occur even in a Kelly-type network, a network in which all customers
visit a station have a common service time distribution, we consider the three
station network pictured in Figure 1. Jobs (or customers) arrive at station 1
according to a general renewal process with arrival rate 1. Each job follows a
deterministic route, and the station sequence that a job visits is 1, 2, 3, 2, 3,
2, 1, 3 and 1. Following Kelly [19], a job class is defined for each processing
stage. Therefore, in this example, each station processes three job classes. Each
class may have its own general service time distribution (thus a job may have
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Figure 1: A three station network that may be unstable under certain priority
service disciplines

different processing requirements on different visits to a station), and the service
discipline at each station can be general.

Assume that at station 1, priority is given to customer classes in order
(9, 7, 1), where class 9 has the highest priority. At station 2, priority is given
to customer classes in order (4, 2, 6), and at station 3 the service discipline is
first-in–first-out (FIFO). Assume further that the mean arrival rate to class 1
is 1, and the mean service time for each visit to stations 1 and 2 is 0.3 and for
each visit to station 3 is 0.1. Therefore the nominal workloads per unit of time
for servers 1, 2 and 3 are 90%, 90% and 30%, respectively. Dai and Meyn [9]
simulated this network under two distributional assumptions. In the first case
(case (M)), all distributions are assumed to be exponential. In the second case
(case (D)), all interarrival and service times are constants. Therefore there is
no randomness at all in the network. For (M) and (D2), the network is initially
empty. For (D1), there are two jobs initially in front of buffer 1. It appears
from Table 1 that the average queue lengths in the simulations (M) and (D1) are
growing without bound, whereas in simulation (D2) the total customer popula-
tion seems bounded. Figure 2 plots the queue length processes at stations 1 and
2 for system (M) in the first 10, 000 units of simulation time. The plot again
suggests that the total queue length cycles to infinity. Readers are referred to
Section 7.1 or Dai and Weiss [12, Remark 3 in Section 6] for the insight into
the instability revealed in these simulations (see also Chen [5, Theorem 4.5] and
Gu [16].)

It is now known that the stability of a queueing network is closely related
to that of the corresponding fluid model as in Rybko and Stolyar [24], Dai [8],
Chen [5] and Stolyar [26]. (See Chen and Mandelbaum [6] for a survey on fluid
models.) In this paper, we recapitulate the main result in Dai [8] which says that
a service discipline in an open queueing network is stable if the corresponding
fluid model eventually drains to zero starting from any initial condition. We
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case running queue length utilization rate cycle
time at each station at each station time

1 2 3 1 2 3
(M) 1, 000 41.07 91.74 0.10 0.73 0.82 0.25 137.66

10, 000 493.61 772.79 0.10 0.76 0.77 0.26 1289.58
100, 000 4993.16 7106.94 0.11 0.77 0.76 0.25 12446.21

(D1) 1, 000 37.62 79.96 0.00 0.73 0.79 0.26 108.29
10, 000 483.49 718.17 0.00 0.77 0.77 0.26 1228.28

100, 000 4534.39 8301.29 0.00 0.74 0.79 0.26 13439.38
(D2) 1, 000 0.40 0.30 0.04 0.90 0.90 0.30 2.85

10, 000 0.42 0.29 0.04 0.90 0.90 0.30 2.85
100, 000 0.42 0.29 0.04 0.90 0.90 0.30 2.85

Table 1: For (M) and (D1), average queue lengths at stations 1 and 2 grow
without bound, while the queue length at station 3 nearly zero. The simulation
(D2) is well behaved, even though the network differs from (D1) initially by
only two jobs.

carefully distinguish the notion of a fluid limit from that of a fluid solution. We
believe that this distinction is helpful in studying the converse of the stability
result. We also introduce definitions of the stability region of a service discipline
and of the global stability region of a network. We show that the piecewise
Lyapunov functions used in Botvitch and Zamyatin [1], Dai and Weiss [12] and
Down and Meyn [14] provide a powerful tool in determining a stability region.

2 A multiclass network

2.1 Network model

We consider a network composed of d single server stations, which we index
by i = 1, . . . , d. The network is populated by K classes of customers, where
customers of class k (k = 1, . . . ,K) arrive to the network via an exogenous
arrival process with i.i.d. interarrival times {ξk(n), n ≥ 1}. We allow ξk(n) ≡ ∞
for all n for some k, in which case we say that the external arrival process for
customers of class k is null. We let E denote the set of classes with non-null
exogenous arrivals. Hereafter, whenever external arrival processes are under
discussion, only classes with non-null exogenous arrivals are considered. Class
k customers require service at station s(k). Their service times are also i.i.d.,
and are denoted {ηk(n), n ≥ 1}. We assume that the buffers at each station
have infinite capacity.

