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Abstract

This dissertation is concerned with multidimensional diffusion processes that arise as ap-

proximate models of queueing networks. To be specific, we consider two classes of semi-

martingale reflected Brownian motions (SRBM’s), each with polyhedral state space. For

one class the state space is a two-dimensional rectangle, and for the other class it is the

general d-dimensional non-negative orthant Rd
+.

SRBM in a rectangle has been identified as an approximate model of a two-station queue-

ing network with finite storage space at each station. Until now, however, the foundational

characteristics of the process have not been rigorously established. Building on previous

work by Varadhan and Williams [53] and by Taylor and Williams [50], we show how SRBM

in a rectangle can be constructed by means of localization. The process is shown to be

unique in law, and therefore to be a Feller continuous strong Markov process. Taylor and

Williams [50] have proved the analogous foundational result for SRBM in the non-negative

orthant Rd
+, which arises as an approximate model of a d-station open queueing network

with infinite storage space at every station.

Motivated by the applications in queueing theory, our focus is on steady-state analy-

sis of SRBM, which involves three tasks: (a) determining when a stationary distribution

exists; (b) developing an analytical characterization of the stationary distribution; and (c)

computing the stationary distribution from that characterization. With regard to (a), we

give a sufficient condition for the existence of a stationary distribution in terms of Lia-

punov functions. With regard to (b), for a special class of SRBM’s in an orthant, Harrison

and Williams [26] showed that the stationary distribution must satisfy a weak form of an

adjoint linear elliptic partial differential equation with oblique derivative boundary condi-

tions, which they called the basic adjoint relationship (BAR). They further conjectured that

(BAR) characterizes the stationary distribution. We give two proofs of their conjecture.

For an SRBM in a rectangle, using Echeverria’s Theorem [10], we give a direct proof of their
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conjecture. For an SRBM in a general dimensional space, we first characterize an SRBM as

a solution to a constrained martingale problem. Then, using Kurtz’s recent theorem [32],

we prove their conjecture for general SRBM’s.

The most novel contribution of this dissertation relates to the computational task (c)

above. To make practical use of SRBM’s as approximate models of queueing networks, one

needs practical methods for determining stationary distributions, and it is very unlikely that

general analytical solutions will ever be found. We describe an approach to computation

of stationary distributions that seems to be widely applicable. That approach gives rise to

a family of algorithms, and we investigate one version of the algorithm. Under one mild

assumption, we are able to provide a full proof of the algorithm’s convergence. We compare

the numerical results from our algorithm with known analytical results for SRBM, and

also use the algorithm to estimate the performance measures of several illustrative open

queueing networks. All the numerical comparisons show that our method gives reasonably

accurate estimates and the convergence is relatively fast.

The algorithms that we have thus far implemented in computer code are quite limited

as tools for analysis of queueing systems, but the underlying computational approach is

widely applicable. Our ultimate goal is to implement this approach in a general routine for

computing the stationary distribution of SRBM in an arbitrary polyhedral state space. The

plan is to combine that routine with appropriate “front end” and “back end” program mod-

ules to form a software package, tentatively called QNET, for analysis of complex queueing

networks. This package would be much more widely applicable than the commercial pack-

ages currently available for performance analysis of queueing networks, such as PANACEA

[38] and QNA [54], but only the first tentative steps in its development have been taken

thus far.
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2
i )
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+ ≡ {x = (x1, . . . , xd)′ ∈ Rd, xi ≥ 0, i = 1, . . . , d}.

5. 〈x, y〉 ≡
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i=1 xiyi for x, y ∈ Rd; x · y ≡ 〈x, y〉 for x, y ∈ Rd.
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1. S is the state space, either a two-dimensional rectangle or the orthant Rd
+.

2. O is the interior of S.
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4. vi is a d-dimensional vector on face Fi, direction of reflection on Fi.

5. Γ is a d× d positive definite matrix, the covariance matrix.

6. µ is a d-dimensional vector, the drift vector.

7. R is a matrix whose columns are the vectors vi, the reflection matrix.

8. dx is Lebesgue measure on S.

9. dσi is Lebesgue measure on boundary face Fi.

10. ∇ is the gradient operator.

11. Dif ≡ vi · ∇f .

12. Gf = 1
2

∑d
i,j=1 Γij ∂2f

∂xi∂xj
+
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i=1 µi

∂f
∂xi

.

13. Af , see page 34 and page 73.

14. dλ, see page 34 and page 73.

15. dη, see page 74.
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19. Mt ≡ σ{Z(s), 0 ≤ s ≤ t}.

20. M≡ σ{Z(s), 0 ≤ s <∞}.

IV. Miscellaneous Notation and Terminology

1. ⇒ weak convergence, see page 29.
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Chapter 1

Introduction

1.1 Motivation

This dissertation is concerned with a class of multidimensional diffusion processes, variously

known as reflected Brownian motions, regulated Brownian motions, or just RBM’s, that

arise as approximate models of queueing networks. More specifically, we consider two special

classes of semimartingale RBM’s (SRBM’s), which have by far the widest applications in

queueing network theory. The state space of the first class is a two-dimensional rectangle,

and the state space of the second class is an arbitrary d-dimensional orthant Rd
+. SRBM

in a rectangle arises as an approximate model of a queueing network of two stations with

finite buffer size at each station [9]. The analysis of this two-dimensional SRBM can be

generalized to deal with SRBM in a higher dimensional “box”. SRBM in an orthant can

be used as an approximate model for open queueing networks [39, 36, 26, 24]. To make the

presentation clearer, we consider the two classes separately, and throughout the remainder

of this introduction, only SRBM’s in an orthant will be discussed. Readers are referred to

Section 2.5.3 for the motivation of studying SRBM in a rectangle.

Given a d× d positive definite matrix Γ, a d-dimensional vector µ and a d× d matrix R

(whose i-th column is denoted by vi) with ones on the diagonal, a d-dimensional continuous

stochastic process Z is said to be an SRBM in the orthant Rd
+ associated with data (Γ, µ,R)

if

(1.1) Z(t) = X(t) +RL(t) = X(t) + v1L1(t) + . . .+ vdLd(t), t ≥ 0;

(1.2) Zi(t) ≥ 0, t ≥ 0, i = 1, . . . , d;

1



CHAPTER 1. INTRODUCTION 2

(1.3) X = {X(t)} is a d-dimensional Brownian motion with covariance matrix Γ and drift

vector µ;

(1.4) For i = 1, . . . , d, Li(0) = 0, Li is non-decreasing and Li(·) increases only at times t

such that Zi(t) = 0.

This definition suggests that the SRBM Z behaves like an ordinary Brownian motion with

covariance matrix Γ and drift vector µ in the interior of the orthant. When Z hits the

boundary {xi = 0}, the process (local time) Li(·) increases, causing an overall pushing in

the direction vi. The magnitude of the pushing is the minimal amount required to keep Z

inside the orthant.

The motivation for our study of SRBM in an orthant comes from the theory of open

queueing networks, that is, networks of interacting processors or service stations where cus-

tomers arrive from outside, visit one or more stations, perhaps repeatedly, in an order that

may vary from one customer to the next, and then depart. (In contrast, a closed queueing

network is one where a fixed customer population circulates perpetually through the sta-

tions of the network, with no new arrivals and no departures.) It was shown by Reiman

[39] that the d-dimensional queue length process associated with a certain type of open

d-station network, if properly normalized, converges under “heavy traffic” conditions to a

corresponding SRBM with state space Rd
+. Peterson [36] proved a similar “heavy traffic

limit theorem” for open queueing networks with multiple customer types and deterministic,

feedforward customer routing; Peterson’s assumptions concerning the statistical distribu-

tion of customer routes are in some ways more general and in some ways more restrictive

than Reiman’s. The upshot of this work on limit theorems is to show that SRBM’s with

state space Rd
+ may serve as good approximations, at least under heavy traffic conditions,

for the queue length processes, the workload processes, and the waiting time processes as-

sociated with various types of open d-station networks. Recently Harrison and Nguyen [24]

have defined a very general class of open queueing networks and articulated a systematic

procedure for approximating the associated stochastic processes by SRBM’s. This general

approximation scheme subsumes those suggested by the limit theorems of both Reiman and

Peterson, but it has not yet been buttressed by a rigorous and equally general heavy traffic

limit theory.



CHAPTER 1. INTRODUCTION 3

1.2 A Tandem Queue

To illustrate the role of SRBM in queueing network theory, let us consider a network of two

stations in tandem as pictured in Figure 1.1. After describing this queueing model in math-

ematical terms, we will explain how one can use a two-dimensional SRBM to approximate

the workload process of the tandem queue under heavy traffic conditions. This is basically

a recapitulation of Reiman’s [39] heavy traffic limit theorem, which has also been discussed

at some length in the survey papers of Lemoine [33], Flores [12], Coffman-Reiman [7], and

Glynn [18]. We follow the treatment in [24]. It is hoped that this description of the heavy

traffic approximation will motivate the study of SRBM’s for readers who are not familiar

with diffusion approximations.

The network pictured in Figure 1.1 consists of two single–server stations arranged in

series, each with a first–in–first–out discipline. Arriving customers go to station 1 first, after

completing service there they go to station 2, and after completing service at station 2 they

exit the system. The inter-arrival times of the customers to station 1 are assumed to be

independent, identically distributed (i.i.d.) positive random variables with mean one and

squared coefficient of variation (defined to be variance over squared mean) C2
a . Similarly,

the service times at station i are assumed to be i.i.d. random variables with mean ρi and

squared coefficient of variation C2
si , i = 1, 2. This network is a generalized Jackson network;

in a classical Jackson network, both the inter-arrival times and service times are assumed to

be exponentially distributed, implying C2
a = C2

s1 = C2
s2 = 1. The steady-state performance

measures we focus on are

(1.5) wi ≡ the long-run average waiting time (excluding service time) that customers

experience in queue i, i = 1, 2.

C2
a

-

λ = 1

C2
s1

"!
# 

1

ρ1

-

C2
s2

"!
# 

2

ρ2

-

Figure 1.1: Two Queues in Tandem
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When ρi < 1 (i = 1, 2), it is known that the network is stable (or ergodic), that is, wi <∞.

Despite its apparent simplicity, the tandem queue described above is not amenable to

exact mathematical analysis, except for the Jackson network case. But as an alternative

to simulation one may proceed with the following approximate analysis. Let Wi(t) be the

current workload at time t for server i, that is, the sum of the impending service times for

customers waiting at station i at time t, plus the remaining service time for the customer

currently in service there (if any). One can also think of Wi(t) as a virtual waiting time: if a

customer arrived at station i at time t, this customer would have to wait Wi(t) units of time

before gaining access to server i. The tandem queue is said to be in heavy traffic if ρ1 and

ρ2 are both close to one, and the heavy traffic limit theory referred to earlier suggests that

under such conditions the workload process W (t) can be well approximated by an SRBM

with state space R2
+ and certain data (Γ, µ,R). To be more specific, Harrison and Nguyen

[24] propose that W (t) be approximated by an SRBM Z(t) with data

Γ =

 ρ2
1(C2

a + C2
s1) −ρ1ρ2C

2
s1

−ρ1ρ2C
2
s1 ρ2

2(C2
s1 + C2

s2)

 , µ =

 ρ1 − 1

ρ2/ρ1 − 1

 , R =

 1 0

−ρ2/ρ1 1,

 .
The directions of reflection for the SRBM Z are pictured in Figure 1.2 below; recall that in

general vi denotes the ith column of R, which is the direction of reflection associated with

the boundary surface {xi = 0}.
If the steady-state mean m = (m1,m2)′ of the SRBM Z can be calculated, then mi can

be used to estimate the long run average virtual waiting time, i.e.,

mi
.= lim
t→∞

∫ t
0 E[Wi(s)] ds

t
, i = 1, 2.

-
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Figure 1.2: State Space and Directions of Reflection for the Approximating SRBM
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It is suggested in [24] that this long run average virtual waiting time be used to estimate the

long run average waiting time wi, i.e., wi
.= mi (i = 1, 2). Notice that the SRBM uses only

the first two moments of the primitive queueing network data. This is typical of “Brownian

approximations”. In this dissertation we will focus on the analysis of an SRBM instead of

the original queueing network model.

1.3 Overview

There is now a substantial literature on Brownian models of queueing networks, and virtu-

ally all papers in that literature are devoted to one or more of the following tasks.

(a) Identify the Brownian analogs for various types of conventional queueing models, ex-

plaining how the data of the approximating SRBM are determined from the structure

and the parameters of the conventional model; prove limit theorems that justify the

approximation of conventional models by their Brownian analogs under “heavy traffic”

conditions.

(b) Show that the SRBM exists and is uniquely determined by an appropriate set of

axiomatic properties.

(c) Determine the analytical problems that must be solved in order to answer probabilistic

questions associated with the SRBM. These are invariably partial differential equation

problems (PDE problems) with oblique derivative boundary conditions. A question

of central importance, given the queueing applications that motivate the theory, is

which PDE problem one must solve in order to determine the stationary distribution

of an SRBM.

(d) Solve the PDE problems of interest, either analytically or numerically.

Most research to date has been aimed at questions (a) through (c) above. Topic (a) has been

discussed in Section 1.2 above. With regard to (b), Harrison and Reiman [25] proved, using

a unique path-to-path mapping, the existence and uniqueness of SRBM in an orthant when

the reflection matrix R is a Minkowski matrix (see Definition 3.3). This class of SRBM’s

corresponds to open queueing networks with homogeneous customer populations, which

means that customers occupying any given node or station of the network are essentially

indistinguishable from one another. Recently Taylor and Williams [50] proved the existence



CHAPTER 1. INTRODUCTION 6

and uniqueness of SRBM in an orthant when the reflection matrix R is completely-S (see

Definition 3.4). In an earlier paper, Reiman and Williams [41] showed that the reflection

matrix R being completely-S is necessary for the existence of an SRBM in an orthant.

Thus, when the state space is an orthant, category (b) is completely resolved. For the

two-dimensional case, Varadhan and Williams [53] considered driftless RBM in a general

wedge, and existence and uniqueness were resolved there. In that setting, they actually

considered the more general class of RBM’s which may not have a semimartingale repre-

sentation. Taylor and Williams [51] showed that under a condition on the directions of

reflection, which corresponds to the completely-S condition in the orthant case, the RBM

constructed in [53] actually is a semimartingale RBM. For a network of two stations with

finite buffer size, the corresponding SRBM lives in a rectangle, see [9]. There has been no

literature on the explicit construction of such an SRBM. In Section 2.2 we show, using a

detailed localization argument, that there exists an unique SRBM in the rectangle when

the completely-S condition is satisfied at each corner locally (see condition (2.4)).

With regard to (c), for a driftless RBM in two dimensions the work of Harrison, Lan-

dau and Shepp [23] gives an analytical expression for the stationary distribution. For the

two-dimensional case with drift, Foddy [13] found analytical expressions for the stationary

distributions for certain special domains, drifts, and directions of reflection, using Riemann-

Hilbert techniques. For a special class of SRBM in an orthant, Harrison and Williams [26]

gave a criterion for the existence of the stationary distribution. Furthermore, they showed

that the stationary distribution together with the corresponding boundary measures must

satisfy a basic adjoint relationship (BAR). In that paper, the authors conjectured that

(BAR) characterizes the stationary distribution as well. In Chapter 3 we prove the con-

jecture to be true for the most general class of SRBM’s in an orthant (Theorem 3.6). We

also establish a sufficient condition for the existence of stationary distribution in terms of

Liapunov functions for a general SRBM.

With regard to research category (d), the availability of a package for evaluation of

Schwartz-Christoffel transformations based on the result in [23] makes the evaluation of as-

sociated performance measures for a driftless RBM in two dimensions numerically feasible,

cf. [52]. In dimensions three and more, RBM’s having stationary distributions of exponen-

tial form were identified in [27, 58] and these results were applied in [26, 28] to SRBM’s

arising as approximations to open and closed queueing networks with homogeneous cus-

tomer populations. However, until now there has been no general method for solving the
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PDE problems alluded to in (d).

If Brownian system models are to have an impact in the world of practical performance

analysis, task (d) above is obviously crucial. In particular, practical methods are needed

for determining stationary distributions, and it is very unlikely that general analytical so-

lutions will ever be found. Thus we are led to the problem of computing the stationary

distribution of RBM in an orthant, or at least computing summary statistics of the sta-

tionary distribution. As we will explain later, the stationary distribution is the solution of

a certain highly structured partial differential equation problem (an adjoint PDE problem

expressed in weak form). In this dissertation, we describe an approach to computation of

stationary distributions that seems to be widely applicable. The method will be developed

and tested for two–dimensional SRBM’s with a rectangular state space in Section 2.4.2

through Section 2.5.3, and for higher dimensional SRBM’s in an orthant in Chapter 4. We

should point out that the proof of convergence would be complete if we could prove that

any solution to (BAR) does not change sign (see Conjecture 2.1 and Conjecture 4.1). As

readers will see, the method we use actually gives rise to a family of converging algorithms.

One particular implementation of our algorithm is tested against known analytical results

for SRBM’s as well as simulation results for queueing network models. The testing results

show that both the accuracy and speed of convergence are impressive for small networks.

We must admit that, currently, we do not have a general method to choose one “best”

algorithm from this family. In Appendix A, we will describe in detail how to implement

the version of the algorithm we use in the orthant case. As a tool for analysis of queueing

systems, the computer program described in this dissertation is obviously limited in scope,

but our ultimate goal is to implement the same basic computational approach in a general

routine that can compete with software packages like PANACEA [38] and QNA [54] in the

analysis of large, complicated networks.

1.4 Notation and Terminology

Here and later the symbol “≡” means “equals by definition”. We assume some basic notation

and terminology in probability as in Billingsley [4]. We denote the characteristic function

of a set A by 1A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. For a random variable

X and an event set A, we use E[X;A] to denote E[X1A]. Given a filtered probability space

(Ω,F , {Ft}, P ), a real-valued process X = {X(t), t ≥ 0} defined on this space is said to be
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adapted if for each t ≥ 0, X(t) is Ft-measurable. The process X is said to be an {Ft}-
(sub)martingale under P if X is adapted, EP [|X(t)|] <∞ for each t ≥ 0 and for each pair

0 ≤ s < t and each A ∈ Fs, EP [X(s);A](≤) = EP [X(t);A], where EP is the expectation

with respect to the probability measure P .

The following are used extensively in the sequel. d ≥ 1 is an integer. S always denotes

a state space, either a two-dimensional rectangle or a d-dimensional orthant Rd
+ ≡ {x =

(x1, x2, . . . , xd)′ ∈ Rd : xi ≥ 0, i = 1, 2, . . . , d}, where the prime is the transpose operator.

If no dimensionality is explicitly specified, a vector and a process are considered to be

d-dimensional. Vectors are treated as column vectors. Inequalities involving matrices or

vectors are interpreted componentwise. The set of continuous functions ω : [0,∞) → S is

denoted by CS . The canonical process on CS is Z = {Z(t, ·), t ≥ 0} defined by

Z(t, ω) = ω(t), for ω ∈ CS .

The symbol ω is often suppressed in Z. The natural filtration associated with CS is {Mt},
where Mt ≡ σ{Z(s, ·) : 0 ≤ s ≤ t}, t ≥ 0. For t ≥ 0, Mt can also be characterized as the

smallest σ-algebra of subsets of CS which makes Z(s) measurable for each 0 ≤ s ≤ t. The

natural σ-algebra associated with CS is M≡σ{Z(s, ·) : 0 ≤ s < ∞} =
∨∞
t=0Mt (

∨∞
t=0Mt

is defined to be the smallest σ-algebra containing Mt for each t ≥ 0). For commonly used

notation, readers are referred to “Frequently Used Notation” on page xiv. Other notation

and terminology will be introduced as we proceed.



Chapter 2

SRBM in a Rectangle

2.1 Definition

Let S be a closed two–dimensional rectangle and O be the interior of the rectangle. For

i = 1, 2, 3, 4 let Fi be the ith boundary face of S and let vi be an inward–pointing vector

on Fi with unit normal component (see Figure 2.1). Also, let us define the 2 × 4 ma-

trix R≡(v1, v2, v3, v4). Remember Z = {Z(t, ω), t ≥ 0} is the canonical process on CS .

Throughout this chapter, we use Γ to denote a 2 × 2 positive definite matrix and µ to

denote a two-dimensional vector.

Definition 2.1 Z together with a family of probability measures {Px, x ∈ S} on the filtered

space (CS ,M, {Mt}) is said to be a semimartingale reflected Brownian motion (abbreviated

as SRBM) associated with data (S,Γ, µ,R) if for each x ∈ S we have

-
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Figure 2.1: State Space S and Directions of Reflection of an SRBM in a Rectangle
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(2.1) Z(t) = X(t) +RL(t) = X(t) +
∑4
i=1 viLi(t) ∀t ≥ 0, Px-a.s., where

(2.2) X(0) = x Px-a.s. and X is a 2-dimensional Brownian motion with covariance matrix

Γ and drift vector µ such that {X(t)− µt,Mt, t ≥ 0} is a martingale under Px, and

(2.3) L is a continuous {Mt}-adapted four-dimensional process such that L(0) = 0, L

is non-decreasing, and Px-almost surely Li can increase only at times t such that

Z(t) ∈ Fi, i = 1, 2, 3, 4.