Routing is assumed to be Bernoulli among classes, so that upon completion
of service at station s(k), a class k customer becomes a customer of class ` with
probability Pk`, and exits the network with probability 1−

∑
` Pk`, independent
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Figure 2: The queue lengths at each station oscillate with increasing magnitude:
Mutual blocking between machines 1 and 2 results in instability.

of all previous history. To be more precise, let φk(n) be the routing vector
for the nth class k customer who finishes service at station s(k). The `th
component of φk(n) is one if this customer becomes a class ` customer and zero
otherwise. Therefore, φk(n) is a K-dimensional “Bernoulli random variable”
with parameter P ′k, where Pk denotes the kth row of P = (Pk`) (all vectors
are envisioned as column vectors, and primes denote transpose). We assume
that for each k the sequence φk = {φk(n), n ≥ 1} is i.i.d., and that φ1, . . . , φK

are mutually independent, as well as independent of the arrival and service
processes. The transition matrix P = (Pk`) is taken to be transient. That is,

I + P + P 2 + . . . is convergent. (1)

Condition (1) implies that all customers eventually leave the network. Hence the
systems we consider are open queueing networks, although some more general
networks may also be included (cf., Dai and Meyn [9]). This network descrip-
tion is quite standard, and may be found in numerous related papers (see, for
example, Harrison and Nguyen [18]).

Throughout this paper, we assume that

(A1) ξ1, . . . , ξK , η1, . . . , ηK are mutually independent, and i.i.d. sequences.

(A2) E[ξ`(1)] <∞ for ` ∈ E and E[ηk(1)] <∞ for k = 1, . . . ,K.
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(A3) For each k ∈ E , there exists some nonnegative function qk(x) on R+ with∫∞
0
qk(x) dx > 0, and some integer jk, such that

P(ξk(1) ≥ x) > 0 for all x > 0,
P(ξk(1) + · · ·+ ξk(jk) ∈ dx) ≥ qk(x) dx.

Conditions (A1) and (A2) are quite standard, although the independence as-
sumption (A1) can be relaxed: see the remark after Proposition 2.1 of Dai [8].
Condition (A3) is required to establish ergodicity of the network. Under this
condition, the argument used in Lemma 3.4 of Meyn and Down [22] may be
applied to deduce that all compact subsets of a state space are petite. (For the
definition of a petite set, see Section 4.1 of Meyn and Tweedie [23].) Frequently,
milder conditions can be invoked to obtain this property for the network (see,
for example, Assumption (A3’) of Dai and Meyn [9].) Condition (A3) is not
needed for bounding the moments of queue lengths (see Theorem 5.)

For future reference, let αk = 1/E[ξk(1)] and µk = 1/E[ηk(1)] be the arrival
rate and service rate for class k customers, respectively. The set Ci = {k : s(k) =
i} is called the constituency for station i. We let C denote the d×K incidence
matrix,

Cik =
{

1 if s(k) = i
0 otherwise.

In light of assumption (1), (I − P ′)−1 exists and is equal to

(I − P ′)−1 = (I + P + P 2 + . . .)′.

Put λ = (I − P ′)−1α. One interprets λk as the effective arrival rate to class
k. For each i = 1, . . . , d we define the nominal workload for server i per unit of
time as

ρi =
∑
k∈Ci

λk/µk. (2)

In vector form, we have ρ = CMλ, where M = diag(m1, . . . ,mK) and mk =
1/µk.

2.2 Service disciplines

To fully describe a multiclass network, we must also specify how the server
chooses among the various classes at a station. A service discipline at station i
dictates which job will be served next when server i completes a service. We as-
sume that service disciplines are non-idling (work-conserving), which means that
a server works continuously whenever there is work to be done at the station. For
concreteness, at each station one of the following service disciplines is employed:
first-in–first-out (FIFO), static buffer priority among classes (both preemptive
and nonpreemptive), and head-of-line processor sharing among classes. Notice
that under these service disciplines, the server may split its capacity among
classes at a station, and at most one customer in each class can receive partial
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service time. Readers will see that our approach actually can be applied to far
more general service disciplines. In particular, processor sharing at station i
among the first r(k) customers in class k with s(k) = i can be treated similarly.
However, the true processor sharing discipline among all customers at a station
is ruled out.

2.3 A Markovian state

Now we define a state process for the network, which depends upon the par-
ticular service discipline employed. Let Qk(t) be the queue length for class k
customers, including the one being serviced. Let Q(t) = (Q1(t), . . . , QK(t))′.
Thus, Q(t) is the K-dimensional vector of class-level queue lengths at time t.
For each station i, define

Ni(t) =
∑
k∈Ci

Qk(t).

Then N(t) = (N1(t), . . . , Nd(t))′ is the d-dimensional vector of station-level
queue lengths at time t.

Even when all distributions are exponential, under the FIFO service dis-
cipline, {Qk(t) : k ∈ Ci} does not contain enough information to tell which
customer will be served next at station i. In this case, we need to know how
customers are lined up at station i. Thus, we define for station i,

Qi(t) = (ki,1, ki,2, . . . , ki,Ni(t)), (3)

where ki,j is the class number for jth customer at station i. (If Ni(t) = 0, Qi(t)
is defined to be an empty list.) Put

Q(t) = (Q1(t), . . . ,Qd(t)).

Then Q(t) tells exactly how customers are lined up at each station. It embodies
more information than Q(t) does. For static buffer priority and head-of-line
processor sharing service disciplines, we simply let

Q(t) = Q(t). (4)

Therefore, in general, the state X(t) at time t is

X(t) = (Q(t), U(t), V (t)),

where U(t) = (Uk(t) : k ∈ E)′ ∈ R|E|+ and V (t) = (V1(t), . . . , VK(t))′ ∈ RK+ . For
k ∈ E , Uk(t) is the remaining time before the next class k customer will arrive
from outside. For k = 1, . . . ,K, Vk(t) is the remaining service time for the class
k customer that is in service, which is set to be a fresh class k service time if
Qk(t) = 0. Both U(t) and V (t) are taken to be right continuous.

We let X denote the state space for the state process, which is by definition
equal to the set of possible values for the state X(t), and we let x = (Q, U, V )
denote a generic state in X. Notice that the first component Q captures the
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positions of customers in the network. It can be finite dimensional as in (4),
or infinite dimensional as is the case for the FIFO service discipline. We use
|Q| to denote the total number of jobs in the network, and for a u ∈ RK ,
|u| =

∑K
k=1 |uk|. For a state x = (Q, U, V ) ∈ X, we define the norm of x to be

|x| = |Q|+ |U |+ |V |,

Let X be endowed with the natural induced topology. It is easy to check that
the sublevel set

C(n) = {x ∈ X : |x| ≤ n}

is a compact subset of X for any n.
It was shown in Dai [8, Section 2.2] that X = {X(t), t ≥ 0} is a strong

Markov process. This allows us to assume at our disposal the usual elements that
constitute a Markovian environment for X. Formally, it is assumed hereafter
that ((Ω,F), Ft, X(t), θt,Px) is a Borel right process on the measurable state
space (X,BX). In particular, X = {X(t), t ≥ 0} has right-continuous sample
paths; it is defined on (Ω,F) and is adapted to {Ft, t ≥ 0}; {Px, x ∈ X} are
probability measures on (Ω,F) such that for all x ∈ X,

Px{X(0) = x} = 1,

and
Ex {f(X ◦ θτ ) | Fτ} = EX(τ)f(X) on {τ <∞}, Px-a.s., (5)

where τ is any Ft-stopping-time,

(X ◦ θτ )(ω) = {X(τ(ω) + t, ω), t ≥ 0},

and f is any real-valued bounded measurable function (the domain of f is
the space of X-valued right-continuous functions on [0,∞), equipped with the
Kolmogorov σ-field generated by cylinders).

3 Discrete system dynamics

Let x = (Q(0), U(0), V (0)) be the initial state of the network under a specified
service discipline. In this section, we attach a superscript x to a symbol to
explicitly denote the dependence on initial state x. In particular, Qxk(t) is the
queue length for class k customers at time t. For ` ∈ E and k = 1, . . . ,K,

Ex` (t) = max{n ≥ 1 : U`(0) + ξ`(1) + . . .+ ξ`(n− 1) ≤ t}, t ≥ 0,
Sxk (t) = max{n ≥ 1 : Vk(0) + ηk(1) + . . .+ ηk(n− 1) ≤ t}, t ≥ 0.

It is easy to check that Ex` (t) is the number of exogenous arrivals to class `
by time t, and Sxk (r) is the number of service completions of class k customers
if server s(k) devotes r units of time to class k customers. Let T xk (t) be the
cumulative time that server s(k) has devoted to class k customers by time t.
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Then, Sxk (T xk (t)) is the number of service completions for class k by time t.
Recall the routing vectors φk(j) defined in Section 2. Let

Φk(n) =
n∑
j=1

φk(j). (6)

Then Φk` (n) is the number of class k customers routed to class ` among the first
n class k service completions. It follows that for k = 1, . . . ,K,

Qxk(t) = Qxk(0) + Exk (t) +
K∑
`=1

Φ`k(Sx` (T x` (t)))− Sxk (T xk (t)). (7)

Let
Ixi (t) = t−

∑
k∈Ci

T xk (t), i = 1, . . . , d.

Then Ixi (t) is the cumulative time that server i is idle in [0, t]. Besides (7), we
have

Qx(t) = (Qx1(t), . . . , QxK(t))′ ≥ 0, t ≥ 0, (8)
T x(t) = (T x1 (t), . . . , T xK(t))′ is a non-decreasing and starts from 0, (9)
Ix(t) = (Ix1 (t), . . . , Ixd (t))′ is non-decreasing, (10)

Because all of the allowable service disciplines are non-idling, the cumulative
idle time Ixi (t) does not increase when Nx

i (t) > 0, where as before

Nx
i (t) =

∑
k∈Ci

Qxk(t).