An SRBM Z as defined above behaves like a two-dimensional Brownian motion with drift

vector µ and covariance matrix Γ in the interior O of its state space. When the boundary

face Fi is hit, the process Li (sometimes called the local time of Z on Fi) increases, causing

an instantaneous displacement of Z in the direction given by vi; the magnitude of the

displacement is the minimal amount required to keep Z always inside S. Therefore, we

call Γ, µ and R the covariance matrix, the drift vector and the reflection matrix of Z,

respectively.

SRBM in a rectangle can be used as an approximate model of a two station queueing

network with finite buffer sizes at each station. Readers are referred to Section 2.5.3 and

[9] for more details.

Throughout this dissertation, when the state space S is a rectangle, we always assume

the given directions of reflection satisfy the following condition:

(2.4) there are positive constants ai and bi such that aivi + bivi+1 points into the interior

of S from the vertex where Fi and Fi+1 meet (i = 1, 2, 3, 4), where v5≡v1 and F5≡F1.

Because a Brownian motion can reach every region in the plane, it can be proved as in

Reiman and Williams [41] that (2.4) is a necessary condition for the existence of an SRBM.

In the following section, we will prove that there is a unique family {Px, x ∈ S} on (CS ,M)

such that Z together with {Px, x ∈ S} is an SRBM when the columns of the reflection

matrix R satisfy (2.4).

Definition 2.2 An SRBM Z is said to be unique (in law) if the corresponding family of

probability measures {Px, x ∈ S} is unique.
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2.2 Existence and Uniqueness of an SRBM

Theorem 2.1 Let there be given a rectangle S, a non-degenerate covariance matrix Γ, a

drift vector µ and a reflection matrix R whose columns satisfy (2.4). Then there is a unique

family of probability measures {Px, x ∈ S} on (CS ,M, {Mt}) such that the canonical process

Z together with {Px, x ∈ S} is an SRBM associated with the data (S,Γ, µ,R). Furthermore,

the family {Px, x ∈ S} is Feller continuous, i.e., x → Ex[f(Z(t))] is a continuous for all

f ∈ Cb(S) and t ≥ 0, and Z together with {Px, x ∈ S} is a strong Markov process. Moreover,

supx∈S Ex[Li(t)] <∞ for each t ≥ 0 and i = 1, 2, 3, 4.

Remark. In this chapter, Ex is the expectation operator associated with the unique prob-

ability measure Px. We leave the proof of this theorem to the end of Section 2.2.3. To

this end, we first consider a class of reflected Brownian motions (RBM’s) as solutions to

certain submartingale problems as considered in Varadhan and Williams [53]. The main

difference between an RBM and an SRBM is that an RBM may not have a semimartin-

gale representation as in (2.1). When µ = 0, the authors in [53] showed the existence and

uniqueness of an RBM in a wedge for Γ = I, which immediately implies the existence and

uniqueness of an RBM in a quadrant with general non-degenerate covariance matrix Γ. In

Section 2.2.1, taking four RBM’s in four appropriate quadrants, we will carry out a detailed

patching argument to construct an RBM in the rectangle S. In Section 2.2.2, we show when

the reflection matrix R satisfies (2.4) that such an RBM actually has the semimartingale

representation (2.1). For µ 6= 0, the existence of an SRBM follows from that for µ = 0 and

Girsanov’s Theorem. Finally, in Section 2.2.3, we prove the uniqueness and Feller continuity

of an SRBM, and hence prove that Z together with {Px, x ∈ S} is a strong Markov process.

2.2.1 Construction of an RBM

Throughout this section we assume µ = 0.

Theorem 2.2 Let there be given a covariance matrix Γ, drift vector µ = 0 and reflec-

tion matrix R whose columns satisfy (2.4). Then there is a family of probability measures

{Px, x ∈ S} on (CS ,M, {Mt}) such that for each x ∈ S,

(2.5) Px{Z(0) = x} = 1,

(2.6) Px
{∫∞

0 1{Z(s)∈∂S} ds = 0
}

= 1.
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(2.7) For each f ∈ C2(S) with Dif ≥ 0 on Fi (i = 1, 2, 3, 4),{
f(Z(t))−

∫ t

0
Gf(Z(s)) ds,Mt, t ≥ 0

}
is a Px-submartingale, where

Gf =
1
2

2∑
i,j=1

Γij
∂2f

∂xi∂xj
+

2∑
i=1

µi
∂f

∂xi
(2.8)

Dif = vi · ∇f, i = 1, 2, 3, 4.(2.9)

In order to carry out the construction of {Px} we need more notation and some prelim-

inary results. Let

ΩS ≡ {ω : [0,∞)→ R2, ω(0) ∈ S, ω is continuous}.

The canonical process on ΩS is w = {w(t, ω), t ≥ 0} defined by

w(t, ω) ≡ ω(t), for ω ∈ ΩS .

The natural filtration on ΩS is {Ft ≡ σ{w(s) : 0 ≤ s ≤ t}, t ≥ 0} and the natural σ-field

is F ≡ σ{w(s) : 0 ≤ s < ∞}. We intentionally use w to denote our canonical process

instead of Z used before, because they are the canonical processes on two different spaces.

Obviously, we have

w|CS = Z,

and Mt = Ft ∩ CS and M = F ∩ CS .

Without loss of generality, by rescaling of coordinates if necessary, we assume S to be

the unit square, with sides parallel to the coordinates axes and lower left corner at the

origin of the coordinate system. Let ai denote the i-th corner of the square, counting

counterclockwise starting from the origin (i = 1, 2, 3, 4), see Figure 2.1. For i = 1, 2, 3, 4,

define

Ai ≡ S ∩B(ai, 0.9) and Bi ≡ S ∩B(ai, 0.8),

where B(x, r) ≡ {y ∈ R2 : |x− y| < r}. Note that the Bi’s, hence Ai’s cover S. Let Si ⊃ S
be the quadrant with vertex ai defined in an obvious way. Assume the drift vector µ = 0.

It follows from Varadhan and Williams [53] and Williams [57] or Taylor and Williams [51]

that there exists a family of probability measures {P ix, x ∈ Si} on (ΩS ,F , {Ft}) which,

together with the canonical process {w(t, ·), t ≥ 0} is a (Si,Γ, µ, (vi, vi+1))-SRBM on Si

(i = 1, 2, 3, 4). That is, for each i ∈ {1, 2, 3, 4} and x ∈ Si, one has
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(a) P ix(CSi) = 1, P ix(w(0) = x) = 1,

(b) Px-almost surely, w(t) = X(t) + viy
i
1(t) + vi+1y

i
2(t), ∀t ≥ 0, where

(c) X is a Brownian motion, and {X(t)} is an {Ft}-martingale under P ix,

(d) For j = 1, 2, yij(0) = 0, and yij is nondecreasing and P ix-almost surely, yij(·) can increase

only at times t such that wj(t) ∈ F ′i−1+j , where F ′i−1+j is the half line passing through

Fi−1+j with ai as one end point.

In particular, it follows from Lemma 7.2 of [41], for each i = 1, 2, 3, 4, and x ∈ Si,

(e) P ix {
∫∞

0 1∂Si(w(s)) ds = 0} = 1,

(f) For each f ∈ C2(S) satisfying Dkf ≥ 0 on F ′k k = i− 1 + j, j = 1, 2{
f(w(t))−

∫ t

0
Gf(w(s)) ds,Ft, t ≥ 0

}
,

is a P ix-submartingale.

These four families of {P ix, x ∈ S} (i = 1, 2, 3, 4) are the building blocks in our construction

of {Px, x ∈ S}.
For ω ∈ ΩS , define an increasing sequence of times τn(ω), n = 0, 1, 2, . . . and an associ-

ated sequence of neighborhood indices kn(ω), n = 1, 2, . . . by induction as follows. (From

now on, the symbol ω will be suppressed) Set τ0 = 0, let k0 be the smallest index such

that w(0) ∈ Bk0 , and define τ1 = inf{t ≥ 0 : w(t) ∈ S\Ak0}. Then, assuming τ0, k0,

τ1, . . . , kn−1, τn have been defined for some n ≥ 1, if τn < ∞, let kn be the smallest index

such that w(τn) ∈ Bkn and define

τn+1 = inf{t ≥ τn : w(t) ∈ S\Akn},

or if τn =∞, let kn = kn−1 and τn+1 = τn. Then τn →∞ as n→∞. We have the following

lemma.

Lemma 2.1 For x ∈ Bi\ ∪j<i Bj, P ix(τ1 <∞) = 1, (i = 1, 2, 3, 4).

Proof. It is enough to prove the case when i = 1. The other cases can be proved similarly.

Since the matrix (v1, v2) is completely-S (cf. [41]), there is u ∈ R2
+ such that u > 0, u·v1 > 0

and u · v2 > 0. Hence, for x ∈ B1, using representation (b) above,

|u| sup
0≤s<∞

|w(s)| ≥ sup
0≤s<∞

u · w(s) ≥ sup
0≤s<∞

u ·X(s), Px-a.s.
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Since u ·X(t) is a Brownian motion with variance u′Γu and drift 0, we have

sup
0≤s<∞

u ·X(s) = +∞, P 1
x -a.s.

This lemma follows since P 1
x -a.s.,

τ1 = inf{t ≥ 0 : w(t) ∈ S\A1}.

2

The following relies heavily on a compactness result of Bernard and El Kharroubi [2,

Lemma 1].

Lemma 2.2 For each t > 0 there exists ε(t) > 0 such that

max
1≤i≤4

sup
x∈Bi

P ix(τ1 ≤ t) ≤ 1− ε(t).

Proof. Fix t > 0. It is enough to prove that there is ε(t) > 0 such that supx∈B1
P 1
x (τ1 ≤ t) ≤

1− ε(t). Since the matrix (v1, v2) is completely-S, there is a constant K (cf. [2, Lemma 1])

such that

sup
0≤s≤t

|w(s)− w(0)| ≤ K sup
0≤s≤t

|X(s)−X(0)|, P 1
x -a.s.

Hence, for x ∈ B1,

P 1
x (τ1 ≤ t) ≤ P 1

x

(
sup

0≤s≤t
|w(s)| ≥ 0.9

)

≤ P 1
x

(
sup

0≤s≤t
|w(s)− x| ≥ 0.1

)

≤ P 1
x

(
sup

0≤s≤t
|X(s)− x| ≥ 0.1/K

)
= 1− ε(t), for some ε(t) > 0,

since {X(t)− x, t ≥ 0} is a Brownian motion staring from the origin. 2

It is time for us to introduce shift operators. They are used only in this section. For

each t ≥ 0, the shift operator θt : ΩS → ΩS is defined as

θt(ω) ≡ ω(t+ ·), ω ∈ ΩS .

Obviously, for the canonical process w on ΩS ,

w(s, θt(ω)) = w(s+ t, ω).
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We sometimes use [w(s) ◦ θt](ω) to denote w(s, θt(ω)) and often with ω being suppressed.

For a [0,∞]-valued random variable T , w(s) ◦ θT can be defined as

[w(s) ◦ θT ](ω) ≡

 [w(s) ◦ θT (ω)](ω), ω ∈ {T (ω) <∞},
∆, ω ∈ {T (ω) =∞},

where ∆ is a cemetery state, disjoint from R2. Readers should be warned, however, when

the notation w(s) ◦ θT (ω) is used, it is understood that ω is fixed, i.e.,

[w(s) ◦ θT (ω)](ω′) ≡ [w(s) ◦ θT (ω)](ω
′) for ω′ ∈ ΩS .

Define

F [τn,τn+1] ≡ σ
{
w((τn + t) ∧ τn+1)1{τn<∞} + 1{τn=+∞}∆, t ≥ 0

}
.

Lemma 2.3 For each n ≥ 1,

Fτn+1 = Fτn ∨ F [τn,τn+1],(2.10)

and θ−1
τn

(
F [τn,τn+1]

)
= Fτ1.

Proof. First, it follows from Lemma 1.3.3 of [48] that, for any stopping time τ ,

Fτ = σ{w(t ∧ τ) : t ≥ 0}.(2.11)

Equality (2.10) follows from (2.11). The rest of the proof uses the definition of the shift

operator. 2

Lemma 2.4 Let {τn : n ≥ 1} be a nondecreasing sequence of stopping times and for each

n suppose Pn is a probability measure on (ΩS ,Fτn). Assume that Pn+1 equals Pn on Fτn
for each n ≥ 1. If limn→∞ Pn(τn ≤ t) = 0 for all t ≥ 0, then there is a unique probability

measure P on (ΩS ,F) such that P equals Pn on Fτn for all n ≥ 1.

Proof. See the proof of Theorem 1.3.5 of [48]. 2

Lemma 2.5 Let s ≥ 0 be given and suppose that P is a probability measure on (Ω,Fs),
where Fs ≡ σ{w(t) : t ≥ s}. If η ∈ C([0, s],Rd) and P (w(s) = η(s)) = 1, then there is a

unique probability measure δη ⊗s P on (Ω,F) such that δη ⊗s P (w(t) = η(t), 0 ≤ t ≤ s) = 1

and δη ⊗s P (A) = P (A) for all A ∈ Fs.

Proof. See the proof of Lemma 6.1.1 of [48]. 2



CHAPTER 2. SRBM IN A RECTANGLE 16

Theorem 2.3 For each x ∈ S, there is a unique probability measure Qx on (ΩS ,F) such

that Qx(CS) = 1, Qx(
∫∞

0 1∂S(w(s)) ds = 0) = 1, Qx(τn <∞) = 1 for each n ≥ 1, Qx = P k0
x

on Fτ1, and moreover, for each n and Qx-a.s. ω ∈ {τn <∞},
(
P knw(τn(ω),ω) ◦ θ

−1
τn

)
(·) is equal

to Qnω(·) on F [τn,τn+1], where Qnω is a regular conditional probability distribution (r.c.p.d.)

of

Qx (· | Fτn) (ω).

Proof. For x ∈ S, define Q1
x ≡ P k0

x on Fτ1 . Then from Lemma 2.1, Q1
x(τ1 < ∞) = 1

and from the definition of τ1, Q1
x(w(· ∧ τ1) ∈ CS) = 1, Q1

x(
∫ τ1

0 1∂S(w(s)) ds = 0) = 1.

Suppose Qnx on Fτn has been defined, and Qnx(τn < ∞) = 1, Qnx(w(· ∧ τn) ∈ CS) = 1,

Qnx(
∫ τn

0 1∂S(w(s)) ds = 0) = 1 and for Qnx-a.e. ω ∈ {τn−1 <∞},
(
P
kn−1

w(τn−1(ω),ω) ◦ θ
−1
τn−1

)
(·) is

equal to Qn−1
ω (·) on F [τn−1,τn] where Qn−1

ω is an r.c.p.d. of Qn−1
x

(
· | Fτn−1

)
(ω). We want

to define Qn+1
x on Fτn+1 such that

Qn+1
x = Qnx, on Fτn ,

Qn+1
x (τn+1 <∞) = 1, Qn+1

x (w(· ∧ τn+1) ∈ CS) = 1, Qn+1
x (

∫ τn+1

0 1∂S(w(s)) ds = 0) = 1 and

for Qnx-a.e. ω ∈ {τn < ∞},
(
P knw(τn(ω),ω) ◦ θ

−1
τn

)
(·) is equal to Qnω(·) on F [τn,τn+1], where Qnω

is a r.c.p.d. of

Qnx (· | Fτn) (ω).

Fix a ω ∈ ΩS such that τn(ω) < ∞. Now, P kn(ω)
w(τn(ω),ω) is a probability measure on

(ΩS ,F), therefore
(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(·) is a probability measure on Fτn(ω). Therefore

by Lemma 2.5, for each ω, we can define a probability measure on (Ω,F) via

δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(·).

For any A ∈ Fτn and B ∈ Fτ1 , since by Lemma 2.5,

δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(τn(·) = τn(ω)) = 1,

we have θτn(B) = θτn(ω)(B) almost surely under δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
. Hence

δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(A ∩ θτn(B)) = 1A(ω)P kn(ω)

w(τn(ω),ω)(B),(2.12)

which is of course Fτn-measurable. It follows from Lemma 2.3, that for any A ∈ Fτn+1

δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(A)
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is Fτn-measurable. For each A ∈ Fτn+1 , define

Qn+1
x (A) ≡ EQnx

[
δω ⊗τn(ω)

(
P
kn(ω)
w(τn(ω),ω) ◦ θ

−1
τn(ω)

)
(A)

]
.(2.13)

On the Qnx null set where τn =∞, the integrand in the right member above is defined to be

δω, the Dirac measure at point ω. Then Qn+1
x is a probability measure on Fτn+1 . It then

follows from (2.12) and (2.13) that Qn+1
x = Qnx on Fτn , and

Qn+1
x (τn+1 <∞) = Qn+1

x (τn(·) <∞, τ1(θτn(·)) <∞)

= EQ
n
x

[
1{τn<∞}P

kn(·)
w(τn(·),·)(τ1 <∞)

]
= 1.

Also,

Qn+1
x (w(· ∧ τn+1) ∈ CS)

= Qn+1
x (τn <∞, w(· ∧ τn) ∈ CS , w((τn + ·) ∧ τn+1)1{τn<∞} ∈ CS)

+Qn+1
x (τn =∞, ω(·) ∈ CS)

= EQ
n
x

[
τn <∞, w(· ∧ τn) ∈ CS ;P knw(τn) (w(· ∧ τ1) ∈ CS)

]
= 1,

and similarly, we have

Qn+1
x

{∫ τn+1

0
1∂S(w(s)) ds = 0

}
= 1.

If we can show that for each t ≥ 0,

lim
n→∞

Qnx(τn ≤ t) = 0,(2.14)

then it follows from Lemma 2.4 that there is a Qx on (ΩS ,F) with the desired properties.

We leave the proof of (2.14) to the following lemma. 2

For the rest of this section, we use Enx to denote EQ
n
x .

Lemma 2.6 For each t ≥ 0,

lim
n→∞

sup
x∈S

Qnx(τn ≤ t) = 0.(2.15)

Proof. Fix t > 0 and let ε(t) be as in Lemma 2.2. We will prove by induction on n that

sup
x∈S

Qnx(τn ≤ t) ≤ (1− ε(t))n.
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This is clearly true for n = 0. Suppose it holds for some n ≥ 0. Then, for any x ∈ S,

Qn+1
x {τn+1 ≤ t} = Qn+1

x {τn ≤ t, τn + τ1 ◦ θτn ≤ t}

=
∫ t

0
Qn+1
x {τn ∈ ds, τ1 ◦ θτn ≤ t− s}

=
∫ t

0
EQ

n
x

{
1{τn∈ds}P

kn
w(τn){τ1 ≤ t− s}

}
≤ (1− ε(t))

∫ t

0
EQ

n
x

{
1{τn≤t}

}
= (1− ε(t))Qnx {τn ≤ t}

...

≤ (1− ε(t))n+1,

where from the third equality to the following inequality, we have used Lemma 2.2. Hence

lim
n→∞

sup
x∈S

Qnx(τn ≤ t) = 0.(2.16)

2

Theorem 2.4 The family of probability measures {Qx, x ∈ S} defined in Theorem 2.3 has

the following properties:

(i) Qx(w(·) ∈ CS) = 1,

(ii) Qx

(∫ ∞
0

1{w(s)∈∂S} ds = 0
)

= 1,

(iii) for each x ∈ S, any f ∈ C2
b (S) with Dif ≥ 0 on Fi (i = 1, 2, 3, 4)

mf (t) ≡ f(w(t))−
∫ t

0
Gf(w(s)) ds(2.17)

is an {Ft}-submartingale under Qx.

Proof. Properties (i) and (ii) have already been established for Qx. For (iii), since mf (·)
is bounded on each finite interval and τn → ∞, Qx-a.s., it is enough to show that, for

each n ≥ 1, {mf (· ∧ τn),Ft∧τn , t ≥ 0} is a submartingale under Qx. We prove this by

induction. When n = 1, it follows from the definition of Qx = Q1
x on Fτ1 and since

mf (t ∧ τ1) ∈ Fτ1 for each t ≥ 0, {mf (t ∧ τ1),Ft∧τ1 , t ≥ 0} is a submartingale. Assume

{mf (t∧ τn),Ft∧τn , t ≥ 0} is a submartingale under Qx, and hence under Qnx. We first show

that {mf (t ∧ τn+1),Ft∧τn+1 , t ≥ 0} is a submartingale under Qn+1
x . Because Qx|Fτn+1

=

Qn+1
x , it follows that {mf (t ∧ τn+1),Ft∧τn+1 , t ≥ 0} is a submartingale under Qx, and this

would finish our proof.
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For any 0 ≤ t1 < t2, and any A ∈ Ft1∧τn+1 , we want to show

En+1
x [mf (t2 ∧ τn+1);A] ≥ En+1

x [mf (t1 ∧ τn+1);A] .

From the definition of Qn+1
x , we have

En+1
x [mf (t2 ∧ τn+1);A] = Enx

[
E
δω⊗τn(ω)

(
P
kn(ω)

w(τn(ω,ω))
◦θ−1
τn(ω)

)
[mf (t2 ∧ τn+1);A]

]
.(2.18)

For notational convenience, in this part of the proof only, we denote for each ω

Pnω ≡ P
kn(ω)
w(τn(ω,ω)).