That is, ∫ ∞
0

Nx
i (t) dIxi (t) = 0. (11)

Recall the constituency matrix C defined in Section 2. In vector form, (7)–(11)
can be written as

Qx(t) = Qx(0) + Ex(t) +
K∑
`=1

Φ`(Sx` (T x` (t)))− Sx(T x(t)), (12)

Qx(t) ≥ 0, t ≥ 0, (13)
T x(0) = 0, and T x(·) is a non-decreasing, (14)
Ix(t) = et− CT x(t) is non-decreasing, (15)∫ ∞

0

CQx(t) dIx(t) = 0, (16)

where, as usual, Sx(T x(t)) = (Sx1 (T x1 (t)), . . . , SxK(T xK(t)))′. Notice that (12)–
(16) hold for FIFO, buffer priority disciplines, and the head-of-line processor
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sharing discipline that are considered in this paper. For each service discipline,
there are additional equations that, together with (12)–(16), describe the net-
work dynamics for the discipline. In the remainder of this section, we derive
these extra equations for static buffer priority disciplines.

Under a buffer priority service discipline, one can envision that customers
in class k wait in their own buffer. Customers in distinct buffers have different
service priorities, and we assume that there are no ties among classes. Within
each buffer, customers are served in FIFO discipline. For concreteness, we
assume the discipline is preemptive resume. Let Hk denote the set of indices
for all classes served at station s(k) which have priority greater than or equal
to that of class k, and let

T x,+k (t) =
∑
`∈Hk

T x` (t)

Ix,+k (t) = t− T x,+k (t),

Qx,+k (t) =
∑
`∈Hk

Qx` (t).

Then T x,+k (t) is the cumulative amount of service in [0, t] dedicated to customers
whose classes are included in Hk, and Ix,+k (t) is the total unused capacity that
is available to serve customers whose class does not belong to Hk. Note that
Ixi (t) is a station level quantity representing the total unused capacity in [0, t] by
server i; whereas Ix,+k (t) is a class level quantity. The priority service discipline
requires that for every k, all the service capacity of station s(k) is dedicated to
classes in Hk, as long as the workload present in these buffers is positive. Thus
we may express the additional condition by the integral equation∫ ∞

0

Qx,+k (t) dIx,+k (t) = 0, 1 ≤ k ≤ K. (17)

4 Fluid limit dynamics

Definition 1. A sequence of functions fn(·) : R+ → R is said to be convergent
to f(·) uniformly on compact sets (u.o.c.) if for every t > 0,

sup
0≤s≤t

|fn(s)− f(s)| → 0

as n→∞.

In the following lemma, we present functional strong laws of large numbers
for some processes defined. The proof can be found in Dai [8, Lemma 4.2].
Recall that a state x = (Q(0), U(0),V (0)) has three components.

Lemma 1. Assume that

lim
|x|→∞

1
|x|
U(0) = Ū and lim

|x|→∞

1
|x|
V (0) = V̄ .
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Then as |x| → ∞, almost surely

1
|x|

Φk([|x|t])→ P ′kt, u.o.c. (18)

1
|x|
Exk (|x|t)→ αk(t− Ūk)+, u.o.c. (19)

1
|x|
Sxk (|x|t)→ µk(t− V̄k)+, u.o.c., (20)

where [t] is the integer part of t.

Lemma 2. For a fixed sample path ω, for each sequence xn of initial states
with |xn| → ∞, there is a subsequence {xnj} such that

1
|xnj |

(T
xnj
1 (|xnj | t, ω), . . . T

xnj
K (|xnj | t, ω)) (21)

→ (T̄1(t, ω), . . . , T̄K(t, ω))

uniformly (with respect to t) on compact sets as j →∞.

Proof. Let ω be a fixed sample path. Let 0 ≤ s < t. It is easy to check that

1
|x|
T xk (|x| t, ω)− 1

|x|
T xk (|x|s, ω) ≤ t− s.

The lemma then follows easily.

Remark. In general the limit T̄ (t, ω) = (T̄1(t, ω), . . . , T̄K(t, ω))′ is random.
That is T̄ (t, ω) may indeed depend on ω. However, from now on the dependence
of ω is suppressed from the expression.

Theorem 1. Consider a non-idling service discipline. For almost all sample
paths ω and any sequence of initial states {xn} with |xn| → ∞, there is a
subsequence {xnj} such that

1
|xnj |

(Qxnj (0), Uxnj (0), V xnj (0))→ (Q̄(0), Ū , V̄ ), (22)

1
|xnj |

(Qxnj (|xnj | t), T
xnj (|xnj | t))→ (Q̄(t), T̄ (t)) u.o.c. (23)

Furthermore, (Q̄, T̄ ) satisfies the following set of equations.

Q̄(t) = Q̄(0) + (αt− Ū)+ − (I − P )′M−1(T̄ (t)− V̄ )+, (24)
Q̄(t) ≥ 0, (25)
T̄ (t) is non-decreasing and starts from zero, (26)
Ī(t) = et− CT̄ (t) is non-decreasing, (27)∫ ∞

0

CQ̄(t) dĪ(t) = 0. (28)
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Proof. Recall first that |xn| = |Qxn(0)|+ |Uxn(0)|+ |V xn(0)|. Thus,

1
|xn|
|Qxn(0)| ≤ 1,

1
|xn|
|Uxn(0)| ≤ 1,

1
|xn|
|V xn(0)| ≤ 1

for all n. Therefore by Lemma 2, there is a subsequence {nj} such that (22)
and (21) hold. By Lemma 1 and (12), we have

1
|xnj |

Qxnj (|xnj | t)→ Q̄(t),

where Q̄(t) satisfies (24). Conditions (25)–(27) follow from (13)–(15), whereas
Condition (28) follows from (16) and Lemma 2.4 of Dai and Williams [13].

Theorem 1 holds for FIFO, buffer priority disciplines and the head-of-line pro-
cessor sharing discipline, as well as many other non-idling disciplines. For a
particular service discipline, a limit (Q̄(·), T̄ (·)) usually satisfies more equations,
in addition to (24)–(28). For a buffer priority discipline, let

Q̄+
k (t) =

∑
`∈Hk

Q̄`(t),

T̄+
k (t) =

∑
`∈Hk

T̄`(t).

Theorem 2. Under the static preemptive resume buffer priority discipline, the
limit (Q̄(t), T̄ (t)) in Theorem 1 satisfies∫ ∞

0

Q̄+
k (t) d(t− T̄+

k (t)) = 0, k = 1, . . . ,K, (29)

in addition to (24)–(28).

Proof. The theorem follows from (17) and Lemma 2.4 of [13].

Definition 2. A limit (Q̄(·), T̄ (·)) in Theorem 1 is called a fluid limit under a
service discipline with initial fluid level Q̄(0) and delays Ū and V̄ . We use L to
denote the set of such limits.

Definition 3. The delayed fluid model of a buffer priority service discipline in
a network with delay (Ū , V̄ ) ∈ R|E|+K+ starting from Q̄(0) is defined to be the
set of equations (24)–(29). Any solution (Q̄(·), T̄ (·)) to equations (24)–(29) is
called a fluid solution of the fluid model for the buffer priority discipline. We
use M to denote the collection of all solutions (Q̄(·), T̄ (·)) of the fluid model.

Remark. For a given discipline, one can define the corresponding delayed
fluid model similarly. The only change needed is to replace (29) in Definition 3
with a condition analogous to (29) that is specific to the discipline.

It is obvious that any fluid limit is a fluid solution to the fluid model. There-
fore, we have

L ⊂M. (30)
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When there is a single customer class served at each station, the fluid model has
a unique solution. In this case, there is no need to differentiate between fluid
limits and fluid solutions. However, in multiclass networks, it is quite typical
that the fluid model has multiple solutions. The reason to distinguish a fluid
limit from a fluid solution will be explained in the next section.

5 Stability of the fluid model and the queueing
network

Definition 4. The delayed fluid model of a service discipline is stable if there
exists a δ > 0 such that for any fluid solution (Q̄(·), T̄ (·)) ∈ M with |Q̄(0)| +
|Ū |+ |V̄ | = 1, Q̄(t) ≡ 0 for t ≥ δ.

When the delays Ū and V̄ are zeros, the corresponding delayed fluid model
is called the undelayed fluid model, or simply the fluid model. That is, the
undelayed fluid model is defined by adding the following equation to (25)–(28)

Q̄(t) = Q̄(0) + αt− (I − P )′M−1T̄ (t). (31)

If we let |x| → ∞ while keeping U(0) and V (0) bounded, then the corresponding
fluid limit is a solution to the undelayed fluid model. Assume that all distri-
butions in the network are exponential. Because of the memoryless property of
the distribution, for many service disciplines including FIFO and buffer priority
disciplines, the residual interarrival times and service times are not needed in
the state descriptions. Thus the corresponding fluid limit is always undelayed.
However, under general distributional assumptions on the network, the corre-
sponding fluid limit is delayed. Chen [5, Theorem 5.3] proved the following
proposition.

Proposition 1. If the undelayed fluid model is stable, then the delayed fluid
model is stable.

The emptying time δ in Definition 5.1 is independent of a particular fluid
solution and initial state. Stolyar [26, Proposition 6] proved, however, that an
apparent weaker condition implies the stability of a fluid model. The proof also
follows from the remark following Proposition 3.3 of Dupuis and Williams [15].

Proposition 2. The undelayed fluid model is stable if and only if there exists
some norm || · || on RK+ such that for any Q̄ ∈M with ||Q̄(0)|| = 1, there exists
t > 0 such that ||Q̄(t)|| < 1.

The following theorem was proved in Dai [8, Theorem 4.3].

Theorem 3. A service discipline is positive Harris recurrent if the correspond-
ing fluid limit model is stable.
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We conjecture that under certain service disciplines there are fluid solutions
which cannot be achieved as fluid limits. It is therefore conceivable that there
is a queueing network with certain service discipline, whose fluid limit model
is stable but whose fluid model is not stable. This distinction is important in
formulating a correct converse result of Theorem 3. The converse problem is still
open although in many specific cases it has been shown that the instability of a
fluid limit model implies the instability of the corresponding queueing network.