For each fixed ω, we consider three cases. For τn(ω) ≥ t2 we have

E
δω⊗τn(ω)P

n
ω ◦θ

−1
τn(ω) [mf (t2 ∧ τn+1), A] = mf (t2 ∧ τn+1)1A = mf (t2 ∧ τn)1A.

The remaining cases are (a) t1 ≤ τn(ω) < t2 and (b) τn(ω) < t1. We first consider case (a).

By the definition of δω ⊗τn(ω) P
n
ω ◦ θ−1

τn(ω), we have,

E
δω⊗τn(ω)P

n
ω ◦θ

−1
τn(ω)[mf (t2∧τn+1),A]

= 1A(ω)Eδω⊗τn(ω)P
n
ω ◦θ

−1
τn(ω) [mf (t2 ∧ τn+1)]

= 1A(ω)EP
n
ω [(mf ((t2 − τn(ω)) ∧ τ1)− f(w(0)))] + 1Amf (τn(ω))

≥ 1A(ω)mf (τn(ω)) = 1A(ω)mf (t2 ∧ τn(ω)),

where we have used the fact that

mf (t2 ∧ τn+1) = f(w(t2 ∧ τn+1))−
∫ t2∧τn+1

0
Gf(w(s)) ds

= f(w(t2 ∧ τn+1))− f(w(τn(ω)))−
∫ t2∧τn+1

τn(ω)
Gf(w(s)) ds

+ f(w(τn(ω)))−
∫ τn(ω)

0
Gf(w(s)) ds

= (mf ((t2 − τn(ω)) ∧ τ1 − f(w(0))) ◦ θτn(ω) +mf (τn(ω)),

and EP
n
ω [mf (t ∧ τ1)− f(w(0))] ≥ EPnω [mf (0)− f(w(0))] = 0 since mf (t ∧ τ1)− f(w(0)) is

a submartingale starting from zero under Pnω . This follows in a similar manner to that in

Lemma 7.2 of [26] using Itô’s formula and the decomposition (b) of w under P ix, stopped
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at τ1. For case (b), suppose A = C1 ∩ C2, where C1 ∈ Fτn and C2 = θτn(B) for B ∈
F(t1−τn(ω))∧τ1 . Then,

E
δω⊗τn(ω)P

n
ω ◦θ

−1
τn(ω) [mf (t2 ∧ τn+1);A]

= 1C1(ω)Eδω⊗τn(ω)P
n
ω ◦ θ−1

τn(ω) [mf (t2 ∧ τn+1);C2]

= 1C1(ω)
{
EP

n
ω [(mf ((t2 − τn(ω)) ∧ τ1)− f(w(0))) ;B] +mf (τn(ω))Pnω (B)

}
≥ 1C1(ω)

{
EP

n
ω [(mf ((t1 − τn(ω)) ∧ τ1)− f(w(0))) ;B] +mf (τn(ω))Pnω (B)

}
= 1C1(ω)Eδω⊗τn(ω)P

n
ω

[
(mf ((t1 − τn(ω)) ∧ τ1)− f(w(0))) ◦ θτn(ω), θτn(ω)(B)

]
+ Eδω⊗τn(ω)P

n
ω [mf (τn(ω));A]

= Eδω⊗τn(ω)P
n
ω ◦ θ−1

τn(ω) [mf (t1 ∧ τn+1), A] .

Since sets of the form A = C1 ∩C2 generate Ft1∧τn+1 , it follows that the left member above

is greater than or equal to the last member above for all A ∈ Ft1∧τn+1 . Putting these cases

together yields

En+1
x [mf (t2 ∧ τn+1);A]

= Enx

[
1{t1≤τn}E

δω⊗τ(ω)P
kn(ω)

w(τn(ω,ω))
θ−1
τn(ω) [mf (t2 ∧ τn+1);A]

]
+ Enx

[
1{t1>τn}E

δω⊗τ(ω)P
kn(ω)

w(τn(ω,ω))
θ−1
τn(ω) [mf (t2 ∧ τn+1);A]

]
≥ Enx

[
1{t1≤τn}mf (t2 ∧ τn);A

]
+ En+1

x

[
1{t1>τn}mf (t1 ∧ τn+1);A

]
≥ En+1

x

[
mf (t1 ∧ τn)1{t1≤τn}∩A

]
+ En+1

x

[
1{t1>τn}mf (t1 ∧ τn+1);A

]
= En+1

x [mf (t1 ∧ τn+1);A] ,

where for the last inequality we have used the submartingale property of {mf (t∧τn),Ft∧τn ,

t ≥ 0} under Qx and the fact that A∩{t1 ≤ τn} ∈ Ft1∧τn . Thus, {mf (t∧ τn+1),Ft∧τn+1 , t ≥
0} is a Qx-submartingale. 2

Proof of Theorem 2.2. For each x ∈ S, if we define Px ≡ Qx|CS , noticing that Z = w|CS ,

Mt = Ft ∩ CS , M = F ∩ CS and Qx(CS) = 1, it is easy to check that {Px, x ∈ S} has the

desired properties as a family of probability measures on (CS ,M). 2

2.2.2 Semimartingale Representation

Assume µ = 0. We first prove Z together with the family {Px, x ∈ S} in Theorem 2.2 is an

(S,Γ, µ,R)-SRBM. Our approach follows the general line of Stroock and Varadhan [47], in
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which only smooth domains were considered. We begin with a few lemmas. In this section,

for any subset U ⊂ S, Df ≥ g on U ∩ ∂S means Dif ≥ g on U ∩ Fi (i = 1, 2, 3, 4), and all

the (sub)martingales are with respect to the filtration {Mt}.

Lemma 2.7 There exists an f0 ∈ C2
b (S) such that Df0 ≥ 1 on ∂S.

Proof. Fix x ∈ S. If x ∈ F oi , (the part of Fi without corner points) for some i, let (r, θ)

denote polar coordinates with origin at x and polar axis along the side Fi in the direction

from x towards ai. Let θx denote the angle between vi and the inward unit normal nx to

F oi , where θx is taken as positive if vi points towards ai−1 and is negative otherwise. Define

ψx(r, θ) = reθ tan θx .

Then ψx is a continuous function on S that is infinitely differentiable in S\{x}. Also,

vi · ∇ψx = 0 on F oi . Let dx = dist(x, ∂S\F oi ) and cx = 1/2 dx exp(−π/2 | tan θx|). Let h be

a C2, non-increasing function on R such that

hx(y) =

 1 for y ≤ 1/2 cx
0 for y ≥ cx.

(2.19)

Define

φx(z) = (nx · (z − x))hx(ψx(z)) for all z ∈ S.

Note that φx ∈ C2
b (S) and φx(·) = 0 in a neighborhood of S\F oi , by the choice of cx. Now,

Ux ≡
{
z ∈ S : ψx(z) <

1
2
cx

}
is an open neighborhood of x in S where ψx(z) = nx · (z − x) and hence vi · ∇φx=1 on Ux

and on F oi ,

vi · ∇φx = (vi · nx)hx(ψx(z)) + (nx · (z − x))h′x(ψx(z))vi · ∇ψx(z)

= 1hx(ψx(z)) + 0

≥ 0.

It follows that Dφx ≥ 0 on ∂S.

On the other hand, if x = ai for some i, let (r, θ) be polar coordinates centered at x

with polar axis in the direction of Fi+1. Let θ1 be the angle that vi makes with the inward

normal to Fi and θ2 be the angle that vi+1 makes with inward normal to Fi+1. Either of



CHAPTER 2. SRBM IN A RECTANGLE 22

these angles is positive if it points towards the corner ai. Let α = 2(θ1 + θ2)/π. Then (2.4)

implies α < 1. Define, for r > 0,

ψx(r, θ) ≡


rα cos(αθ − θ2), α > 0,

r exp(θ tan θ2), α = 0,

1/(rα cos(αθ − θ2)), α < 0.

Define ψx(o) = 0 where o denotes the origin of the polar coordinates (r, θ). Observe that

c ≡ min0≤θ≤π/2 cos(αθ − θ2) ≥ cos(|θ1| ∨ |θ2|) > 0 and so ψx is continuous on S, infinitely

differentiable on S\{x}, ψx ≥ 0 on S and on each ray emanating from x, ψx is an increasing

function of r. Moreover (cf. Varadhan and Williams [53]),

vj · ∇ψx = 0 on F oj , j = i, i+ 1.

By condition (2.4), there is ux ∈ Si (the quadrant with vertex at x = ai that contains S)

such that ux · vi ≥ 1 and ux · vi+1 ≥ 1. Let dx = dist(x, ∂S)\
(
F oi ∪ F oi+1 ∪ {ai}

)
and

cx =


1/2 dαxc if α > 0

1/2 dx exp(−π/2| tan θ2|) if α = 0

1/2 d−αx if α < 0.

Let hx be defined as in (2.19) for this cx and define

φx(z) = (ux · (z − x))hx(ψx(z)) for all z ∈ S.

Then, in a similar manner to that for the case x ∈ F oi , we have φx ∈ C2
b (S), φx ≡ 0 in some

neighborhood of ∂S\
(
F oi ∪ F oi+1 ∪ {ai}

)
and Dφx ≥ 0 on ∂S and vj∇φx ≥ 1 on Fj ∩ Ux,

j = i, i+ 1 where

Ux ≡
{
z ∈ S : ψx(z) <

1
2
cx

}
.

Now, {Ux : x ∈ ∂S} is an open cover of ∂S and so it has a finite subcover {Ux1 , . . . , Uxn}.
Define

f0(z) =
n∑
i=1

φxi(z) for all z ∈ S.

Then f0 has the desired properties. 2

Suppose that f ∈ C2(S) (Since S is bounded, C2(S) = C2
b (S)), and Df ≥ 0 on ∂S.

Recall the definition of {mf (t)} in (2.17). Since we are restricting ourself on the space CS ,

the canonical process is Z instead of w. Therefore

mf (t) = f(Z(t))−
∫ t

0
Gf(Z(s)) ds,
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and for each x ∈ S, mf (t) is a bounded Px-submartingale. Hence by the Doob–Meyer

decomposition theorem (cf. Theorem 6.12 and 6.13 of Ikeda and Watanabe [29, Chapter 1]),

there exists an integrable, non-decreasing, adapted continuous function ξf : [0,∞)× CS →
[0,∞) such that ξf (0) = 0 and mf (t)− ξf (t) is a Px-martingale. In general, for f ∈ C2(S),

we can find a constant c such that Df̄ ≥ 0 on ∂S, where f̄ = f + cf0, hence we can choose

a ξf̄ for f̄ . If we set ξf ≡ ξf̄ − cξf0 , then we see that

(2.20) ξf (t) is an adapted continuous function of bounded variation such that

1. ξf (0) = 0 and Ex [|ξf |(t)] <∞ for t ≥ 0, and

2. mf (t)− ξf (t) is a Px-martingale.

Lemma 2.8 For f ∈ C2(S), there is at most one ξf satisfying (2.20). Moreover, for each

t ≥ 0 ∫ t

0
1O(Z(s)) d|ξf |(s) = 0, Px-a.s.

Proof. See Lemma 2.4 of [47]. 2

Lemma 2.9 If f ∈ C2(S) and U is an open neighborhood of a point x ∈ ∂S such that

f ≡ c on U , then ∫ t

0
1U (Z(s)) d|ξf |(s) = 0.

Proof. See the proof of Lemma 2.4 of [47]. 2

Lemma 2.10 Let f ∈ C2(S) and let U be a neighborhood of a point x ∈ ∂S such that

Df ≥ 0 on U ∩ ∂S. Then ∫ t

0
1U (Z(s)) dξf (s) ≥ 0.

Proof. See the proof of Lemma 2.5 of [47]. 2

Theorem 2.4 Define

ξ0(t) =
∫ t

0

1
Df0(Z(s))

dξf0(s),

Then ξ0(0) = 0, Ex[ξ0(t)] <∞,

ξ0(t) =
∫ t

0
1∂S(Z(s)) dξ0(s)

and

mf (t)−
∫ t

0
Df(Z(s)) dξ0(s)
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is a Px-martingale for all f ∈ C2(S) which is constant in a neighborhood of each corner

point.

Proof. It is obvious from the properties of ξf0 and Lemma 2.8 and 2.10 that ξ0 defined

satisfies all the conditions in the theorem except the last expression being a martingale.

Therefore it is enough to show that

ξf (t) =
∫ t

0
Df(Z(s)) dξ0(s) =

∫ t

0

Df(Z(s))
Df0(Z(s))

dξf0(s).(2.21)

Notice that since Df0 ≥ 1 on ∂S and f ∈ C2(S) is constant near corners, the expression

Df(Z(s))/Df0(Z(s)) is continuous in s and so by Lemma 2.8, the integral in the right

member of (2.21) is well defined and (2.21) itself is equivalent to

(a) dξf (t) being absolutely continuous with respect to dξf0 , and

(b)
dξf (t)
dξf0(t)

=
Df(Z(t))
Df0(Z(t))

.

For (a), let f̄ = f + cf0 and f̂ = −f + cf0. Choose a large c such that Df̄ ≥ 0 and Df̂ ≥ 0

on ∂S, and so −c dξf0(t) ≤ dξf (t) ≤ c dξf0(t). Therefore (a) is true. To prove (b), let

α(t) ≡ dξf (t)/dξf0(t). For any x ∈ ∂S, let

β =
Df(x)
Df0(x)

.

Since f is flat near corners, Df(x)/Df0(x) is a continuous function on S. Hence, for any

ε > 0, there is an open set U ⊂ S containing x such that

(β − ε)Df0(y) ≤ Df(y) ≤ (β + ε)Df0(y), y ∈ U, dξf0-a.e.

Then it follows from Lemma 2.10 that

(β − ε)
∫ t

u
1U (Z(s))dξf0(s) ≤

∫ t

u
1U (Z(s))α(s) dξf0(s) ≤ (β + ε)

∫ t

u
1U (Z(s))dξf0(s)

for any 0 ≤ u < t. Hence

(β − ε)1U (Z(s)) ≤ 1U (Z(s))α(s) ≤ (β + ε)1U (Z(s)).

It follows that

α(t) =
Df(Z(t))
Df0(Z(t))

,

which proves (b) and hence the theorem. 2
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Theorem 2.5 For i = 1, 2, 3, 4, let

Li(t) ≡
∫ t

0
1Fi\{ai+1}(Z(s)) dξ0(s).

Then Px-a.s. Li(0) = 0, Li is a non-decreasing, adapted continuous. Li increases only at

times when Z(·) ∈ Fi, i.e.,∫ t

0
1{Z(s) 6∈Fi} dLi(s) = 0, (i = 1, 2, 3, 4),

and for any f ∈ C2(S)

f(Z(t))−
∫ t

0
Gf(Z(s)) ds−

4∑
i=1

∫ t

0
Dif(Z(s)) dLi(s)(2.22)

is a Px-martingale.

Proof. It is clear, except (2.22), the defined Li has all the desired properties. When f is

flat near corners, (2.22) is proved in Theorem 2.4. Suppose f ∈ C2(S), and f is flat near

corners except near corner a1. We need to prove (2.22) is a martingale for such an f . This

can be proved basically in the same was as in Theorem 5.5 and Theorem 6.2 of [56]. 2

Theorem 2.6 Define

X(t) ≡ Z(t)−
4∑
i=1

viLi(t),

then Px(X(0) = x) = 1, and under Px, X is an (Γ, µ)-Brownian motion, and X(t)− µt is

an {Ft}-martingale. Therefore

Z(t) = X(t) +RL(t)

is an (S,Γ, µ,R)-SRBM.

Proof. To prove X is a Brownian motion and a {Ft}-martingale, it can be accomplished

in an exact same way as the proof of Theorem 3.3. That Z is an SRBM follows from

Theorem 2.5 and X being a Brownian motion. 2

We have proved, when µ = 0, there is a family {Px, x ∈ S} such that Z with {Px, x ∈ S}
is an SRBM, that is, Z has the following semimartingale representation

Z(t) = X(t) +
4∑
i=1

viLi(t),(2.23)

where X and Li’s satisfy (2.2) and (2.3). For arbitrary µ we have the following theorem.
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Theorem 2.7 Let there be given a rectangle S, covariance matrix Γ, a drift vector µ and

a reflection matrix R whose columns satisfy (2.4). Then there is a family of probability

measures {Px, x ∈ S} on (CS ,M, {Mt}) such that the canonical process Z together with

{Px, x ∈ S} is an SRBM associated with the data (S,Γ, µ,R).

Proof. For this proof only, to avoid confusion among different families of probability mea-

sures, we use {Pµx , x ∈ S} to denote the family corresponding to data (S,Γ, µ,R). Let

µ0 = 0, it follows from Theorem 2.6 that there is a family {Pµ0
x , x ∈ S} such that Z to-

gether with this family is an SRBM. In particular, Z has the representation (2.23). Fixing

an x ∈ S, for each t ≥ 0, let

α(t) ≡ exp
(
µ · (X(t)− x)− 1

2
|µ|2t

)
.

Then {αt, t ≥ 0} is a martingale on (CS ,M, {Mt}, Pµ0
x ) and it follows from Girsanov’s

Theorem (cf. [6, Chapter 9]) that there exists a unique probability measure Pµx on (CS ,M)

such that
dPµx
dPµ0

x
= α(t) on Mt for all t ≥ 0.

Since X is a (Γ, µ0)-Brownian motion and {Mt}-martingale starting from x under Pµ0
x , it

also follows from Girsanov’s Theorem that X is a (Γ, µ)-Brownian motion starting with x

under Pµx , and {X(t)− µt,Mt, t ≥ 0} is a martingale on (CS ,M, Pµx ). It remains to show

(2.3) is true under Pµx , i.e., for each t ≥ 0,∫ t

0
1{Zi(s) 6∈Fi} dLi(s) = 0, Pµx -a.s.

This is true because ∫ t

0
1{Zi(s) 6∈Fi} dLi(s) = 0, Pµ0

x -a.s.

and Pµx is equivalent to Pµ0
x on Mt. Thus, for each x ∈ S we have constructed Pµx such

that (2.1), (2.2) and (2.3) are satisfied under Pµx . 2

2.2.3 Uniqueness

In this section, we prove that the family {Px, x ∈ S} is unique. Let F o denote the smooth

part of the boundary ∂S, i.e., F o is obtained by taking out four corner points from ∂S. Let

D0 =
{
f : f ∈ C1(S) ∩ C2(O ∪ F o), Dif(x) = 0 on Fi,(2.24)

i = 1, 2, 3, 4, and Gf has a continuous extension onto S } .
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Definition 2.3 Let π be a probability measure on S. By a solution of the martingale

problem for (G, π) we mean a probability measure P on (CS ,M) such that PZ(0)−1 = π

and for each f ∈ D0,

f(Z(t))−
∫ t

0
Gf(Z(s)) ds(2.25)

is a P -martingale with respect to the filtration {Mt}.

Remark. From now on, if no filtration is explicitly given, every martingale considered will

be a martingale with respect to the filtration {Mt}.

Proposition 2.1 For any probability measure π on S, the measure Pπ ≡
∫
S Px π(dx) is a

solution of the martingale problem for (G, π).

Proof. It is enough to show that for each f ∈ D0 and each x ∈ S,

f(Z(t))−
∫ t

0
Gf(Z(s)) ds(2.26)

is a Px-martingale. By a standard convolution argument [56, p.30], there is a sequence {fn}
of functions in C2(S) such that fn and ∇fn converge uniformly on S to f and ∇f , respec-

tively, and {Gfn} is bounded on S and converges pointwise to Gf on O ∪ F o. Since Z has

the semimartingale representation (2.1), applying Itô’s formula with fn on the completion

(CS ,M̃, Px) of (CS ,M, Px), we obtain Px-a.s. for all t ≥ 0:

fn(Z(t)) = fn(Z(0)) +
∫ t

0
∇fn(Z(s)) dξ(s) +

2∑
i=1

∫ t

0
Difn(Z(s)) dLi(s)(2.27)

+
∫ t

0
Gfn(Z(s)) ds,

where ξ(t) ≡ X(t)−µt. By the uniform convergence of {∇fn} on S, the stochastic integral

(with respect to dξ) in (2.27) converges in L2(CS ,M̃, Px) to that with f in place of fn.

Moreover, since {Gfn(Z(s))} converges boundedly to Gf(Z(s)) on {s ∈ [0, t] : Z(s) ∈
O ∪ F o}, and by (2.6),

ζ{s ∈ [0, t] : Z(s) 6∈ O ∪ F o} = 0 Px-a.s.,

where ζ is Lebesgue measure on R, then it follows by bounded convergence that the last

integral in (2.27) converges Px-a.s. to that with f in place of fn. The remaining terms in

(2.27) converge in a similar manner. Hence, (2.27) holds with f in place of fn. Then it

follows by Dif = 0 on Fi (i = 1, 2, 3, 4) and (2.3) that

f(Z(t))−
∫ t

0
Gf(Z(s)) ds(2.28)
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is a martingale on (CS ,M̃, {M̃t}, Px) where M̃t denotes the augmentation of Mt by the

Px-null sets in M̃. But since (2.28) is adapted to {Mt}, it is in fact a martingale on

(CS ,M, {Mt}, Px). This proves the proposition.