Definition 5. For a service discipline π in an open multiclass queueing network,
its stability region is defined to be

Dπ =
{

(α,m) ∈ R|E|+K+ : such that the discipline π is pos-
itive Harris recurrent

}
. (32)

Remark. We believe the stability region for a non-idling discipline depends
on α and m only, not on the second or higher moments.

Recall that, for concreteness, at each station one of the following service
disciplines is employed: first-in–first-out (FIFO), static buffer priority among
classes (both preemptive and nonpreemptive), and head-of-line processor shar-
ing among classes. However, it is easy to see that more disciplines can be
considered in the following definition.

Definition 6. The global stability region for an open multiclass queueing net-
work is defined to be

G = ∩πDπ, (33)

where π ranges among all allowable service disciplines.

Similarly, using the stability notion defined in Definition 5.1, we can define
the stability region D̄π of a service discipline π for the fluid model and the global
stability region Ḡ of the fluid model. Theorem 3 proves that

D̄π ⊂ Dπ and Ḡ ⊂ G.

Let
D0 =

{
(α,m) ∈ R|E|+K+ : ρi < 1, i = 1, . . . , d.

}
(34)

where ρ = (ρ1, . . . , ρd)′ is defined in (2). Obviously, we have

Dπ ⊂ D0 and D̄π ⊂ D0.

Bramson [2, 3] proved the surprising result that

DFIFO 6= D0.

Similar results were proved by Lu and Kumar [21], Rybko and Stolyar [24] and
Seidman [25].
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6 Calculus of fluid models

A nice feature of the fluid model is that one can apply calculus to it. It follows
from (26) and (27) that T̄ (·) is Lipschitz continuous, and hence by (31) Q̄(·) is
Lipschitz continuous. Therefore we have the following proposition.

Proposition 3. The paths Q̄k(·) and T̄k(·) are absolutely continuous. Therefore
they have derivatives almost everywhere with respect to the Lebesgue measure on
[0,∞).

A path f(·) is said to be regular at t if it is differentiable at t. We use ḟ(t)
to denote the derivative of f(·) at a regular point t.

The following simple lemma, which appeared in Dai and Weiss [12], turns
out to be very useful for the analysis of stability of the fluid model.

Lemma 3. Let f(·) be an absolutely continuous nonnegative function on [0,∞).
(i) If f(t) = 0 and ḟ(t) exists, then ḟ(t) = 0.
(ii) Assume that for some ε > 0 and almost every regular point t > 0, whenever
f(t) > 0 then ḟ(t) ≤ −ε. Then f(t) = 0 for all t ≥ δ, where δ = f(0)/ε.
Furthermore, f(·) is nonincreasing, and hence once it reaches zero it stays there
forever.

Throughout this paper, whenever the derivative of the fluid model is consid-
ered at time t, we assume t is a regular point of Q̄(·) and T̄ (·). Let a ∈ RK+ be
fixed. Define

G(t) = Cdiag(a)(I − P ′)−1Q̄(t),

and
f(t) = max{G1(t), . . . , Gd(t)}.

Note that f(t) is a piecewise linear function of Q̄(t). It is easy to check that
f(t) is nonnegative and Lipschitz continuous and hence absolutely continuous.

Theorem 4. If there exists an a = (a1, . . . , aK)′ > 0 and ε > 0 such that
whenever |Q̄(t)| > 0, ḟ(t) ≤ −ε, then the service discipline is stable.

Proof. The proof follows from Lemma 3.

Corollary 1. Assume that in a two station network there exist a = (a1, . . . , aK)′ >
0 and εi > 0 for i = 1, 2 such that Ġi(t) ≤ −εi whenever N̄i(t) > 0. Further-
more, assume that G1(t) ≤ G2(t) whenever N̄1(t) = 0 and G2(t) ≤ G1(t)
whenever N̄2(t) = 0, where N̄i(t) =

∑
k∈Ci Q̄k(t). Then, the service discipline

is stable.

7 Examples

7.1 The Lu-Kumar-Bramson-type network
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A re-entrant line is a multiclass open queueing network, whose routing ma-
trix is of the form Pk,k+1 = 1 for k = 1, . . . ,K − 1 and Pk,` = 0 otherwise
and E = {1}. Consider a two station re-entrant line, where all customers visit
stations 1, 2, . . ., 2, 1, . . ., 1. Therefore, s(1) = 1, s(k) = 2 for k = 2, . . . , r, and
s(k) = 1 for k = r + 1, . . . ,K. When r = 3 and K = 4, the resulting network
is the Lu-Kumar network [21]. When r = K − 1, the resulting network is the
Bramson network [2]. We call this network a Lu-Kumar-Bramson-type network.
For the Lu-Kumar network, assuming that α1 = 1, Dai and Weiss [12] showed
that

Ḡ = {m ∈ R4
+ : m1 +m4 < 1, m2 +m4 < 1, m2 +m3 < 1}.

Furthermore, the global stability region is realized by the Lu-Kumar buffer
priority discipline that gives classes 2 and 4 higher priorities. That is,

Ḡ = D̄Lu−Kumar−buffer−priority.