Lemma 2.11 The operator (G,D0) is dissipative, i.e., for every f ∈ D0 and every λ > 0:

||λf −Gf | | ≥ λ ||f | |(2.29)

where the norm || · || is the supremum norm on C(S).

Proof. For x ∈ S, let δx be the Dirac measure at x. By Proposition 2.1, Px is a solution of

the martingale problem for (G, δx). Hence for f ∈ D0,

f(Z(t))− f(Z(0))−
∫ t

0
Gf(Z(s)) ds(2.30)

is a Px-martingale. It follows that for λ > 0

e−λtf(Z(t))− f(Z(0))−
∫ t

0
e−λs(λ−G)f(Z(s)) ds(2.31)

is also a Px-martingale. Therefore, by taking expectation Ex with respect to Px in (2.31),

we obtain

Ex
[
e−λtf(Z(t))

]
− f(x) = Ex

[∫ t

0
e−λs(λ−G)f(Z(s)) ds

]
.(2.32)

Letting t→∞, we yields

f(x) = Ex

[∫ ∞
0

e−λs(λ−G)f(Z(s)) ds
]
,(2.33)

and from (2.33) one immediately gets λ||f || ≤ ||(λ−G)f ||.

Theorem 2.8 For every probability measure π on S, the martingale problem (G, π) has the

unique solution Pπ.

Proof. It has been proved in Proposition 2.1 that Pπ is a solution of the martingale problem

for (G, π). Now we will show that the solution is unique. For every Hölder continuous

function g on S and every λ > 0, by using Lieberman’s theorem [34, Theorem 1], there is

u ∈ C1(S) ∩ C2(O) such that (λ−G)u = g on O and Diu(x) = 0 on Fi (i = 1, 2, 3, 4). By

the classical regularity properties of elliptic partial differential equations (cf. Gilbarg and

Trudinger [17, Lemma 6.18]), u is twice differentiable on the smooth part of the boundary

F o. Since Gu(x) = λu(x)−g(x) for x ∈ O, Gu has continuous extension to S, and therefore
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we have u ∈ D0 and (λ−G)u = g. Because the set of Hölder continuous functions is dense

in C(S) (with the sup norm topology), the range of λ − G is dense in C(S) for every

λ > 0. Also, by Lemma 2.11, the operator (G,D0) is dissipative. Therefore we can apply

the uniqueness theorem of Ethier and Kurtz [11, Theorem 4.1 of Chapter 4] to assert that

the solution of the martingale problem for (G, π) is unique.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Existence of a family {Px,∈ S} is given in Theorem 2.7 and the

uniqueness is given in Theorem 2.8. To show Feller continuity, it is enough to show for

any x ∈ S and sequence {xn} in S such that xn → x ∈ S, that one has Pxn ⇒ Px, where

the symbol “⇒” means that the left member converges weakly to the right member. To

see this, notice that since the state space S is compact, by tightness, the family {Pxn}
is tight, and hence it is precompact in the topology of weak convergence, see Billingsley

[3]. Assume Pxnk ⇒ P∗ for some subsequence {nk}. Using an argument similar to that in

the proof of Theorem 3.1 later in this dissertation and using the uniqueness of a solution

to the martingale problem for (G, δx) (Theorem 2.8), we can show P∗ = Px. Therefore

Pxnk ⇒ Px for any convergent subsequence Pxnk , hence Pxn ⇒ Px and this proves the Feller

continuity. It follows from uniqueness for the martingale problem (G, δx), Feller continuity

and Theorem 4.2 in Chapter 4 of [11] that Z with {Px, s ∈ S} is a strong Markov process,

i.e.,

Ex [f(Z(τ + t))|Mτ ] = EZ(τ)f(Z(t)), Px-a.s.

for any f ∈ B(S), t ≥ 0, and Px-a.s. finite {Mt}-stopping time τ .

It remains to prove that

sup
x∈S

Ex [Li(t)] <∞

for each t ≥ 0 (i = 1, 2, 3, 4). To see this, for the function f0 defined in Lemma 2.7,

f0(Z(t))− f0(Z(0))−
∫ t

0
Gf0(Z(s)) ds−

4∑
i=1

∫ t

0
Dif0(Z(s)) dLi(s)

is a martingale. Taking expectation with respect Px, we have

Ex [f0(Z(t))]− f0(x)− Ex
[∫ t

0
Gf0(Z(s)) ds

]
= Ex

[
4∑
i=1

∫ t

0
Dif0(Z(s)) dLi(s)

]
Because Dif0 ≥ 1 on Fi, we have

sup
x∈S

Ex

[
4∑
i=1

Li(t)

]
≤ 2||f0||+ ||Gf0||t.
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2

2.3 Stationary Distribution

2.3.1 The Basic Adjoint Relationship (BAR)

For a probability measure π on S, recall that Pπ has been defined as Pπ(A)≡
∫
S Px(A)π(dx).

Let Eπ denote the expectation with respect to Pπ. A probability measure π on S is called

a stationary distribution of the SRBM Z if for every bounded Borel function f on S and

every t > 0 ∫
S
Ex[f(Zt)]π(dx) =

∫
S
f(x)π(dx).

Because the state space S is compact, there is a stationary distribution for Z (see Dai

[8]). Also, noticing from Theorem 2.1 that supx∈S Ex [Li(t)] < ∞ (i = 1, 2, 3, 4) and using

arguments virtually identical to those in [26], one can show that

Proposition 2.2 Any stationary distribution for an SRBM Z is unique. If π is the sta-

tionary distribution,

(a) π is equivalent to Lebesgue measure dx on S, denoted as π ≈ dx, and for each x ∈ S
and f ∈ C(S)

lim
n→∞

1
n

n∑
i=1

Ex [f(Z(i))] =
∫
S
f(z) dπ(z).

(b) there is a finite Borel measure νi on Fi such that νi ≈ σi, where σi is Lebesgue measure

on Fi, and for each bounded Borel function f on Fi and t ≥ 0,

Eπ

[∫ t

0
f(Z(s)) dLi(s)

]
= t

∫
Fi

f dνi, (i = 1, 2, 3, 4).

2

For an f ∈ C2(S), applying Itô’s formula to the process Z exactly as in [26], one has

that

f(Z(t)) = f(Z(0)) +
2∑
i=1

∫ t

0

∂

∂xi
f(Z(s)) dξi(s) +

∫ t

0
Gf(Z(s)) ds(2.34)

+
4∑
i=1

∫ t

0
Dif(Z(s)) dLi(s)

where ξi(t) = Xi(t)−µit. Again proceeding exactly as in [26], we can then take Eπ of both

sides of (2.34) to prove the following theorem.
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Theorem 2.9 The stationary density p0 (≡ dπ/dx) and the boundary densities pi (≡
dνi/dσ) (i = 1, 2, 3, 4) jointly satisfy the following basic adjoint relationship (BAR):∫

S
(Gf ·p0) dx+

4∑
i=1

∫
Fi

(Dif ·pi) dσi = 0 for all f ∈ C2(S).(2.35)

2

2.3.2 Sufficiency of (BAR)—A First Proof

The argument given in the previous section shows that (2.35) is necessary for p0 to be

the stationary density of Z. The following theorem says that the converse is true. It is

an essential part of an algorithm that we are going to develop to compute the stationary

density numerically. Note that π is not initially assumed to have a density, nor are ν1, . . . , ν4

initially assumed to have densities.

Theorem 2.10 Suppose that π is a probability measure on S and ν1, . . . , ν4 are positive

finite Borel measures on F1, . . . , F4 respectively. If they jointly satisfy∫
S
Gf dπ +

4∑
i=1

∫
Fi

Dif dνi = 0 for all f ∈ C2(S),(2.36)

then π is the stationary distribution p0 dx of Z and the νi are the corresponding boundary

measures defined in Proposition 2.2.

Remark. We are going to give a more or less direct proof of the main part of this theorem.

This proof establishes that π is the stationary distribution but does not show that ν1, . . . , ν4

are the corresponding boundary measures defined in Proposition 2.2. Nevertheless, the

theorem is true. By considering a corresponding constrained martingale problem, we are

able to provide a complete proof of the theorem. That general proof is left to Chapter 4

where we deal with SRBM in an orthant. Before we present the proof of Theorem 2.10, two

lemmas are needed.

Lemma 2.12 The operator (G,D0) satisfies the positive maximum principle, i.e., when-

ever f ∈ D0, x0 ∈ S, and supx∈S f(x) = f(x0) ≥ 0, we have Gf(x0) ≤ 0.

Proof. Suppose that f ∈ D0, x0 ∈ S, and supx∈S f(x) = f(x0), Because (2.26) is a Px0-

martingale, by taking expectations under Px0 , we have

Ex0 [f(Z(t))]− f(x0) = Ex0

[∫ t

0
Gf(Z(s)) ds

]
.(2.37)
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The left hand side of (2.37) is non-positive because of x0 being a maximum point of f .

Dividing the right hand side of (2.37) by t and taking t → 0, by the continuity of Gf and

the continuity of the process Z, we get Gf(x0) ≤ 0. 2

The proof of the following lemma is adapted from Williams [56, Lemma 4.4]. Note that

the symbol θ is used in the following proof to denote the angle in polar coordinates.

Lemma 2.13 D0 is dense in C(S) (with the sup norm topology).

Proof. It is easy to check that D0 is an algebra, i.e., for any pair f, g ∈ D0, αf + βg ∈ D0

and f · g ∈ D0 for any real constants α and β. Since S is compact and all the constant

functions are in D0, by the Stone–Weierstrass theorem [42, p.174], it is enough to show that

D0 separates points in S, i.e., for any distinct pair z0 and z∗ in S, there is an f ∈ D0 such

that f(z0) = 0 and f(z∗) = 1.

If one of the z’s is in the interior O, then such a function f separating z0 and z∗ can

be trivially constructed. Now assume both the z0 and z∗ are in ∂S, but at least one of

them, say z0, is in the interior part of the boundary F o. We can further assume z0 is in

the interior of F1, the proof for z0 ∈ Fi (i = 2, 3, 4) is similar. Let v⊥1 = (v12,−1)′ be a

vector perpendicular to v1, where v12 is the second component of v1. For any ε > 0, choose

g : R→ [0, 1] to be twice continuously differentiable function satisfying

g(y) =

 1 for |y| ≤ ε
2 ,

0 for |y| ≥ ε.
(2.38)

Define

f(z) = 1− g(z1)g
(
(z − z0) · v⊥1

)
, z = (z1, z2).(2.39)

Then f ∈ C2(S), f(z0) = 0 and for z ∈ F1,

D1f(z) = −g′(0)g
(
(z − z0) · v⊥1

)
− g(0)g′

(
(z − z0) · v⊥1

)
v⊥1 · v1

= 0

since g′(0) = 0 and v⊥1 ·v1 = 0. Also, on {z : |z−z0| > (|v12|+2)ε}∩S, f(z) ≡ 1. Therefore,

by choosing a small enough ε, we have f(z∗) = 1 and Djf(z) = 0 on Fj (j = 2, 3, 4). Thus,

f ∈ D0 and f separating z0 and z∗.

The remaining cases are when both z0 and z∗ are at corners. Without loss of generality,

we can assume z0 to be the origin, and |z∗| > 1. Let θi denote the angle that the direction

of reflection on Fi makes with the inward normal to the side Fi (i = 1, 2), positive angles
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being toward the origin (−π
2 < θ1, θ2 <

π
2 ). Then v1 = (1,− tan θ1)′ and v2 = (− tan θ2, 1)′.

Also, let α≡2(θ1 + θ2)/π. Then condition (2.4) implies that α < 1.

Let us first assume that α > 0. Define

Φ(r, θ) = rα cos(αθ − θ2) for (r, θ) ∈ S.(2.40)

Proceeding exactly as in [56], we have for r > 0

D1Φ
(
r,
π

2

)
= 0, D2Φ(r, 0) = 0.(2.41)

If we define

c≡ min
θ∈[0,π

2
]
cos(αθ − θ2),(2.42)

then c is strictly positive. Let g : [0,∞) → [0, 1] be a twice continuously differentiable

function satisfying

g(y) =

 0 for 0 ≤ y ≤ c
2

1 for y ≥ c,
(2.43)

and let f(z) = g(Φ(z)). It is easy to check that f is identically zero when |z| < ( c2)1/α,

therefore f ∈ C2(S) and f(z0) = 0. Also one can check that

f(z) ≡ 1, for |z| ≥ 1.(2.44)

Therefore f(z∗) = 1, and by (2.41), (2.41) and (2.44), we get Djf = 0 (i = 1, 2, 3, 4). Hence

f ∈ D0 separates z0 from z∗.

For α < 0, we let

Φ(r, θ) = r−α cos(αθ − θ2) for (r, θ) ∈ S,(2.45)

and construct f as in the previous case. Proceeding almost exactly as in the previous case,

we can show that the function f ∈ D0 separates z0 from z∗.

The last case we are now considering is when α = 0. In this case, we let

Φ(r, θ) = reθ tan θ2 , for (r, θ) ∈ S,(2.46)

and use the same g as in (2.43) with c ≡ infθ∈[0,π/2] e
θ tan θ2 . It can be checked that f ≡

g (Φ) ∈ D0 separating z0 from z∗. This finishes the proof of the lemma. 2

Proof of Theorem 2.10. For f ∈ D0, the basic adjoint relationship (2.35) reduces to∫
S
Gf(x) dπ(x) = 0.(2.47)
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As shown in the proof of Lemma 2.13, D0 is an algebra and D0 is dense in C(S). Moreover,

by Lemma 2.12, the operator (G,D0) satisfies the positive maximum principle, and therefore

Echeverria’s theorem ( see [10] or [11, Theorem 9.17 of Chapter 4]) can be applied to assert

that π is a stationary distribution for a solution of the martingale problem for (G, π). By

Theorem 2.8, the law of Z = {Z(t)} under Pπ is the unique solution to the martingale

problem for (G, π). Therefore, π is a stationary distribution for Z. Because the stationary

distribution of Z is unique, dπ(x) = p0 dx on S. 2

2.4 Numerical Method for Steady-State Analysis

In this section we develop an algorithm for computing the stationary density p0 and the

boundary densities pi (i = 1, 2, 3, 4). The higher dimensional analog will be discussed in

Chapter 4. The following conjecture is vital assumption in our proof of the convergence of

the algorithm that we develop.

Conjecture 2.1 Suppose that p0 is an integrable Borel function in S such that
∫
S p0 dx = 1

and p1, . . . , p4 are integrable on F1, . . . , F4 respectively. If they jointly satisfy the basic

adjoint relationship (2.36), then pi is non-negative (i = 0, 1, 2, 3, 4).

2.4.1 Inner Product Version of (BAR) and a Least Squares Problem

Readers might naturally assume that it is best to convert (2.35) into a direct PDE for p0,

but that gets very complicated because of auxiliary conditions associated with the singular

parts of the boundary; we are just going to work with (2.35) directly. We start this section

by converting (2.35) into a compact form that will be used later. Let

Af = (Gf ;D1f,D2f,D3f,D4f),(2.48)

dλ = (dx; dσ1, dσ2, dσ3, dσ4).(2.49)

We also incorporate the stationary density p0 with the boundary densities pi into a new

function p, i.e.

p = (p0; p1, p2, p3, p4).(2.50)
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Hereafter, we simply call p the stationary density of the corresponding SRBM. For a subset

E of Rd, let B(E) denote the set of functions which are BE measurable. For i = 1, 2, let

Li(S, dλ) ≡

g = (g0; g1, . . . , g4) ∈ B(S)× B(F1)× · · · × B(F4) :(2.51)

∫
S
|g0|i dx+

4∑
j=1

∫
Fj

|gj |i dσj <∞

 ,
and for g ∈ L1(S, dλ), let

∫
S
gdλ ≡

∫
S
g0 dx+

4∑
i=1

∫
Fi

gi dσi.

For g, h ∈ B(S)× B(F1)× · · · × B(F4), we put g · h ≡ (g0h0; g1h1, . . . , g4h4), and for h > 0

(hi > 0, i = 0, 1, . . . , 4), we put g/h ≡ (g0/h0; g1/h1, . . . , g4/h4). With these notation the

basic adjoint relationship (2.35) can be rewritten as∫
S

(Af ·p) dλ = 0, for all f ∈ C2(S).(2.52)

Next we convert the problem of solving (2.52) into a least squares problem, and then

propose an algorithm to solve the least squares problem. Our approach is similar in spirit

to that of Bramble and Schatz [5], who considered a Rayleigh-Ritz-Galerkin method for

solutions of the Dirichlet problem using a subspace without boundary conditions. The

purpose of their method was to avoid finding boundary elements when the boundary of the

domain is complicated. In our problem, the domain is not complicated at all except that it

is non-smooth, but the boundary condition is implicit in (2.52) and is not known to us.

We start with the compact form (2.52) of the basic adjoint relationship (2.35). Let

L2 = L2(S, dλ), and denote by || · || the usual L2 norm and by (· , ·) the usual inner product.

It is evident that Af ∈ L2 for any f ∈ C2(S). Hence we can define

H = {Af : f ∈ C2(S)},

where the closure is taken in L2. If one assumes that the unknown density p is in L2, then

(2.52) says simply that Af ⊥ p for all f ∈ C2(S), or equivalently p ∈ H⊥. Conversely if

w ∈ H⊥, then w satisfies (2.52).

Let us assume for the moment that the unknown density function p defined by (2.50) is

in L2. That is, assume p0 is square integrable with respect to Lebesgue measure in S, and pi
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is square integrable with respect to one-dimensional Lebesgue measure on Fi (i = 1, 2, 3, 4).

In order to construct a function w ∈ H⊥, let

φ0(x) = (1; 0, 0, 0, 0).(2.53)

Because p0 is a probability density, we have (p, φ0) =
∫
S(p · φ0) dλ =

∫
S p0 dx = 1, so p is

not orthogonal to φ0. On the other hand, we know from (2.52) that p ⊥ h for all h ∈ H,

and therefore φ0 is not in H. Let φ̄0 be the projection of φ0 onto H. That is,

φ̄0≡argminφ∈H ||φ0 − φ||2.(2.54)

Because φ0 is not in H, we know that

φ̃0≡φ0 − φ̄0 6= 0.(2.55)

Obviously, φ̃0 ∈ H⊥. Simple algebra gives

α≡
∫
S

(
φ̃0(x) · φ0(x)

)
dλ(dx) = (φ̃0, φ̃0) > 0.

Proposition 2.3 Suppose that p ∈ L2. Then w = (w0, w1, . . . , w4) ≡ 1
αφ̃0 satisfies the

basic adjoint relationship (2.52) and
∫
S w0 dx = 1. Therefore, assuming that Conjecture 2.1

is true, we have w = p almost everywhere with respect to dλ.

Proof. Let w≡ 1
αφ̃0. Then, by construction, w satisfies the basic adjoint relationship (2.52).

Because
∫
S w0 dx = 1, Conjecture 2.1 asserts that wi are non-negative. Thus Theorem 2.10

can be applied to assert w = p almost everywhere with respect to dλ 2

As we will see later, the assumption that p is in L2 is not satisfied in all cases of practical

interest. However, when that assumption is satisfied, Proposition 2.3 says that in order to

find the unknown stationary density p, it suffices to solve the least squares problem (2.54).

We now define some quantities that are of interest in the queueing theoretic applications

of SRBM. Let mi =
∫
S(xi ·w0(x)) dx (i = 1, 2) and δi =

∫
Fi
wi(x) dσi (i = 1, 2, 3, 4). As-

suming Conjecture 2.1 is true, mi =
∫
S(xi ·p0(x)) dx, which represents the long-run average

value of Zi, and δi =
∫
Fi
pi(x) dσi, which represents the long-run average amount of pushing

per unit of time needed on boundary Fi in order to keep Z inside the rectangle S. That is,

Ex[Li(t)] ∼ δit as t→∞ for each x ∈ S (k = 1, 2, 3, 4), see Proposition 2.2 for details.
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2.4.2 An Algorithm

Given Proposition 2.3, we will now propose an algorithm for approximate computation of p

based on L2 projection. In the examples presented later, it will be seen that the algorithm

works well even in cases where p is known not to be in L2.

Proposition 2.4 Suppose that we can construct a sequence of finite dimensional subspaces

{Hn} of H such that Hn ↑ H as n ↑ ∞ (Hn ↑ H means that H1,H2, . . . are increasing and

every h ∈ H can be approximated by a sequence {hn} with hn ∈ Hn for each n). Let

ψn≡argminφ∈Hn ||φ0 − φ||2.

Then ||φ̄0 − ψn||2 → 0 as n→∞. Furthermore, if

wn≡φ0 − ψn,(2.56)

then wn → φ̃0 in L2(S, dλ) as n→∞.

Proof. We can find an orthonormal basis {φi}i≥1 in H, such that {φ1, . . . , φn} is an

orthonormal basis for Hn. Then

φ̄0 =
∞∑
i=1

(φ0, φi)φi, and ψn =
n∑
i=1

(φ0, φi)φi.

Hence

||φ̄0 − ψn||2 =
∞∑

i=n+1

(φ0, φi)2 → 0.

Let wn≡φ0 − ψn. Then

||wn − φ̃0||2 = ||(φ0 − ψn)− (φ0 − φ̄0)||2 = ||ψn − φ̄0||2 → 0.

2

Now the problem is to find the projections ψn. The way to find the projection is

standard. Suppose that {φ1, . . . , φn} is a basis for Hn (it need not be an orthonormal

basis). Let

ψn =
n∑
i=1

aiφi

where (a1, a2, . . . , an)′ is the unique solution x of the following normal equations:

Ax = b, where(2.57)
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A =


(φ1, φ1) . . . (φ1, φn)

...
. . .

...

(φn, φ1) . . . (φn, φn)

 , and b =


(φ0, φ1)

...

(φ0, φn)

 .(2.58)

Because A is positive definite, the normal equations do have a unique solution. Finally, we

have

wn = φ0 −
n∑
i=1

aiφi.

As pointed out in Serbin [44, 43], the normal matrix A in the normal equations (2.57)

is generally ill conditioned. There are many alternatives for solving the normal equations.

However, we have chosen to use Gram-Schmidt orthogonalization to find the projections ψn
directly.

There are many ways to choose the approximating subspaces Hn, each of which yields

a different version of the algorithm. We choose Hn as

Hn = span of {Afk,i : k = 1, 2, . . . , n; i = 0, 1, . . . , k}

where fk,i = xi1x
k−i
2 . The dimension of Hn is

(n+ 1)(n+ 2)
2

− 1.

Proposition 2.5 If Hn is defined as above, then Hn ↑ H. Let wn be defined as in (2.56);

then αn≡(wn, wn) 6= 0. Therefore we can define pn≡ 1
αnwn. Furthermore, if p ∈ L2, then

pn → 1
αφ̃0 in L2 as n→∞.

Proof. The proof of Hn ↑ H is an immediate consequence of Proposition 7.1 and Remark 6.2

in the appendices of Ethier and Kurtz [11]. Because φ0 6∈ Hn for each n, we know that

wn 6= 0 and αn≡(wn, wn) 6= 0. Hence we can define pn≡ 1
αnwn. If we assume p ∈ L2, then

α 6= 0. Because wn → φ̃0 and αn → α, it is immediate that pn → 1
αφ̃0. 2

Several considerations lie behind our choice of approximating subspaces. First, more

complicated subspaces (e.g., those used in the finite element method) may lead to problems

in higher dimensions. Second, when low order polynomials are substituted into (2.35),

one obtains exact relations among some quantities associated with the stationary density

p. These relations resemble energy preserving relations in the finite element method. We

believe that this property will enhance the accuracy of our computational method. Finally

as the following section will show, our choice seems to give reasonably good results.

Proposition 2.6 Suppose that p ∈ L2. Let pn be defined as in Proposition 2.5. Let m(n)
1 =∫

O (x1 ·pn(x)) dx and m
(n)
2 =

∫
O (x2 ·pn(x)) dx. Then m

(n)
1 → m1 and m

(n)
2 → m2 as

n→∞.
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Proof. ∣∣∣m(n)
1 −m1

∣∣∣ ≤ ∫
O
x1 |pn(x)− w0(x)| dx =

∫
O
x1

∣∣∣∣pn(x)− 1
α
φ̃0(x)

∣∣∣∣ dx
≤

(∫
S
x2

1 dx

) 1
2

(∫
S

∣∣∣∣pn(x)− 1
α
φ̃0(x)

∣∣∣∣2 dx
) 1

2

≤
(
a3

2a4

3

) 1
2
∣∣∣∣∣∣∣∣pn − 1

α
φ̃0

∣∣∣∣∣∣∣∣2 → 0,

as n → ∞, where the constants a2 and a4 are indicated in Figure 2.3. Similarly we have

m
(n)
2 → m2 as n→∞. #

Remark. If p 6∈ L2 and Conjecture 2.1 holds, then φ̃0 in (2.55) must be zero in L2. However,

as stated in Proposition 2.5, each pn is well defined. I conjecture that pn still converges to

p in a weak sense, and the weak convergence would imply m(n)
i → mi as n→∞ (i = 1, 2).

2.5 Numerical Comparisons

2.5.1 Comparison with SC Solutions

In this section we consider a special case of the SRBM described in Section 2.1, comparing

results obtained with our algorithm against a known analytic solution. The special case

considered has µ = 0 and Γ = 2I (I is the 2×2 identity matrix), so our differential operator

G is the ordinary Laplacian. Before going further, we introduce some additional notation.

Let ni be the unit normal vector on Fi, and θi be the angle between the vector vi and the

normal ni, with θi being positive when vi lies to the right of ni as one traces the boundary

counter clockwise, and non-positive otherwise (i = 1, 2, 3, 4). Let βi = 2(θi+1 − θi)/π

(i = 1, 2, 3, 4) with θ5≡θ1. It can be shown that (2.4) is equivalent to βi > −1 for all i.

From the results in [23] it follows that p0 is always square integrable in S with respect to

Lebesgue measure, whereas pi is square integrable on Fi with respect to one-dimensional

Lebesgue measure if and only if

βi > −
1
2
, (i = 1, 2, 3, 4).(2.59)

Hence we conclude that p ∈ L2(S, dλ) if and only if (2.59) is true.

In addition to the restrictions mentioned earlier, we assume that θ1 = π/4, θ2 = 0,
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θ3 = 0 and θ4 = −π/4. The corresponding reflection matrix is

R =

 1 0 −1 1

−1 1 0 −1

 .(2.60)

We fix the height of the rectangle at b = 1 and let the length a of the rectangle change

freely. The SRBM in this case corresponds to the heavy traffic limit of two balanced finite

queues in tandem. It is easy to calculate that β1 = −1/2, β2 = 0, β3 = −1/2 and β4 = 1.

Therefore (2.59) is not satisfied, implying that p 6∈ L2(S, dλ). Readers will see that our

algorithm gives very accurate approximations even in this case. This is consistent with our

conjecture explained at the end of Section 2.4.

For various values of the length parameter a, Table 2.1 compares two different estimates

of m1,m2, δ1, δ2, δ3, δ4. The QNET estimate is that obtained with our algorithm (see Sec-

tion 2.4), using n = 6. The SC estimate is that obtained by Trefethen and Williams [52]

using a software package called SCPACK; for the special case under discussion (the re-

striction to two dimensions and the assumption of zero drift are both essential), Harrison,

Landau and Shepp [23] used complex variable methods to compute the stationary density

function p0 in terms of a certain Schwartz–Christoffel transformation, and then SCPACK

allows numerical evaluation of these formulas. The SC estimates on our Table 2.1 are taken

from Table 2 on page 244 of [52], and the rows labelled DIFF give the differences between

those SC estimates and our QNET estimates. It should be mentioned that our algorithm

also applies to problems with non–zero drift, and its basic logic extends readily to higher

dimensions; neither of those statements is true of the methods used in [23] and [52]. Inciden-

tally, the QNET estimates in Table 2.1 were obtained using n = 6 and double precision on

a VAX machine; about 32 seconds of CPU time were required to generate all the numbers

in the table.

2.5.2 Comparison with Exponential Solutions

In this section, we first derive a criterion for the stationary density p to be of exponential

form. Under the criterion, the stationary density is of exponential form and all of the per-

formance measures have explicit formulas. Therefore we can compare our QNET estimates

with the ones calculated from those exponential densities. Recall from Section 2.5.1 the

definition of the angle θi between vi and the normal ni on Fi (i = 1, 2, 3, 4). Let ti = tan(θi)
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a m1 m2 δ1 δ2 δ3 δ4

QNET 0.5 0.258229 0.380822 1.848991 2.413695 2.413695 0.564704
SC 0.258585 0.380018 1.871418 2.412890 2.412890 0.541472
DIFF −0.000356 0.000804 −0.022427 0.000805 0.000805 0.023232
QNET 1.0 0.551325 0.448675 0.805813 1.611625 1.611625 0.805813
SC 0.551506 0.448494 0.805295 1.610589 1.610589 0.805295
DIFF −0.000181 0.000181 0.000518 0.000036 0.000036 0.000518
QNET 1.5 0.878800 0.471640 0.466710 1.340876 1.340876 0.874166
SC 0.879534 0.471624 0.446669 1.340225 1.340225 0.893557
DIFF −0.000734 0.000016 0.020041 0.000651 0.000651 −0.019391
QNET 2.0 1.238442 0.483103 0.292077 1.206981 1.206981 0.914904
SC 1.239964 0.482830 0.270736 1.206445 1.206445 0.935709
DIFF −0.001522 0.000273 0.021341 0.000536 0.000536 0.020805
QNET 2.5 1.625775 0.489845 0.188642 1.131142 1.131142 0.942499
SC 1.628342 0.489146 0.171214 1.130587 1.130587 0.959373
DIFF −0.002567 0.000699 0.017428 0.000555 0.000555 −0.016874
QNET 3.0 2.036371 0.494084 0.122836 1.085136 1.085136 0.962300
SC 2.040075 0.492970 0.110891 1.084582 1.084582 0.973691
DIFF −0.003704 0.001114 0.011945 0.000554 0.000554 0.003308
QNET 3.5 2.466108 0.496881 0.079113 1.056112 1.056112 0.976999
SC 2.471022 0.495381 0.072873 1.055585 1.055585 0.982712
DIFF −0.004914 0.001500 0.006240 0.000527 0.000527 −0.005713
QNET 4.0 2.911243 0.498826 0.048974 1.037364 1.037364 0.988391
SC 2.917572 0.496936 0.048334 1.036868 1.036868 0.988534
DIFF −0.006329 0.001890 0.000640 0.000496 0.000496 −0.000143

Table 2.1: Comparisons with SCPACK when n = 6

(i = 1, 2, 3, 4). Then the reflection matrix is

R =

 1 t2 −1 t4

t1 1 t3 −1

 .(2.61)

Using a result in [27, Theorem 6.1] and following the derivation in [26, Section 9], we can

get the following proposition.

Proposition 2.7 The stationary density p0 is of exponential form if and only if t1Γ11 + t2Γ22 = 2Γ21,

t3 = −t1, t4 = −t2.
(2.62)
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In this case, the stationary density is an exponential function

x→ c·exp(λ · x),(2.63)

where

λ =

 λ1

λ2

 with λ1 =
2(µ1 − t2µ2)
(1− t1t2)Γ11

and λ2 =
2(µ2 − t1µ1)
(1− t1t2)Γ22

(2.64)

and c is a normalizing constant such that
∫
S p0(x) dx = 1.

Remark. The denominators in the expressions for λ1 and λ2 are not zero because 1− t1t2 =

(t21 Γ11 − 2t1 Γ12 + Γ22)/Γ22 > 0 by the positive definiteness of Γ.

Proof. Define two matrices

N =


1 0

0 1

-1 0

0 -1

 and Q =


0 t1

t2 0

0 t3

t4 0

 .

The i-th column of N ′ and the i-th column of Q′ are the unit normal and the tangential

component of vi, respectively, on Fi (i = 1, 2, 3, 4), that is,

R = N ′ +Q′.

Let U be the rotation matrix whose rows are the orthonormal eigenvectors of the covariance

matrix Γ and let A be the corresponding diagonal matrix of eigenvalues such that Γ = U ′AU ,

where U ′ = U−1. Let V = A−1/2U and define Z̃ = V Z, X̃ = V X and R̃ = V R. Then X̃ is

a (I, V µ)-Brownian motion. The i-th row of the matrix

Ñ ≡ Λ−1/2NU ′A1/2(2.65)

is the inward unit normal to the face of the state space of Z̃ on which Li increases, where

Λ ≡


Γ11 0 0 0

0 Γ22 0 0

0 0 Γ11 0

0 0 0 Γ22

 ≡
 Λ1 0

0 Λ1

 .

Similar to the derivation in [26, Theorem 9.23], we have R̃ = (Ñ ′ + Q̃′)Λ−1/2, where

Q̃′ = A−1/2U(N ′ +Q′)Λ1/2 −A1/2UN ′Λ−1/2.(2.66)
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In a similar manner to that in the proof of Theorem 8.2 of [28], it follows from [27, 58]

that Z̃ has an exponential form stationary distribution if and only if the following skew

symmetric condition holds

ÑQ̃′ + Q̃Ñ ′ = 0.(2.67)

In this case Z̃ has a stationary distribution π̃ such that

dπ̃ = c exp(λ̃ · z̃)dz̃,

where λ̃ = 2(I − N̄−1Q̄)−1V µ and N̄ is any nonsingular 2× 2 submatrix of Ñ obtained by

deleting 2 rows from Ñ and Q̄ is the submatrix obtained by deleting the corresponding two

rows from Q̃. A simple algebraic manipulation gives that (2.67) is equivalent to

2NΓN ′ = N(N ′ +Q′)Λ + Λ(N +Q)N ′.(2.68)

Writing N ′ = (I,−I) and R = (R1, R2), where R1 is a 2 × 2 matrix consisting of the first

two columns of R and R2 is defined similarly, we have that the left hand side of (2.68) is

equal to  2Γ −2Γ

−2Γ 2Γ

 ,
and the right hand side of (2.68) is equal to R1Λ1 + Λ1R

′
1 R2Λ1 − Λ1R

′
1

−R1Λ1 + Λ1R
′
2 −R2Λ1 − Λ1R

′
2

 .
Therefore we have that (2.68) is equivalent to

2Γ = R1Λ1 + Λ1R
′
1(2.69)

−2Γ = R2Λ1 − Λ1R
′
1(2.70)

−2Γ = −R1Λ1 + Λ1R
′
2(2.71)

2Γ = −R2Λ1 − Λ1R
′
2.(2.72)

It is easy to check that (2.69) is equivalent to

t1Γ11 + t2Γ22 = 2Γ21.(2.73)

Equations (2.70) and (2.71) are redundant and they are equivalent to

t4Γ22 − t1Γ11 = −2Γ21(2.74)

t3Γ11 − t2Γ22 = −2Γ21.(2.75)
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From equations (2.73)–(2.75), we see that they are equivalent to (2.62). Notice that (2.72),

being equivalent to t3Γ11 + t4Γ22 = −2Γ21, is satisfied when (2.62) holds.

When (2.62) holds, by taking

N1 =

 1 0

0 1

 , and Q1 =

 0 t1

t2 0

 ,
we can get a particular pair of N̄ , Q̄ by replacing N and Q in (2.65) (2.66) by N1 and Q1

respectively, i.e.,

N̄ = Λ1/2
1 U ′A1/2, Q̄ = Λ1/2

1 R′1U
′A−1/2 − Λ−1/2

1 U ′A1/2.

Hence

λ̃ = 2
(
I − N̄−1Q̄

)−1
V µ

= 2
(
2I −A−1/2UΛ1R

′
1U
′A−1/2

)−1
V µ

= 2
(
2I − V Λ1R

′
1V
′)−1

V µ

= 2
(
2I − V (2Γ−R1Λ1)V ′

)−1
V µ

= 2
(
2I − 2V ΓV ′ + V R1Λ1V

′)−1
V µ

= 2V ′−1Λ−1
1 R−1

1 µ,

where the fourth equality is obtained from (2.69). It then follows that Z has a product

form stationary distribution with density given by

z → c exp(λ · z),

where

λ = V ′λ̃ = 2Λ−1
1 R−1

1 µ =
(

2(µ1 − t2µ2)
(1− t1t2)Γ11

,
2(µ2 − t1µ1)
(1− t1t2)Γ22

)′
.(2.76)

This proves the proposition. 2

Let c1 and c2 satisfy

c1

∫ a

0
eλ1x1dx1 = 1 and c2

∫ b

0
eλ2x2dx2 = 1,

where a is the length of the rectangle and b is the height of the rectangle. Then c1c2 is the

normalizing constant for the density p0 and

m1 = c1

∫ a

0
x1e

λ1x1dx1, δ1 = c1, δ3 = c1e
λ1a,(2.77)

m2 = c2

∫ b

0
x2e

λ2x2dx2, δ2 = c2, δ4 = c2e
λ2b.(2.78)



CHAPTER 2. SRBM IN A RECTANGLE 45

n µ1 µ2 m1–error m2–error m1 m2

6 0.0 0.0 6.938894e− 18 6.938894e− 18 0.500000 0.500000
6 0.5 0.5 −5.495242e− 09 −5.495242e− 09 0.581977 0.581977
6 −0.5 −0.5 5.495242e− 09 5.495242e− 09 0.418023 0.418023
6 −0.5 0.0 −1.988788e− 09 5.551115e− 17 0.418023 0.500000
8 1.0 1.0 −3.648693e− 07 −3.648693e− 07 0.656518 0.656518
6 −1.0 1.0 3.648693e− 07 −3.648693e− 07 0.343482 0.656518
6 2.0 2.0 1.345184e− 04 1.345184e− 04 0.768523 0.768657
6 2.0 −2.0 1.345184e− 04 −1.345184e− 04 0.768523 0.231477
6 0.0 −2.0 −5.551115e− 16 −7.098788e− 05 0.500000 0.231414
7 3.0 −3.0 1.821861e− 04 −1.821861e− 04 0.835636 0.164364
8 4.0 −4.0 2.562974e− 04 −2.562999e− 04 0.875079 0.124921
9 5.0 −5.0 2.986824e− 04 −2.983432e− 04 0.899747 0.100253

Table 2.2: Comparisons with Exponential Solutions when Γ = I and t3 = 0.0

In this section, we choose S to be the unit rectangle, i.e., both the length a and height b of

the rectangle are equal to one. Tables 2.2 through 2.5 give estimates of m1 and m2 computed

with our algorithm for various test problems having exponential stationary distributions.

All four of these test problems have Γ = I, and each corresponds to a different choice of

t2; in order to assure an exponential stationary distribution, (2.62) shows that one must

choose t1 = −t3, t2 = t3 and t4 = −t3. The rows of Tables 2.2 through 2.5 correspond to

different choices of the drift vector µ, and the columns labelled m1–error and m2–error give

differences between estimates computed with our algorithm and the exact values derived

from (2.77) and (2.78). Note that our algorithm converges more slowly (that is, larger n

values are needed to get comparable accuracy) as the absolute magnitude of the drift vector

increases.

Table 2.6 gives similar computational results for test problems whose covariance matrix

is not diagonal. The first four columns show the t3 values chosen and the covariance matrix

chosen; the values of t1, t2 and t4 are then uniquely determined by formula (2.62). The drift

vector µ is (1,−1)′ in all cases and our algorithm was run with n = 6 for all cases.

2.5.3 A Tandem Queue with Finite Buffers

Consider the simple queueing network pictured in Figure 2.2. The network consists of two

single–server stations arranged in series, each with a first–in–first–out discipline; arriving

customers go to station 1 first, after completing service there they go to station 2, and after
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n µ1 µ2 m1–error m2–error m1 m2

6 0.0 0.0 1.387779e− 16 4.163336e− 17 0.500000 0.500000
6 1.0 1.0 −5.846718e− 04 1.031703e− 03 0.566551 0.682070
6 1.0 −1.0 1.031703e− 03 5.846718e− 04 0.682070 0.433449
6 −1.0 −1.0 5.846718e− 04 −1.031703e− 03 0.433449 0.317930
6 −1.0 1.0 −1.031703e− 03 −5.846718e− 04 0.317930 0.566551
6 2.0 −2.0 3.490021e− 03 5.032398e− 04 0.796475 0.371526
6 −2.0 −2.0 5.032398e− 04 −3.490021e− 03 0.371526 0.203525
6 2.0 2.0 −5.032398e− 04 3.490021e− 03 0.628474 0.796475
6 3.0 3.0 9.441234e− 03 7.367338e− 03 0.673661 0.854491
7 −3.0 3.0 −3.485767e− 03 3.424234e− 03 0.141628 0.679678
8 3.0 −3.0 2.171832e− 03 −2.469559e− 03 0.859686 0.319367

Table 2.3: Comparisons with Exponential Solutions when Γ = I and t3 = 0.5

n µ1 µ2 m1–error m2–error m1 m2

6 1.0 −1.0 2.612041e− 03 1.767830e− 03 0.653906 0.498232
6 2.0 −2.0 8.701640e− 03 4.264274e− 03 0.759956 0.495736
7 3.0 −3.0 7.411813e− 03 1.042879e− 03 0.828406 0.498957
7 −3.0 3.0 −7.411813e− 03 −1.042879e− 03 0.171594 0.501043
8 4.0 −4.0 6.360089e− 03 8.693270e− 05 0.868975 0.499913

Table 2.4: Comparisons with Exponential Solutions when Γ = I and t3 = 1.0

n µ1 µ2 m1–error m2–error m1 m2

7 1.0 −1.0 1.972118e− 03 7.033465e− 04 0.621445 0.524897
7 2.0 −2.0 6.229480e− 03 2.065347e− 03 0.717099 0.548896
8 3.0 −3.0 6.109330e− 03 2.797207e− 03 0.787221 0.573055
8 4.0 4.0 −4.322155e− 03 1.115873e− 02 0.404257 0.828471
9 4.0 4.0 −3.768640e− 03 6.286212e− 03 0.403704 0.833344

Table 2.5: Comparisons with Exponential Solutions when Γ = I and t3 = 1.5
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t3 Γ11 Γ12 Γ22 m1–error m2–error m1 m2

0.0 1.0 −0.5 1.0 4.829933e− 07 2.622528e− 03 0.656517 0.497377
1.0 1.0 −0.5 1.0 1.370037e− 04 2.637569e− 03 0.607815 0.552511
−1.0 1.0 −0.5 1.0 −2.622528e− 03 −4.829933e− 07 0.502623 0.343483
−1.0 3.0 −1.0 2.0 −2.083261e− 03 −6.640263e− 03 0.502083 0.424664
−1.0 0.4 −0.1 0.75 −6.254477e− 03 7.554294e− 03 0.506254 0.292774
−1.0 0.85 −0.1 2.0 −5.007373e− 03 6.429745e− 03 0.505007 0.411594

Table 2.6: Comparisons with Other Exponential Solutions when n = 6

completing service at station 2 they exit the system. The input process to station 1 is a

Poisson process with average arrival rate λ. Service times at station 1 are deterministic

of duration τ1 = 1, and service times at station 2 are exponentially distributed with mean

τ2 = 1. There is a storage buffer in front of station k that can hold bk = 24 waiting

customers (k = 1, 2), in addition to the customer occupying the service station. When the

buffer in front of station 1 is full, the Poisson input process is simply turned off, and in

similar fashion, server 1 stops working when the buffer in front of station 2 is full, although a

customer may still occupy station 1 when the server is idle because of such blocking. (In the

literature of queueing theory, this is called “communications blocking”.) The steady–state

performance measures on which we focus are

γ = the long-run average throughput rate, and

qk = the long-run average queue length at station k (k = 1, 2).