Therefore, the Lu-Kumar priority discipline is the “worst” one in the sense that
it gives the smallest stability region. The approach used in [12] was modified
from Botvitch and Zamyatin [1]. The method has been further generalized
by Dai and VandeVate [10]. For the Lu-Kumar-Bramson type networks, using
Corollary 1, they proved that{

m ∈ RK+ : ρ1 < 1, ρ2 < 1,
r−1∑
k=2

mk +
K∑

k=r+1

mk < 1

}
⊂ Ḡ. (35)

Now consider the following buffer priority discipline, which generalizes the Lu-
Kumar priority discipline. At station 1 priorities, in decreasing order, are given
as K, K − 1, . . ., r + 1 and 1. At station 2 priorities are given as r − 1, r −
2, . . . , 2 and r. Under this buffer priority discipline, the network is effectively
reduced to the original Lu-Kumar network with a new set of parameters m̃ =
(m̃1, m̃2, m̃3, m̃4)′ ∈ R4

+, where

m̃1 = m1, m̃2 =
r−1∑
k=2

mk, m̃3 = mr, m̃4 =
K∑

k=r+1

mk.

Therefore, we can apply results on Lu-Kumar network in Dai and Weiss [12,
Section 5] to ensure

Ḡ =

{
m ∈ RK+ : ρ1 < 1, ρ2 < 1,

r−1∑
k=2

mk +
K∑

k=r+1

mk < 1

}
.

The worst discipline is this generalized Lu-Kumar buffer priority discipline.
For the queueing network under discussion, consider the generalized Lu-Kumar
buffer priority preemptive resume discipline. Following Theorem 3 and (35), we
have {

m ∈ RK+ : ρ1 < 1, ρ2 < 1,
r−1∑
k=2

mk +
K∑

k=r+1

mk < 1

}
⊂ G.
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Figure 3: The Dai-Wang network

Harrison [17] made the following key observation. Suppose the network initially
has customers only in buffers 1 and r. Then no two classes different from 1 and
r can ever be worked on simultaneously. Consequently,

r−1∑
k=2

T xk (t) +
K∑

k=r+1

T xk (t) ≤ t, t ≥ 0.

Using this observation, it is not difficult to argue that{
m ∈ RK+ : ρ1 < 1, ρ2 < 1,

r−1∑
k=2

mk +
K∑

k=r+1

mk < 1

}
= G.

When the service times at station 3 in the network pictured in Figure 1 are zero,
the corresponding network is reduced to a Lu-Kumar-Bramson-type network
with r = 4 and K = 6. Therefore mk = 0.25, k = 1, . . . , 6, is the critical value
for stability when all service times have the same mean. This explains why the
network in Figure 1 is unstable when service time at station 3 are small.

7.2 The Dai-Wang network

For the network pictured in Figure 3, again by using Corollary 1 and assuming
α1 = 1, Dai and VandeVate [10] showed that{

m ∈ R5
+ : ρ1 < 1, ρ2 < 1, m5 < (1−m1)(1−m3)

}
⊂ Ḡ.

Now consider the priority discipline giving priorities, in decreasing order, at
station one: 5, 1, 2 and at station two: 3, 4. We show, using the construction
similar to the one in [12], that if ρ1 < 1, ρ2 < 1 and

(1−m1)(1−m3) ≤ m5,

the discipline is not stable for the fluid model. Indeed, let the fluid model
start from Q̄(0) = (1, 0, 0, 0, 0)′. Then at t1 = 1/(µ1 − 1), Q̄(t1) = (0, 1/(1 −
m1), 0, 0, 0)′. Let t2 be the first time that the fluid level at buffer 2 reaches zero.
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Let ν be the departure rate from buffer 2 between t1 and t2. It follows from Dai
and Weiss [12, Proposition 3.1] that

ν = (1−m1)µ2.

We first check that ν > µ3. In fact, if ν ≤ µ3, we have

m1 +m2 +m5 ≥ m1 +m5 +
1

1−m1

1
m3

≥ m1 +
1

1−m1
≥ 1,

contradicting ρ1 < 1. It is easy to check that t2 − t1 = (1/(ν − 1))(1/(1−m1))
or equivalently,

t2 =
ν

ν − 1
1

µ1 − 1
+

1
ν − 1

.

and

Q̄(t2) = (0, 0, 1 + t2 − µ3(t2 − t1), µ3(t2 − t1), 0)′

= (0, 0, (ν − µ3)(1/(ν − 1))(1/(1−m1)),
µ3(1/(ν − 1))(1/(1−m1)), 0)′.

Let t3 be the first time that buffer 3 reaches zero. At t3,

Q̄(t3) = (0, 0, 0, 1 + t3, 0)′,

where

t3 − t2 =
(ν − µ3)(1/(ν − 1))(µ1/(µ− 1))

µ3 − 1
.

We can check that

1 + t3 = t3 − t2 + t2 + 1

=
1

µ3 − 1
µ1

µ1 − 1
ν

ν − 1
− µ3

µ3 − 1
µ1

µ1 − 1
1

ν − 1

+
1

µ1 − 1
ν

ν − 1
+

1
ν − 1

+ 1

=
µ3

µ3 − 1
µ1

µ1 − 1
=

1
1−m1

1
1−m3

.

Let t4 − t3 = m5/((1−m1)(1−m3)). Then at t4,

Q̄(t4) = (m5/((1−m1)(1−m3)), 0, 0, 0, 0)′.

From t4 the solution enters a new cycle with initial total fluid level

m5/((1−m1)(1−m3)) ≥ 1.
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Hence the discipline is unstable for the fluid model. Therefore we have proved
that

Ḡ =
{
m ∈ R5

+ : ρ1 < 1, ρ2 < 1,m5 < (1−m1)(1−m3)
}
,

and the worst discipline is the buffer priority discipline given earlier.
In [11], Dai and Wang showed that when m1 = 0.1α1, m2 = 0.05α1,

m3 = 0.9α1, m4 = 0.05α1 and m5 = 0.8α1, the corresponding Brownian model
proposed by Harrison and Nguyen [18] does not exist under the FIFO discipline.
Specializing the stability region to this case, we have

Ḡ =
{
α1 ≥ 0 : α1 < 10

(
1− 2

√
2/3
)
≈ 0.57191

}
.

By solving an LP problem numerically and performing computer simulations,
Down and Meyn [14] were able to predict the critical value to be 0.57191. By
using a different LP, quadratic LP, Kumar and Meyn [20] had shown earlier that

{α1 ≥ 0 : α1 < 0.55587} ⊂ Ḡ.

The quadratic LP solution captures the greater part of the stability region.
However, it was demonstrated that the quadratic LP method of Kumar and
Meyn cannot give a sharp region. It is interesting to note that the critical
utilization rates at both stations are

ρ1 = ρ2 < 9.5
(

1− 2
√

2/3
)
≈ 0.543314,

which is far below one.

7.3 Re-entrant line without immediate feedback

When there is no immediate feedback in a two station re-entrant line, the station
visitation sequence takes the simple form: 1, 2, 1, 2, . . . It was shown in Dai
and Weiss [12, Section 3] that for K = 3 when

ρ1 = α1(m1 +m3) < 1 and ρ2 = α1m2 < 1,

the conditions in Corollary 1 hold for any non-idling discipline. Therefore, we
have for any non-idling discipline π,

D̄π = Ḡ = D0,

where D0 is defined in (34). The argument was generalized in Dai and Vande-
Vate [10] to networks with K = 4,

Ḡ = D0.

In both cases, we also have
G = D0.
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8 Moments

So far we have shown that the stability of a fluid model implies the positive
Harris recurrence for the Markov process in the corresponding queueing net-
work. In this section, we show that under some stronger moment conditions
on interarrival and service times, we can obtain some stronger stability results
for the queueing network. In particular, we can bound the moments of queue
lengths, which are the primary performance measures of a network. Assume
that

(A2’) For some integer p ≥ 1, E[ξ`(1)p+1] <∞ for ` ∈ E and E[ηk(1)p+1] <∞
for k = 1, . . . ,K.

Recently, Dai and Meyn [9] proved the following result.

Theorem 5. Assume that the fluid model for a service discipline is stable, and
that (A1) and (A2’) hold. Then

(i) For some constant κp, and for each initial condition x ∈ X,

lim sup
t→∞

1
t

∫ t

0

Ex[|Q(t)|p] ds ≤ κp,

where p is the integer used in (A2’).

Assume further that (A3) holds. Then, the service discipline is stable with
stationary distribution π, and moreover, for each initial condition,

(ii) The transient moments converge to their steady state values: for r =
1, . . . , p, k = 1, . . . ,K,

lim
t→∞

Ex[Qk(t)r] = Eπ[Qk(0)r] ≤ κr.

(iii) The first moment converges at rate tp−1:

lim
t→∞

t(p−1) |Ex[Q(t)]− Eπ[Q(0)]| = 0.

(iv) The strong law of large numbers holds: for r = 1, . . . , p, k = 1, . . . ,K,

lim
t→∞

1
t

∫ t

0

Qrk(s) ds = Eπ[Qk(0)r], Px-a.s.

9 Concluding remarks

For any given service discipline, it is a challenging problem to characterize its
stability region. It appears that the piecewise linear Lyapunov function used
in Botvitch and Zamyatin [1], Dai and Weiss [12] and Down and Meyn [14] is
a powerful tool in determining a global stability region. For a buffer priority
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discipline, Down and Meyn [14] were also able to apply the piecewise linear
Lyapunov function technique. For the FIFO discipline, we refer readers to Chen
and Zhang [7] and Bramson [4] for the latest developments.
Acknowledgments. I am grateful to Mike Harrison for his numerous com-
ments on an earlier version of this paper. I thank Gideon Weiss and Sean Meyn
for allowing me to cite recent joint work with them in this paper. I also thank
an anonymous referee for suggesting many helpful improvements.
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