In these definitions “queue length” means the number of customers at the station, either

waiting or being served, and the “average throughput rate” may be equivalently viewed

as (a) the average rate at which new arrivals are accepted into the system, or as (b) the

average rate at which services are completed at the first station, or as (c) the average rate

Poisson
-

λ
b1 = 24

Deterministic

"!
# 

1

τ1 = 1

-

b2 = 24

Exponential

"!
# 

2

τ2 = 1

-

Figure 2.2: Finite Queues in Tandem
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at which customers depart from the system.

Despite its apparent simplicity, the tandem queue described above is not amenable

to exact mathematical analysis, but as an alternative to simulation one may construct

and analyze what we call an “approximate Brownian system model”. This is a diffusion

approximation of the general type suggested by “heavy traffic limit theorems” for queueing

networks (see below). However, no limit theorem to justify our particular approximation

has been proved thus far, and we will not try to provide such a formal justification here. As

described in Section 7 of [9], the two-dimensional queue length process associated with the

tandem queue is represented in our approximate model by the (S,Γ, µ,R) SRBM Z, where

Γ = γI, µ = (λ− 1, 0)′ and the reflection matrix is given by

R =

 1 0 −1 1

−1 1 0 −1

 ,
whose columns (directions of reflection) are portrayed in Figure 2.3 below. Readers who are

interested in knowing the motivation of the approximate model in direct, intuitive terms,

and how the data (S,Γ, µ,R) are derived can consult [9] for details.

Again it can be checked as in Section 2.5.1 that the stationary density p is not square

integrable on ∂S. Nevertheless, the stationary density of Z can be computed using the

algorithm developed in Section 2.4. Then one can derive from it approximate values for

γ, m1 and m2. Additional complication arises from the appearance of the unknown γ in

the covariance matrix Γ. An iterative procedure to compute γ was proposed in [9]. The

results of that analysis are summarized in Table 2.5.3 below, where we give performance

-
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Figure 2.3: State Space and Directions of Reflection for the Approximating SRBM
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λ = 0.9 λ = 1.0
γ m1 m2 γ m1 m2

SIM 0.8991 5.1291 6.2691 0.9690 13.87 11.07
QNET 0.8995 4.8490 6.3184 0.9688 13.75 11.25

λ = 1.1 λ = 1.2
γ m1 m2 γ m1 m2

SIM 0.9801 20.4801 12.3801 0.9804 22.4804 12.4804
QNET 0.9801 20.5239 12.4445 0.9807 22.2688 12.4676

Table 2.7: Performance Estimates for the Queueing Model Pictured in Figure 2.2

estimates derived from the approximate Brownian model, identified in the table as QNET

estimates, as well as estimates obtained via simulation. None of the QNET estimates of

average queue length differs from the corresponding simulation estimate by more than five

percent, and the accuracy of our throughput rate estimates is equally impressive: when

λ = 0.9 both simulation and QNET predict a throughput loss rate below one–tenth of

one percent; when λ = 1.0, simulation and QNET predict throughput loss rates of 3.10%

and 3.14%, respectively; when λ = 1.1, the limiting factor on system throughput is the

average service rate of 1.0, and both simulation and QNET predict a throughput rate 1.99%

below this maximum; when λ = 1.2, the maximum possible throughput rate is again 1.0,

and the simulation and QNET estimates of γ are 1.96% and 1.93% below this maximum,

respectively.

Readers should be warned that there are two stages of error incurred in estimating the

performance measures of the queueing networks. The first stage of error occur when we

replace a queueing network model by a corresponding Brownian model. This replacement

has been justified only for certain classes of queueing networks under conditions of heavy

traffic. The second stage of error comes from our numerical computation of the stationary

density of the corresponding SRBM. Presumably, error at the second stage is smaller than

that at the first stage. Our analysis of tandem queues in series is just an illustration of the

usefulness of a Brownian system approximation. It can be extended to allow an arbitrary

renewal input process and arbitrary service time distributions (the first two moments of the

interarrival and service time distributions determine the drift vector and covariance matrix

of the corresponding Brownian system model), and to general open and closed queueing

networks with single customer type as well as multiple customer types. Table 2.7 shows

in a concrete way how useful Brownian system models can be, if one can compute their
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stationary distributions.

2.6 Concluding Remarks

Let us return to the setting of Section 2.4, where the problem of computing the stationary

density p was cast as a least squares problem. The treatment given there can be generalized

in the following way, which may be important for both practical and theoretical purposes.

(In this section the letter q will be re–used with a new meaning, but that should cause no

confusion.) Let q0 be a strictly positive function on the interior S of the rectangle S, and

let q1, . . . , q4 be strictly positive functions on the boundary surfaces F1, . . . , F4 respectively.

Defining

q(x) = (q0; q1, q2, q3, q4).(2.79)

we call q a “reference density” and we define a corresponding “reference measure” η via

η(dx) ≡ qdλ = (q0 dx; q1 dσ1, . . . , q4 dσ4).(2.80)

If we work in the Hilbert space L2(S, η) rather than the space L2(S, dλ) used in Section 2.4,

then the focus is on the unknown function r defined by

r(x) ≡ p/q = (p0/q0; p1/q1, · · · , p4/q4).(2.81)

That is, with the inner product defined by (f, g) =
∫
S(f ·g) dη, our basic adjoint relationship

(2.35) says that Af ⊥ r for all f ∈ C2(S), and hence one may proceed exactly as in

Sections 2.4 to devise an algorithm for approximate computation of r by projection in

L2(S, η). Of course, the final estimate of r is converted to an estimate of p via p = rq,

where q is the reference density chosen.

A different computational procedure is obtained depending on how one chooses the

reference density q and the functions f1, f2, . . . that are used to build up the approximating

subspaces H1,H2, . . . via Hn = span{Af1, . . . ,Afn}. Recall that in Section 2.4 we took

f1, f2, . . . to be polynomial functions, but other choices are obviously possible. One wants to

choose q and f1, f2, . . . in such a way that the inner products (Afm,Afn) can be determined

analytically, and in such a way as to accelerate convergence of the algorithm. From a

theoretical standpoint, the freedom to choose q is important because one may have r ∈
L2(S, η) even though p 6∈ L2(S, dλ) (e.g. by choosing q = p, we have r = 1 ∈ L2(S, η)),

and thus a judicious choice of reference density enables a rigorous proof of convergence in
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L2(S, η). From a practical standpoint, one may be able to choose q in such a way that

convergence is accelerated, taking q to be a “best guess” of the unknown density p based on

either theory or prior computations. In Chapter 4, we will discuss computation of stationary

distributions on unbounded regions, where a proper choice of reference density is essential

to efficient computation.



Chapter 3

SRBM in an Orthant

3.1 Introduction and Definitions

Notation. Let d ≥ 1 be an integer, and S≡Rd
+ be the orthant in a d-dimensional Euclidean

space Rd. For i = 1, 2, . . . , d, let Fi≡{x ∈ S : xi = 0} be the i-th face of ∂S, and vi be

a vector on Fi with unit normal component, pointing into S (see Figure 3.1 when d = 2).

Let R≡(v1, v2, . . . , vd) be a d × d matrix, Γ be a d × d positive definite matrix and µ a

d-dimensional vector. As before, the continuous sample path space CS is defined as

CS = {ω : [0,∞)→ S, ω is continuous},

with natural filtration {Mt} and natural σ-algebra M. The canonical process on CS is

-
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Figure 3.1: State Space and Directions of Reflection of an SRBM when d = 2
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denoted by Z = {Z(t, ω), t ≥ 0} defined by

Z(t, ω) = ω(t).

The symbol ω is often suppressed in Z. The SRBM in an orthant S is defined as follows.

Definition 3.1 Z is said to be a semimartingale reflected Brownian motion (abbreviated as

SRBM) associated with data (S,Γ, µ,R) if there is a family of probability measures {Px, x ∈
S} defined on the filtered probability space (CS ,M, {Mt}) such that for each x ∈ S we

have

(3.1) Z(t) = X(t) +RL(t) = X(t) +
∑d
i=1 Li(t) · vi ∀t ≥ 0, Px-a.s.,

(3.2) X(0) = x, Px-a.s. and X is a d-dimensional Brownian motion with covariance matrix

Γ and drift vector µ such that {X(t)− µt,Mt, t ≥ 0} is a martingale under Px,

(3.3) L is a continuous {Mt}-adapted d-dimensional process such that L(0) = 0 Px-a.s, L

is non-decreasing, and Li increases only at times t when Zi(t) = 0, i = 1, . . . , d.

Remark. This is the definition of SRBM used by Reiman and Williams [41]. It was pointed

out by those authors that {X(t)−µt} being an {Mt}-martingale is necessary for an SRBM

to have certain desired properties.

The SRBM Z defined above behaves like a d-dimensional Brownian motion with drift

vector µ and covariance matrix Γ in the interior of its state space. When the boundary

face Fi is hit, the process Li (sometimes called the local time of Z on Fi) increases, causing

an instantaneous displacement of Z in the direction given by vi; the magnitude of the

displacement is the minimal amount required to keep Z always inside S. Therefore, we

call Γ, µ and R the covariance matrix, the drift vector and the reflection matrix of Z,

respectively.

Definition 3.2 The SRBM is said to be unique if the family {Px, x ∈ S} is unique.

Definition 3.3 The matrix R is said to be Minkowski if I −R ≥ 0 and I −R is transient,

that is, all the eigenvalues of I −R are less than one, where I is the d× d identity matrix.

Definition 3.4 A d× d matrix A is said to be an S matrix if there exists a d-dimensional

vector u ≥ 0 such that Au > 0, and to be a completely-S matrix if each of its principal

submatrices is an S matrix.
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Harrison and Reiman [25], by using a unique path-to-path mapping, defined an SRBM in

S when the reflection matrix R is Minkowski. This class of SRBM’s arise naturally from

queueing networks with homogeneous customers. It is known [24] that the reflection matrix

R of an SRBM which arises from a queueing network with heterogeneous customers is, in

general, not Minkowski. Reiman and Williams [41] proved that R being completely-S is a

necessary condition for the existence of an SRBM in S.

Recently Taylor and Williams [50], by considering solutions of local submartingale prob-

lems, proved the existence and uniqueness of an SRBM when R is a completely-S matrix.

We state their result in the following proposition.

Proposition 3.1 Assume R is a completely-S matrix. For any positive definite matrix Γ

and vector µ, there exists a unique family of probability measures {Px, x ∈ S} on the filtered

space (CS ,M, {Mt}) such that Z together with {Px, x ∈ S} is an (S,Γ, µ,R)-SRBM.

In this chapter, Ex will denote the expectation operator with respect to the probability

measure Px, and for a probability measure π on S, define

Pπ(·) ≡
∫
S
Px(·)π(dx);

then Eπ denotes the corresponding expectation.

Readers should keep in mind that there are RBM’s which are not SRBM’s, see Harrison,

Landau and Shepp [23] and Varadhan and Williams [53]. However, in this dissertation we

only consider the class of RBM’s which have the semimartingale representation (3.1) as

defined in Definition 3.1 above.

In this chapter we first prove the Feller continuity of an SRBM, and therefore prove

that an SRBM is a strong Markov process. It is reported that Taylor and Williams [50]

give a different proof of the Feller continuity of an SRBM. Then we give an alternative

characterization of an SRBM via a solution to a constrained martingale problem. This

alternative characterization is critical in proving sufficiency of a basic adjoint relationship

governing the stationary distribution of an SRBM, which was conjectured by Harrison and

Williams [26] when R is Minkowski.

3.2 Feller Continuity and Strong Markov Property

Definition 3.5 The Z with {Px, x ∈ S} is said to be Feller continuous if for any f ∈ Cb(S),

Ttf ∈ Cb(S) for each t ≥ 0. Here Ttf(x) ≡ Exf(Z(t)).
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Theorem 3.1 Let Z with {Px, x ∈ S} be an SRBM. Suppose {xn} is a sequence in S which

converges to x ∈ S. Then {Pxn} converges weakly to Px.

Proof. In this proof only, we need a bigger probability space. Let C+
Rd

denote the space

of continuous functions x(·) : [0,∞) → Rd with x(0) ≥ 0 and Λd denote the space of

continuous functions l(·) : [0,∞) → Rd
+ such that l(0) = 0 and each component of l(·) is

a non-decreasing function. Both CRd+
and Λd are endowed with the Skorohod topology.

For z(·) ∈ CS , x(·) ∈ C+
Rd

and l(·) ∈ Λd, define ω(t) = (z(t), x(t), l(t)) for each t ≥ 0.

Then ω is a generic element of ΩS ≡ CS × C+
Rd
× Λd. Define three canonical processes

Z,X and L via Z(t, ω) = z(t), X(t, ω) = x(t) and L(t, ω) = l(t), and filtration {M0
t } via

M0
t ≡ σ{Z(s), X(s), L(s) : 0 ≤ s ≤ t}, t ≥ 0. It is obvious that the family {Px, x ∈ S} on

CS induces a family of probability measures {Qx, x ∈ S} on the sample space (ΩS , {M0
t }),

such that, for each x ∈ S, the following holds.

(3.4) For each t ≥ 0, Z(t) = X(t) +RL(t), Qx-a.s.

(3.5) Under Qx, X is a (Γ, µ)-Brownian motion starting from x and {X(t)−µt} is a {M0
t }-

martingale.

(3.6) Li increases only when at times Z(·) ∈ Fi almost surely in Qx, i.e.,∫ ∞
0

Zi(t) dLi(t) = 0, Qx-a.s. (i = 1, 2, . . . , d).

Let xn be a sequence in S such that xn → x, obviously QxnX
−1 ⇒ QxX

−1, therefore

{QxnX−1} is tight. Hence for any ε > 0, there exists a compact set A ⊂ C+
Rd

such that

QxnX
−1(A) > 1− ε, for all n.

Let Ã ⊂ ΩS be defined as ω = (z, x, l) ∈ Ã if and only if x ∈ A and

z = x+Rl,

∫ ∞
0

z(t) dl(t) = 0,(3.7)

where ∫ t

0
z(s) dl(s) ≡

(∫ t

0
z1(s) dl1(s), . . . ,

∫ t

0
zd(s) dld(s)

)′
, t ≥ 0.

It follows from Proposition 1 of [2] that Ã is precompact. Because

Qxn(Ã) = QxnX
−1(A) > 1− ε,
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we have proved that the family {Qxn} is tight, and Prohorov’s Theorem, see [3, Theorem 6.1

of Chapter 1], asserts that {Qxn} is weakly relatively compact. Let Q∗ be any accumulation

point of {Qxn}. There is a subsequence of Qxn that converges to Q∗ weakly. For notational

convenience, we assume the sequence itself converges, that is, Qxn ⇒ Q∗. We are going to

prove that Z is an SRBM starting from x under Q∗, i.e.,

Q∗Z
−1 = Px,(3.8)

Then it follows from (3.8) that

Pxn = QxnZ
−1 ⇒ Q∗Z

−1 = Px.

To prove (3.8), we prove that (3.4) through (3.6) hold under Q∗. It is clear that under Q∗,

X is a (Γ, µ)-Brownian motion starting from x. If X(t) were bounded for each t, because

{X(t)− µt} is a {M0
t }-martingale under each Qxn and Qxn ⇒ Q∗, {X(t)− µt} is a {M0

t }-
martingale under each Q∗. A general argument can be obtained through standard localizing

arguments. Therefore (3.5) holds under Q∗. To show that (3.4) and (3.6) hold under Q∗,

define two functions ΩS → CRd as

f1(ω)(t) ≡ z(t)− x(t)− l(t), t ≥ 0,

f2(ω)(t) ≡
∫ t

0
z(s) dl(s), t ≥ 0.(3.9)

It is obvious that f1 is continuous and it follows from the following Lemma 3.1 that f2 is

continuous. Hence Ai ≡ {ω : fi(ω) = 0} is a closed set in ΩS (i = 1, 2). Because (3.4) and

(3.6) hold under Qxn , Qxn(Ai) = 1 for each n (i = 1, 2). Therefore, see [3, Theorem 2.1 of

Chapter 1],

1 = lim sup
n→∞

Qxn(Ai) ≤ Q∗(Ai), (i = 1, 2).

Thus Q∗(Ai) = 1 (i = 1, 2), which implies that (3.4) and (3.6) hold under Q∗. Therefore we

have proved Z under Q∗ is an SRBM starting from x, and by the uniqueness of the SRBM,

Px = Q∗Z
−1. This proves (3.8) and thus proves the theorem. 2

Lemma 3.1 The function f2 : ΩS → CRd defined in (3.9) is continuous.

Proof. Let zn ∈ CS be a sequence converging to z ∈ CS and ln ∈ Λd be a sequence

converging to l ∈ Λd. Fix a T > 0, we like to show

sup
0≤t≤T

∣∣∣∣∫ t

0
zn(s) dln(s)−

∫ t

0
z(s) dl(s)

∣∣∣∣→ 0,
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as n→∞. To see this, for each positive integer k, define a step function z(k) as

z(k)(t) ≡ z (iT/k) , if
i

k
T ≤ t < i+ 1

k
T.

It is clear that sup0≤t<T |z(k)(t)− z(t)| → 0 as k →∞, and

sup
0≤t≤T

∣∣∣∣∫ t

0
zn(s) dln(s)−

∫ t

0
z(s) dl(s)

∣∣∣∣
≤ sup

0≤t≤T

∫ t

0
|zn(s)− z(s)| dln(s) + sup

0≤t≤T

∣∣∣∣∫ t

0
z(s) d (ln(s)− l(s))

∣∣∣∣
≤ sup

0≤s≤T
|zn(s)− z(s)|ln(T ) +

∫ T

0
|z(s)− z(k)(s)|d (ln(s) + l(s))

+ sup
0≤t≤T

∣∣∣∣∫ t

0
z(k)(s) d(ln(s)− l(s))

∣∣∣∣
≤ sup

0≤s≤T
|zn(s)− z(s)|ln(T ) + sup

0≤s<T
|z(s)− z(k)(s)|(ln(T ) + l(T ))

+
k∑
i=1

z (iT/k) |(ln ((i+ 1)T/k)− l ((i+ 1)T/k))− (ln (iT/k)− l (iT/k))| .

Since ln(T ) is bounded in n, for any ε > 0, choose k big enough so that the middle term

in the previous expression is less than ε/2, then for n large enough we have the first term

adding the third term is less than ε/2. This proves our lemma. 2

Corollary 3.1 Z with {Px, x ∈ S} is Feller continuous, i.e., for any f ∈ Cb(S) and any

t ≥ 0, x→ Ex [f(Z(t))] is continuous.

Proof. Obviously, for any f ∈ Cb(S), g : CS → R defined by g(z(·)) ≡ f(z(t)) is a bounded

continuous function on CS , hence, from Theorem 3.1 and the definition of weak convergence,

Ttf(x) ≡ Ex [f(Z(t))] = Ex [g(Z(·))] is a continuous function of x. 2

It is now easy to show that the probability family associated with an SRBM Z is Borel

measurable, i.e., for any A ∈ M, x→ Px(A) is a Borel measurable function on S. In fact,

we are going to show

Corollary 3.2 Suppose h : CS → R is bounded and M-measurable. Then the function

x→ Ex [h(Z(·))] , ∀x ∈ S

is a Borel measurable function on S.
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Proof. The corollary can be obtained from Theorem 3.1 directly. 2

Now we have the following theorem, which ensures that an SRBM is a strong Markov

process.

Theorem 3.2 An SRBM Z together with a measurable family {Px,∈ S} on a filtered space

(Ω,F , {Ft}) is a strong Markov process, i.e., for each x ∈ S,

Ex [f(Z(τ + t))|Fτ ] = T (t)f(Z(τ)), Px-a.s.

for all f ∈ B(S), t ≥ 0, and Px-a.s. finite {Ft}-stopping time τ .

Proof. Since the SRBM Z with the family {Px, x ∈ S} is unique and Feller continuous, it

follows from the proof of Theorem 4.2 in Chapter 4 of [11] that Z together with {Px, x ∈ S}
is strong Markov. 2

3.3 Constrained Martingale Problem

Using the ideas of Kurtz [32, 31], we now characterize an SRBM as a solution of a corre-

sponding constrained martingale problem. This alternative characterization of an SRBM

plays a key role in proving the sufficiency of a basic adjoint relationship for the stationary

distribution in Section 3.5. For f ∈ C2(S), define

Gf≡1
2

d∑
i=1

d∑
j=1

Γij
∂2f

∂xi∂xj
+

d∑
i=1

µi
∂f

∂xi
,(3.10)

Dif(x)≡vi · ∇f(x) for x ∈ Fi (i = 1, 2, . . . , d).(3.11)

The operatorsG andDi defined in (3.10) and (3.11), respectively, can be viewed as mappings

from C2
K(Rd) → CK(Rd). Denote D ≡ (D1, . . . , Dd). From now on, C2

K(Rd) will be taken

implicitly as the domain of (G,D). In the following, P(S) denotes the set of probability

measures on S.

Definition 3.6 For any π ∈ P(S), by a local time solution of the constrained martingale

problem for (S,G,D;π) we mean a pair of d-dimensional continuous processes (Z,L) on

some filtered probability space (Ω, {Ft},F , P ) such that

(3.12) Z(t) ∈ S for all t ≥ 0 and PZ(0)−1 = π.
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(3.13) f(Z(t))−
∫ t

0 Gf(Z(s)) ds−
∑d
i=1

∫ t
0 Dif(Z(s)) dLi(s)

is a {Ft}-martingale under P .

(3.14) P -almost surely, Li(0) = 0, Li(·) non-decrease, and Li(·) increases only at times t

when Z(t) ∈ Fi (i = 1, . . . , d).

The following theorem gives the equivalence of an SRBM to a local time solution of the

corresponding constrained martingale problem.

Theorem 3.3 For π ∈ P(S), suppose Z together with {Px, x ∈ S} on (CS , {Mt},M) is

an SRBM and L is the associated local time defined in (3.3). Then, under Pπ, (Z,L) on

(CS , {Mt},M) is a solution of the constrained martingale problem for (S,G,D;π). Con-

versely, suppose (Z,L) on a filtered probability space (Ω, {Ft},F , P ) is a local time solution

of the constrained martingale problem for (S,G,D;π). Then Z is an SRBM starting with

π, i.e.,

(a) Z(t) = X(t) +RL(t) = X(t) +
∑d
i=1 Li(t) · vi ∈ S ∀t ≥ 0, P -a.s., where

(b) PX(0)−1 = π and X is a d-dimensional Brownian motion with covariance matrix Γ

and drift vector µ such that {X(t)− µt,Ft, t ≥ 0} is a martingale under P , and

(c) L is a continuous {Ft}-adapted d-dimensional process such that P -a.s. L(0) = 0, L is

non-decreasing, and Li increases only at times t when Zi(t) = 0, i = 1, . . . , d.

Proof. Suppose that Z together {Px, x ∈ S} on (CS , {Mt},M) is an SRBM, associated

with X and L as in (3.2) and (3.3). Then, Z(t) ∈ S, and under Pπ, it is obvious that

Z(0) = X(0) has the distribution π. For f ∈ C2
b (S), by Itô’s formula, it is clear that

(3.13) is a {Mt}-martingale. The conditions on L in (c) is equivalent to the condition in

(3.14). Therefore, (Z,L) is a local time solution of the constrained martingale problem for

(G,D;π).

Conversely, suppose (Z,L) on a filtered probability space (Ω, {Ft},F , P ) is a local time

solution of the constrained martingale problem for (G,D;π). Define

ξ(t) ≡ Z(t)− Z(0)−RL(t)− µt = Z(t)− Z(0)−
d∑
i=1

viLi(t)− µt,

we first show that ξ is a {Ft}-Brownian motion with covariance matrix Γ and zero drift.

For each integer n > 0, let

σn = inf{t ≥ 0 : |ξ(t)| > n}.
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Then σn is a stopping time. Taking an f ∈ C2
K(Rd) such that f(x) = xi on {x : |x| ≤ n},

since (3.13) is a martingale for the f , by the optional sampling theorem,

f(Z(t ∧ σn))−
∫ t∧σn

0
Gf(Z(s)) ds−

d∑
i=1

∫ t∧σn

0
Dif(X(s)) dLi(s)(3.15)

is a continuous {Ft}-martingale. Because f(x) = xi, Gf(x) = µi, and Djf(x) = vij for

|x| ≤ n, we see from (3.15) that ξi(t ∧ σn) is a martingale, i = 1, . . . , d. Since σn ↑ ∞ as

n → ∞, ξi is a continuous local martingale. Similarly, by choosing f ∈ C2
K(Rd) such that

f(x) = xixj for x ∈ {x : |x| ≤ n}, (3.13) gives that

Zi(t ∧ σn)Zj(t ∧ σn) − Γij(t ∧ σn)−
∫ t∧σn

0
(µiZj(s) + µjZi(s)) ds(3.16)

−
d∑

k=1

∫ t∧σn

0

(
vikZj + vikZi

)
dLk(s)

is a martingale. On the other hand, by Itö’s formula, we have

Zi(t ∧ σn)Zj(t ∧ σn) = Zi(0)Zj(0) +
∫ t∧σn

0
Zi dξj(s) +

∫ t∧σn

0
Zj(s) dξi(s)(3.17)

+
∫ t∧σn

0
(µiZj(s) + µjZi(s)) ds+ 〈ξi, ξj〉(t ∧ σn)

+
d∑

k=1

∫ t∧σn

0

(
vikZj + vikZi

)
dLk(s),

where 〈ξi, ξj〉(t) is the quadratic variational process of ξi and ξj . The first two stochastic

integrals on the right hand side of (3.17) are martingales. From this and from (3.16) and

(3.17), we have

〈ξi, ξj〉(t ∧ σn)− Γij(t ∧ σn)

is a martingale. Therefore, we have the quadratic variational process of ξi and ξj

〈ξi, ξj〉(t) = Γijt.

By Theorem 7.1 of [29, Chapter 2], we can find a d-dimensional standard {Ft}−Brownian

motion B = (B(t)) on the same probability space (Ω,F , P ) such that

ξi(t) =
d∑

k=1

(Γ
1
2 )ikBk(t), i = 1, · · · , d,

where Γ
1
2 is the square root of the positive definite covariance matrix Γ. Therefore, ξ is a

d-dimensional Brownian motion starting from zero with covariance matrix Γ and drift zero.
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By letting X(t) ≡ Z(0) + ξ(t) + µt, then X is a Brownian motion with initial distribution

PX(0)−1 = π, covariance matrix Γ, and drift vector µ. Clearly, under P , (Z,X,L) satisfies

the equations (3.1) to (3.3) with X(0) = x replaced by PX(0)−1 = π in (3.2). This proves

our theorem. 2

3.4 Existence of a Stationary Distribution

From Theorem 3.2, an SRBM Z is a strong Markov process. We ask when its stationary

distribution exists, and if there is one, how to characterize such a stationary distribution.

Definition 3.7 A probability measure π on S is called a stationary distribution of the

SRBM Z if for every bounded Borel function f on S and every t > 0∫
S
Ttf(x)π(dx) =

∫
S
f(x)π(dx),

where {Tt, t ≥ 0} is the semigroup as defined in Definition 3.5 associated with the strong

Markov process Z.

In this section, we first establish a criterion for the existence of a stationary distribution

via Liapunov functions. Then we show when R−1 ≥ 0 and R is symmetric, Z has a

stationary distribution if and only if R−1µ < 0. This case was not covered by Harrison and

Williams [26], who considered only the case of a Minkowski reflection matrix.

3.4.1 Necessary Conditions

Let σi denote (d− 1)-dimensional Lebesgue measure (surface measure) on the face Fi. The

following proposition was proved in [26] when the reflection matrix R is Minkowski, and the

proof can be generalized to the case when R is completely-S by using the following lemma.

Lemma 3.2 Suppose that Z is an SRBM with local time L as in (3.3). Then for each

t ≥ 0,

sup
x∈S

ExLi(t) <∞.

Proof. R is a completely-S matrix, hence it is completely saillante. Therefore, the lemma

is an immediate consequence of Lemma 1 in [2]. 2

Proposition 3.2 Any stationary distribution for an SRBM Z is unique. If π is the sta-

tionary distribution,
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(a) π is equivalent to Lebesgue measure on S, and for each x ∈ S and each f ∈ Cb(S),

lim
n→∞

1
n

n∑
i=1

Ex [f(Z(i))] =
∫
S
f(z) dπ(z);

(b) there is a finite Borel measure νi on Fi such that νi ≈ σi and for each bounded Borel

function f on Fi and t ≥ 0,

Eπ

[∫ t

0
f(Z(s)) dLi(s)

]
= t

∫
Fi

f dνi, (i = 1, 2, . . . , d).

Proof. The proof of part (a) is essentially the same as the proof of Theorem 7.1 of [26],

and with Lemma 3.2 replacing Lemma 8.4 in [26], the proof of part (b) can also be readily

carried over from that of Theorem 8.1 of [26]. 2

In terms of the primitive data (Γ, µ,R) of an SRBM, we have the following necessary

conditions.

Theorem 3.4 If Z has a stationary distribution, then

(a) the reflection matrix R is invertible, and

(b) R−1µ < 0 if R−1 ≥ 0.

Proof. Suppose that π is a stationary distribution of an SRBM Z. (a) Assume R is singular.

Then there exists a non-trivial vector v such that v′R = 0, where “prime” is the transpose

operator. For the SRBM Z, we have the semimartingale representation (3.1). Therefore

v′Z(t) = v′X(t) + v′RL(t) = v′X(t),(3.18)

since v′R = 0. From Proposition 3.2 (a), Z is ergodic, and hence v′Z is ergodic. On

the other hand, v′X is a one-dimensional (v′Γv, v′µ)-Brownian motion, which can not be

ergodic, contradicting to (3.18). Thus, R can not be singular, this proves part (a).

(b) From part (a), R is invertible and from representation (3.1),

Z∗(t) ≡ R−1Z(t) = R−1X(t) + L(t), t ≥ 0.

Since R−1 ≥ 0, we have Z∗(t) ≥ 0. The rest of arguments can follow from the proof of

Lemma 6.14 in [26]. 2
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3.4.2 A Sufficient Condition

When R is Minkowski, Harrison and Williams [26] proved that Z has a stationary distri-

bution if and only if R−1µ < 0. Their proof relied heavily on the fact that R is Minkowski,

in which case the SRBM Z has an alternative characterization as in the Appendix of [39].

By using the alternative characterization, they were able to show a transformed process of

Z is stochastically monotone, and thus proved the above assertion. In the following, for a

general completely-S reflection matrix R with R−1 ≥ 0, we establish a sufficient condition

for the existence of a stationary distribution via existence of a Liapunov function. If R is

further assumed to be symmetric, we are able to construct such a Liapunov function when

R−1µ < 0; thus Z has a stationary distribution in this case.

Let C0(S) be the set of f ∈ Cb(S) such that limx→∞ f(x) = 0, i.e., for any ε > 0, there

exists an R > 0 such that for all x ∈ {|x| > R} ∩ S, |f(x)| < ε.

Definition 3.8 An SRBM Z is said to be C0(S)-Feller if for every f ∈ C0(S), Ttf(x) ≡
Exf(Z(t)) ∈ C0(S) for each t ≥ 0.

Remark. Let {P (t, x, ·) ∈ P(S), t ≥ 0, x ∈ S} be the transition probabilities of Z, that

is, for each A ∈ BS , (t, x) → P (t, x,A) is a Borel measurable function and Ttf(x) =∫
S f(y)P (t, x, dy) for each f ∈ B(S). Since Z is Feller, it can be checked [8] that Z is

C0(S)-Feller if and only if for any compact subset K ⊂ S,

lim
x→∞

P (t, x,K) = 0.(3.19)

A Markov process Z = {Z(t), t ≥ 0} taking values in S is said to be stochastically

continuous if for every f ∈ Cb(S), t → Exf(Z(t)) is a continuous function for each x ∈ S.

The following proposition, tailored to the present setting, was proved in [8] for a Markov

process taking values in any complete separable metric state space.

Proposition 3.3 If Z is stochastically continuous, C0(S)-Feller Markov process valued in

S, then the following two statements are equivalent.

(a) For any x ∈ S and any compact subset K ⊂ S,

lim
T→∞

1
T

∫ T

0
P (t, x,K) dt = 0;

(b) There exists no stationary distribution for the Markov process Z. 2
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Lemma 3.3 If R−1 ≥ 0, then any SRBM Z with reflection matrix R is C0(S)-Feller.

Proof. From representation (3.1), we have

Z∗ ≡ R−1Z = R−1X + L.

For any given r > 0, let

f(x) =
r2

r2 + |x|2
, x ∈ Rd,

then f ∈ C2 and we have

∂f

∂xi
(x) = −2xi

r2
f2(x),(3.20)

∂2f

∂xi∂xj
(x) =

8xixj
r4

f3(x)− 2δij
r2

f2(x),(3.21)

where δij = 0 if i 6= j and δij = 1 otherwise. Hence f ∈ C2
b (Rd). For each x ∈ S, applying

Itô’s formula with f on the completion (CS ,M̃, Px) of (CS ,M, Px), we obtain Px-a.s. for

all t ≥ 0

f(Z∗(t)) = f(Z∗(0)) +
∫ t

0
G∗f(Z∗(s))ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Z∗(s)) dξi(s)(3.22)

+
d∑
i=1

∫ t

0

∂f

∂xi
(Z∗(s)) dLi(s),

where G∗f is a second order elliptic operator associated with covariance matrix R−1ΓR′−1

and drift vector R−1µ defined exactly the same way as Gf was defined in (3.10), and

ξ(t) ≡ R−1 (X(t)− µt). Since the derivatives of f are bounded, the third term on the right

hand side of (3.22) is a martingale, therefore, by taking expectation, we have

Ex [f(Z∗(t))] = f(x) + Ex

[∫ t

0
G∗f(Z∗(s)) ds

]
(3.23)

+ Ex

[
d∑
i=1

∫ t

0

∂f

∂xi
(Z∗(s)) dLi(s)

]
.

From (3.20) and (3.21), there exists a constant α > 0 such that

|G∗f(x)| ≤ αf(x),

and the last term of (3.23) is equal to

Ex

[
−2
r

d∑
i=1

∫ t

0
Z∗i (s)f2(Z(s)) dLi(s)

]
,
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which is non-positive since Z∗(t) ≥ 0. Therefore, from (3.23), we have

Ex [f(Z∗(t))] ≤ f(x) + α

∫ t

o
Ex [f(Z∗(s))] ds.

Bellman’s inequality gives

Ex [f(Z∗(t))] ≤ f(x)eαt,

and by generalized Chebyshev inequality, we have

Px{|Z∗(t)| ≤ r} ≤ 2Ex [f(Z∗(t))] ≤ 2f(x)eαt → 0,

as x → ∞. That is, (3.19) is true and from the Remark after Definition 3.8, Z∗ is C0(S)-

Feller, which implies Z is C0(S)-Feller. 2

Now we are ready to prove the following sufficient condition for the existence of a

stationary distribution. An f satisfying the conditions in the theorem is called a Liapunov

function.

Theorem 3.5 Assume R−1 ≥ 0 and Z is a corresponding SRBM. Suppose that there is

a non-negative f ∈ C2(S) such that Ex
[∫ t

0 |∇f |2(Z(s)) ds
]
< ∞ for each x ∈ S and each

t ≥ 0, and for some r > 0

Gf(x) ≤ −1, x ∈ {|x| ≥ r} ∩ S,(3.24)

Dif(x) ≤ 0, x ∈ Fi (i = 1, 2 . . . , d).(3.25)

Then Z has a stationary distribution.

Proof. For the f , as before, applying Itô’s formula as before to Z, and taking expectation

with respect to Px, we have

Ex [f(Z(t))] = f(x) + Ex

[∫ t

0
Gf(Z(s)) ds

]
+

d∑
i=1

Ex

[∫ t

0
Dif(Z(s)) dLi(s)

]
.(3.26)

Because Dif(x) ≤ 0 on Fi (i = 1, 2, . . . , d), the last summation in (3.26) is non-positive.

Since the right side of (3.26) is non-negative, we have

f(x) +
∫ t

0
Gf(Z(s)) ds ≥ 0.(3.27)
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Let M = supx∈{|x|≤r}∩S Gf(x), noticing the condition (3.24), we have

Ex

[∫ t

0
Gf(Z(s)) ds

]
= Ex

[∫ t

0
1{|Z(s)|≤r}Gf(Z(s)) ds

]
(3.28)

+ Ex

[∫ t

0
1{|Z(s)|>r}Gf(Z(s)) ds

]
≤ M

∫ t

0
Px{|Z(s)| ≤ r} ds−

∫ t

0
Px{|Z(s)| > r} ds

= (M + 1)
∫ t

0
Px{|Z(s)| ≤ r} ds− t.

From (3.27) and (3.28), we have∫ t

0
Px{|Z(s)| ≤ r} ds ≥ t

M + 1
− f(x)
M + 1

.

Therefore

lim inf
t→∞

1
t

∫ t

0
Px{|Z(s)| ≤ r} ds ≥ 1

M + 1
> 0.

Since Z is continuous, it is stochastically continuous. Also from Lemma (3.3), Z is C0(S)-

Feller. Hence, Proposition 3.3 asserts that there is a stationary distribution for Z. 2

Corollary 3.3 Assume R−1 ≥ 0. If R is symmetric, then the corresponding SRBM has a

stationary distribution if and only if

γ ≡ −R−1µ > 0.(3.29)

Proof. The necessity is given in Theorem 3.4. As to the sufficiency, it is easy to check that

f(x) = x′R−1x

is a Liapunov function as in Theorem 3.5, and hence the sufficiency is immediately from

Theorem 3.5. 2

3.5 The Basic Adjoint Relationship (BAR)

In this section we will first derive a necessary condition, called the basic adjoint relation-

ship (BAR), for the stationary distribution to satisfy. Then we will prove that (BAR)

characterizes the stationary distribution, which was first conjectured in [26].
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3.5.1 Necessity of (BAR)

The following proposition was first derived by Harrison and Williams [26] for the case where

the reflection matrix R is Minkowski.

Proposition 3.4 Suppose π is the stationary distribution for Z associated with boundary

measures νi (i = 1, 2, . . . , d) defined as in Proposition (3.2) (b). Then for each f ∈ C2
b (S),

∫
S
Gf dπ +

d∑
i=1

∫
Fi

Dif dνi = 0. (BAR)(3.30)

Proof. Applying Itô’s formula, and taking expectation Ex, we have

Ex [f(Z(t))] = f(x) + Ex

[∫ t

0
Gf(Z(s)) ds

]
+

d∑
i=1

Ex

[∫ t

0
Dif(Z(s)) dLi(s)

]
.

Integrating both sides with respect to the stationary distribution π, we obtain

0 = t

∫
S
Gf dπ + t

d∑
i=1

∫
Fi

Dif dνi,

where part (b) of Proposition 3.2 was used to obtain the first integral term and Fubini’s

theorem for the second. Now (3.30) can be readily obtained. 2

3.5.2 Sufficiency of (BAR)–A General Proof

Theorem 3.6 Assume R is a completely-S matrix. Suppose that π0 is a probability mea-

sure on S with support in O, and π1, . . ., πd are positive finite measures with supports

on F1, . . . , Fd respectively. If they jointly satisfy the basic adjoint relationship (3.30), then

π0 is the stationary distribution for a (Γ, µ,R)-SRBM Z, and πi is the boundary measure

associated with the SRBM as in Proposition 3.2 (b), i.e.,

Eπ0

[∫ t

0
f(Z(s)) dLi(s)

]
= t

∫
Fi

f dπi, f ∈ B(Fi), (i = 1, 2, . . . , d).

Remark. This theorem was first conjectured in [26], when the reflection matrix is Minkowski.

The authors proved the conjecture is true when a certain skew symmetry condition on the

data (Γ, R) is satisfied.

We have already given one proof of the theorem in Theorem 2.10 when the state space

of an SRBM is two-dimensional rectangle. The key assumption in Theorem 2.10 is the
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dimension being equal to two. There, we can uses Echeverria’s theorem [10] or [11, Theo-

rem 9.17 of Chapter 4] directly and the key to the proof is to prove D0 is dense in C0(S).

However, it is not clear if D0 is dense in C0(S) when d ≥ 3, and it seems hard to generalize

the proof to the higher dimensional case. Also, recall that in Theorem 2.10 nothing was

proved regarding the boundary measures πi.

The new idea of proving Theorem 3.6 in general is to consider an SRBM as a solution of

a constrained martingale problem as considered in Kurtz [32, 31], instead of the martingale

problem considered in Theorem 2.10. Remember in Theorem 2.10, in order to stay within the

framework of martingales, we had to select a relatively small domain D0 for the operator

G. The smaller domain D0 made the existence of a solution to the martingale problem

a relatively easy task, but made the proof of uniqueness much harder. A solution of a

constrained martingale problem is a pair of processes (Z,L), where Z takes values in S and

L is the local time (or control process) of Z satisfying (3.3). In other words, by considering

the constrained martingale problem, we keep track of all the boundary behavior of an

SRBM. It was shown in Theorem 3.3 that an SRBM is equivalent to a solution to the

constrained martingale. Therefore we can use the known uniqueness result of the SRBM,

which enables us to provide a general complete proof of Theorem 3.6.

In the following, we first extend Echeverria-Weiss’s theorem to the constrained martin-

gale problem. This is basically a recapitulation of Theorem 4.1 of Kurtz [31].

Proposition 3.5 Let π0 be a probability measure on S with π0(∂S) = 0, and π1, . . . , πd be

finite positive measures on S with the support of πi contained in Fi, and suppose that∫
S
Gf dπ0 +

d∑
i=1

∫
Fi

Dif dπi = 0 for each f ∈ C2
K(Rd).(3.31)

Then there exists a solution (Z,L) on some probability space (Ω, {Ft},F , P ) of the con-

strained martingale problem for (S,G,D;π0) such that Z is stationary, and

E

[∫ t

0
1A(Z(s)) dLi(s)

]
= tπi(A), for all A ∈ B(Fi).

To get a direct solution of a constrained martingale problem is sometimes difficult. The

indirect method to get such a solution is usually by way of solving the patchwork martingale

problem as discussed in Kurtz [32].

Definition 3.9 For any π ∈ P(S), by a solution of the patchwork martingale problem for

(S,G,D;π) we mean a continuous process (Z,L0, L1, . . . , Ld) on some filtered probability
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space (Ω, {Ft},F , P ) such that Z(t) ∈ S for all t ≥ 0, PZ(0)−1 = π, P -a.s. Li(0) = 0, Li(·)
is non-decreasing, (i = 0, 1, . . . , d),

∑d
i=0 Li(t) = t, L0(·) increases only at times t when

Z(t) ∈ O and Li(·) increases only at times t when Z(t) ∈ Fi (i = 1, . . . , d) and

f(Z(t))−
∫ t

0
Gf(Z(s)) dL0(s)−

d∑
i=1

∫ t

0
Dif(Z(s)) dLi(s)

is a {Ft}-martingale for all f ∈ C2
K(Rd).

Lemma 3.4 Suppose (π0, π1, . . . , πd) is as in Proposition 3.5. Then there exists a solu-

tion (Z,L0, L1 . . . , Ld) on some filtered probability space (Ω, {Ft},F , P ) of the patchwork

martingale problem for (S,G,D) such that for each h > 0,

(Z(·), L0(·+ h)− L0(·), . . . , Ld(·+ h)− Ld(·))

is a stationary process, Z(t) has distribution C−1∑d
i=0 πi where C = 1 +

∑d
i=1 πi(Fi) and

E[Li(t+ h)− Li(t)] = C−1hπi(Fi).

Proof. Define Hf(x, u) = u0Gf(x) +
∑d
i=1 uiDif(x) for f ∈ C2

K(Rd) and u = (u0, · · · , ud) ∈
U , the set of vectors with components 0 or 1 and

∑d
i=0 ui = 1. It is clear that the following

four conditions are satisfied.

1. C2
K(Rd) is dense in C0(S),

2. For each f ∈ C2
K(Rd) and u ∈ U , Hf(·, u) ∈ C0(S),

3. For each f ∈ C2
K(Rd),

lim
x→∞

sup
u∈U

Hf(x, u) = 0,

4. For each u ∈ U , Hf(·, u) satisfies the positive maximum principle, i.e., if f(x) =

supz f(z) > 0, then Hf(x, u) ≤ 0.

Define ν ∈ P(S × U) so that

∫
S×U

h(x, u)ν(dx× du) = C−1

(∫
S
h(x, e0)π0(dx) +

d∑
i=1

∫
Fi

h(x, ei)πi(dx)

)
.

Then
∫
S×U Hf dν = 0 for each f ∈ C2

K(Rd), hence H and ν satisfy the conditions of

Theorem 4.1 of Stockbridge [46]. Therefore there exists a stationary solution (Z,Λ) of the
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controlled martingale problem for H; that is, (Z,Λ) is a stationary S×P(U)-valued process

adapted to a filtration {Ft} on a probability space (Ω,F , P ) such that

f(Z(t))−
∫ t

0

∫
U
Hf(Z(s), u)Λ(s, du) ds(3.32)

= f(Z(t))−
∫ t

0
Gf(Z(s))Λ(s, {e0}) ds−

d∑
i=1

∫ t

0
Dif(Z(s))Λ(s, {ei}) ds

is a {Ft}-martingale for each f ∈ C2
K(Rd), and for t ≥ 0,

E [1A(Z(t))Λ(t, E)] = ν(A× E), A ∈ BS , E ∈ BU .(3.33)

Furthermore, the process Z can be taken as continuous. Defining

Li(t) ≡
∫ t

0
Λ(s, {ei}) ds, (i = 0, 1, . . . , d),(3.34)

and noting that by (3.33),

E

[∫ t

0
1O(Z(s)) dL0(s)

]
= t ν(O × {e0}) = t C−1π0(O)

E

[∫ t

0
χFi(Z(s)) dLi(s)

]
= t ν(Fi × {ei}) = t C−1πi(Fi) (i = 1, 2, . . . , d)

so L0 increase only when Z(t) ∈ O and Li increases only when Z is in Fi (i = 1, 2, . . . , d)

and
∑d
i=0 Li(t) = t. Therefore (Z,L0, L1, . . . , Ld) is a solution of the patchwork martingale

problem. 2

Proof of Proposition 3.5. Consider a sequence of patchwork martingale problems with

G fixed, but Di replaced by nDi. Then (π0, n
−1π1, . . . , n

−1πd) satisfies (3.31) for the new

family. Lemma 3.4 gives a sequence of processes (Zn, Ln0 , . . . , L
n
d ) satisfying the stationary

conclusion of Lemma 3.4. Note that E[Ln0 (t)] → t and nE[Lni (t)] is bounded in n for

i = 1, 2, . . . , d. This boundedness implies that the sequence of processes satisfies the Meyer–

Zheng conditions (see Corollary 1.3 of Kurtz [30]), and it follows that there exists a limiting

process (at least along a subsequence) which will be a stationary solution of the constrained

martingale problem. 2

Proof of Theorem 3.6. Because π0 and (π1, . . . , πd) in Theorem 3.6 satisfy all the conditions

in Proposition 3.5, there is a stationary local time solution Z of the constrained martingale

problem for (S,G,D;π0), and πi (1, 2, . . . , d) is the corresponding boundary measure. By

Theorem 3.3, this solution Z is an SRBM, and the uniqueness of an SRBM asserts π0 is the

stationary distribution of the SRBM and πi is related as in part (b) of Proposition 3.2. 2



Chapter 4

Computing the Stationary

Distribution of SRBM in an

Orthant

4.1 Introduction

Let Z be a (Γ, µ,R)-SRBM whose stationary distribution π exists. It follows from Propo-

sition 3.2 that π and its associated boundary measures νi are absolutely continuous with

respect to Lebesgue measure dx on S and dσi on Fi, respectively, (i = 1, 2, . . . , d). Denote

p0 ≡ dπ/dx on S, pi ≡ dνi/dσi on Fi, and

p = (p0; p1, . . . , pd).(4.1)

Although p contains both the stationary density p0 and its associated boundary densities

pi, we simply call p the stationary density of the SRBM Z. In Section 11 of [26], the authors

made two conjectures and raised one open problem.

(a) (Conjecture) The boundary density pi = 1
2Γiip0|Fi , i = 1, 2, . . . , d;

(b) (Conjecture) The basic adjoint relationship (3.30) characterizes the stationary distri-

bution;

(c) (Problem) How to solve (3.30), which presumably means developing efficient numerical

methods for computing important performance measures associated with the station-

ary density p, such as the means of the marginal distributions.

71
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Conjecture (a) is not resolved in this dissertation. But for computation of the performance

measures associated with the stationary density, whether the conjecture is true or not does

not matter. In fact, the algorithm that we are going to propose will compute p0 as well as

the pi’s. As to Conjecture (b), it is resolved in Theorem 3.6. Problem (c) is the focus of

this chapter.

With regard to Problem (c), for a driftless RBM in two dimensions the work of Harrison,

Landau and Shepp [23] gives an analytical expression for the stationary distribution, and

the availability of a package for computation of Schwartz-Christoffel transformations makes

evaluation of the associated performance measures numerically feasible, cf. [52]. For the

two-dimensional case with drift, Foddy [13] found analytical expressions for the stationary

distributions for certain special domains, drifts, and directions of reflection, using Riemann-

Hilbert techniques. In dimensions three and more, RBM’s having stationary distributions

of exponential form were identified in [27, 58] and these results were applied in [26, 28] to

RBM’s arising as approximations to open and closed queueing networks with homogeneous

customer populations.

In this chapter we describe an approach to computation of stationary distributions p

that seems to be widely applicable. Assuming the following Conjecture 4.1, we are able to

provide a full proof of the convergence of the algorithm; all the numerical comparisons done

thus far show that our algorithm gives reasonable accurate estimates and the convergence

is relatively fast.

Conjecture 4.1 Suppose that p0 is an integrable Borel function in O such that
∫
S p0 dx = 1

and p1, . . . , pd are integrable on F1, . . . , Fd respectively. If they jointly satisfy the basic

adjoint relationship∫
S

(Gf · p0) dx+
d∑
i=1

∫
Fi

(Dif · pi) dσi = 0 for all f ∈ C2
b (S),

then pi is non-negative (i = 0, 1, . . . , d).

If Brownian system models are to have an impact in the world of practical performance

analysis, solving Problem (c) above is obviously crucial. In particular, practical methods

are needed for determining stationary distributions, and it is very unlikely that general

analytical solutions will ever be found. As a tool for analysis of queueing systems, the

computer program described in this dissertation is obviously limited in scope, but our

ultimate goal is to implement the same basic computational approach in a general routine
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that can compete with software packages like PANACEA [38] and QNA [54] in the analysis

of large, complicated networks.

Sections 4.2–4.3 focus on a description of a general method for computing the stationary

density, and Section 4.4 describes a particular choice we made in order to implement the

general method. (Readers will see that other choices are certainly possible). In Section 4.5,

we consider a number of test problems, comparing the numerical results obtained with our

algorithm against known exact results. Finally, Section 4.6 presents a number of concrete

examples to show how our algorithm can be practically used for the performance analysis

of queueing networks.

4.2 An Inner Product Version of (BAR)

In terms of the density function p, our basic adjoint relationship (3.30) becomes

∫
S

(Gf · p0) dx+
d∑
i=1

∫
Fi

(Dif · pi) dσi = 0 for all f ∈ C2
b (S).(4.2)

We first convert (4.2) into a compact form that will be used in the next section. Given an

f ∈ C2
b (S), let

Af ≡ (Gf ;D1f, . . . , Ddf)(4.3)

and

dλ ≡ (dx; dσ1, . . . , dσd).(4.4)

For a subset E of Rd, let B(E) denote the set of functions which are BE-measurable. Let

Li(S, dλ) ≡

g = (g0; g1, . . . , gd) ∈ B(S)× B(F1)× · · · × B(Fd) :(4.5)

∫
S
|g0|i dx+

d∑
j=1

∫
Fj

|gj |i dσj <∞

 , i = 1, 2,

and for g ∈ L1(S, dλ), let

∫
S
gdλ ≡

∫
S
g0 dx+

d∑
i=1

∫
Fi

gi dσi.

For g, h ∈ B(S)×B(F1)× · · · × B(Fd), we put g · h ≡ (g0h0; g1h1, . . . , gdhd), and for h > 0,

we put g/h ≡ (g0/h0; g1/h1, . . . , gd/hd). With this notation, the basic adjoint relationship
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(4.2) can be rewritten as∫
S

(Af ·p) dλ = 0, for all f ∈ C2
b (S).(4.6)

We start with the compact form of the basic adjoint relationship (4.6). Suppose Af
and p were in L2(S, dλ) for all f ∈ C2

b (S); then the basic adjoint relationship (4.6) would

amount to saying that p is orthogonal to Af for each f ∈ C2
b (S). Unfortunately, there are

functions f ∈ C2
b (S) for which Af is not in L2(S, dλ), since the state space S is unbounded.

Nevertheless, the above observation is the key to the algorithm that we are going to describe.

In fact, based on the above observation, Dai and Harrison [9] developed an algorithm for

computing the stationary density of an RBM in a two-dimensional rectangular state space;

see Section 2.4 for details.

In order to carry over the algorithm in Chapter 2 to the case with unbounded state

space, we need to introduce the concept of “reference measure”. Let

q = (q0; q1, . . . , qd) ,

where q0 is a probability density in S and qi is a positive integrable function over Fi (with

respect to (d − 1)-dimensional Lebesgue measure dσi). The function q will be called a

reference density. In the following, we assume a reference density q has been chosen. We

will come back the question of how to choose a reference density in Section 4.4. For the

reference density q, we define the reference measure

dη ≡ q dλ = (q0dx; q1dσ1, . . . , qddσd)(4.7)

where the measure dλ is defined in (4.4). Similar to the definition of Li(S, dλ) and
∫
S g dλ

for g ∈ L1(S, dλ), we can define Li(S, dη) and
∫
S g dη for g ∈ L1(S, dη). If we introduce a

new unknown r = p/q, then our basic adjoint relationship (4.6) takes the form∫
S

(Af · r) dη = 0 for all f ∈ C2
b (S).(4.8)

4.3 Algorithm

In the following, we actually develop an algorithm to solve for this new unknown r. Of

course, once one has r, one can get the stationary density p (interior density p0 and boundary

densities p1, . . . , pd) from p = r · q.



CHAPTER 4. COMPUTING THE STATIONARY DISTRIBUTION 75

Associated with the measure η, we can define L2 ≡ L2(S, dη) similarly as defining

L2(S, dλ) in (4.5), taken with usual inner product (· , ·) and norm || · ||. Unless specified

otherwise, all inner products and norms are taken in L2(S, dη). Because η is a finite measure

and Af is bounded, we have Af ∈ L2 for each f ∈ C2
b (S). We define H ⊂ L2 to be the

closed subspace

H ≡ the closure of
{
Af : f ∈ C2

b (S)
}
,(4.9)

where the closure is taken in the usual L2 norm. Let φ0 be defined on S by

φ0 = (1; 0, . . . , 0).(4.10)

Proposition 4.1 If the unknown function r ∈ L2, then r is orthogonal to H and (r, φ0) = 1.

Conversely, if there is a non-negative r ∈ L2 such that r is orthogonal to H and (r, φ0) = 1,

then r · q is the stationary density, where q is the chosen reference density.

Proof. Assume r ∈ L2. Since r satisfies the basic adjoint relationship (4.8), r is orthogonal

to Af for every f ∈ C2
b (S). By taking a limit, we have that r is orthogonal to H. Also,

(r, φ0) =
∫
S
r(x) · φ0(x) dη =

∫
S

p

q
· φ0 · q dλ

=
∫
S
p · φ0 dλ =

∫
S
p0 dx = 1.

The last equality holds because p is a probability density function in O.

Conversely, assume there is a non-negative r ∈ L2 such that r is orthogonal to H. Then

r is orthogonal to Af for every f ∈ C2
b (S), or equivalently, r satisfies (4.8). Therefore, by

definition, r · q satisfies (4.6). Since r · q is non-negative and
∫
S(r · q) dx = 1, it follows from

Theorem 3.6 that r · q is the stationary density of the corresponding RBM. 2

Proposition 4.2 If r ∈ L2, then the orthogonal complement φ̃0 ≡ φ0− φ̄0 of φ0 is non-zero

in L2 and is orthogonal to H, where φ̄0 is the projection of φ0 onto H defined by

φ̄0 ≡ argminφ∈H ||φ0 − φ||.(4.11)

Therefore, assuming Conjecture 4.1 to be true, we arrive at the following formula for the

stationary density

p =
1

||φ̃0||2
φ̃0 · q.(4.12)
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Proof. Assume r ∈ L2. From Proposition 4.1, (r, φ0) = 1, and thus r is not orthogonal to

φ0. Also from Proposition 4.1, we know that r is orthogonal to H. Hence we conclude that

φ0 is not in H. Because H is closed and φ0 6∈ H, the projection φ̄0 defined in (4.11) of φ0

is not equal to itself, which implies that φ̃0 is not zero in L2. Of course, the orthogonal

complement φ̃0 is orthogonal to H. Since

(φ̃0, φ0) =
∫
O
φ̃0 · q dx =

∫
S
φ0 · φ̃0 dη

= (φ0, φ0 − φ̄0) = (φ0 − φ̄0, φ0 − φ̄0)

= ||φ̃0||2 > 0,

assuming Conjecture 4.1 to be true, then φ̃0 does not change sign and r ≡ (φ̃0, φ0)
−1
φ̃0

satisfies all the conditions in Proposition 4.1. Therefore the assertion of Proposition 4.2

follows from Proposition 4.1. 2

Proposition 4.3 Let {Hn} be a sequence of increasing subspaces of H, such that Hn ↑ H.

For each n, define φn to be the orthogonal complement of φ0 onto Hn, i.e., φn = φ0 − ψn
where

ψn ≡ argminφ∈Hn ||φ0 − φ||.(4.13)

If r ∈ L2, and if we assume Conjecture 4.1 to be true, then

rn ≡
φn
||φn||2

→ r in L2, as n→∞.(4.14)

Furthermore, by setting pn = rn · q, one has for all f ∈ L2,∫
S
f · pn dλ→

∫
S
f · p dλ,

and if q is taken to be bounded, then pn → p in L2(S, dλ) as n→∞.

Proof. Since Hn ↑ H, φn → φ̄0 as n→∞. Because r ∈ L2, φ̃0 is non-zero in L2. Therefore

||φn||2 → ||φ̃0|| 6= 0, and hence rn ≡ φn/||φn||2 goes (in L2) to r, which is φ̃0/||φ̃0||2 under

the assumption that Conjecture 4.1 is true. If f ∈ L2, then∣∣∣∣∫
S
f · pn dλ−

∫
S
f · p dλ

∣∣∣∣ =
∣∣∣∣∫
S
f (rn − r) q dλ

∣∣∣∣(4.15)

=
∣∣∣∣∫
S
f (rn − r) dη

∣∣∣∣ ≤ ||f ||1/2||rn − r||1/2.
When q is bounded, then∫

S
|pn − p|2 dλ =

∫
S
|rn − r|2q2 dλ ≤ max

x∈S
q(x)||rn − r||2.(4.16)
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The rest of proof can be readily obtained from (4.15) and (4.16). 2

Proposition 4.3 says that, when r ∈ L2, we can calculate the corresponding stationary

density p numerically by choosing appropriate finite dimensional subspaces Hn. However,

when r 6∈ L2, we can still define pn via rn as in (4.14). We conjecture that, in this case, pn
converges to p weakly , i.e.,∫

S
f · pn dλ→

∫
S
f · p dλ as n→∞ for all f ∈ Cb(S).

4.4 Choosing a Reference Density and {Hn}

In this section we will choose a particular q to serve as the reference density function

of the previous section. We will first define some quantities that are of interest in the

queueing theoretic application of RBM. Let p be the stationary density of an RBM, and for

i = 1, 2, . . . , d let

mi ≡
∫
S

(xi ·p0(x)) dx.(4.17)

Then, m ≡ (m1, . . . ,md)′ represents the long run mean position of the SRBM Z. For an

SRBM arising from queueing networks, mi corresponds to some performance measure of the

corresponding queueing network (for example, the average waiting time or average queue

length at station i). There are, of course, other quantities associated with p0 that are of

interest, such as the second moments or quantities like
∫
S max(xi, xj)p0(x) dx for i 6= j;

see Nguyen [35]. Because our algorithm gives estimates for the density function itself, such

extensions are trivial and we will only focus on the quantity m. Proposition 4.4 below

indicates that, in calculating the steady-state mean vector m, it is enough to consider only

“standard SRBM’s”.

Definition 4.1 A semimartingale RBM with data (Γ, µ,R) is said to be standard if Γii =

1 for i = 1, 2, . . . , d, R is invertible and max1≤i≤d
∣∣(R−1µ

)
i

∣∣ = 1.

Proposition 4.4 Suppose that Z with {Px, x ∈ S} is an SRBM with data (S,Γ, µ,R), that

Z has a stationary distribution, and that the steady-state mean vector m = (m1, . . . ,md)′

is defined via (4.17). Let Z∗ = {Z∗(t), t ≥ 0} be defined by
Z∗1 (t)

...

Z∗d(t)

 =


γmax√

Γ11
Z1

(
t

γ2
max

)
...

γmax√
Γdd

Zd

(
t

γ2
max

)
 .
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Then Z∗ is a standard SRBM with data (S,Γ∗, µ∗, R∗), where

Γ∗ij =
Γij√

Γii
√

Γjj
, µ∗i =

µi√
Γiiγmax

, R∗ij =
Rij
Rjj

√
Γjj√
Γii

, 1 ≤ i ≤ d, 1 ≤ j ≤ d,

where γmax = max1≤i≤d |γi| with

γ ≡ −R∗−1


µ1/
√

Γ11

...

µd/
√

Γdd

 .
Moreover, Z∗ has a stationary distribution and its steady-state mean vector m∗ is related

to m via

mi =
√

Γii
γmax

m∗i , i = 1, 2, . . . , d.(4.18)

Proof. Suppose that Z with {Px, x ∈ S} is a (S,Γ, µ,R)-SRBM. Let m be the steady-

state mean vector associated with the (S,Γ, µ,R)-SRBM. Let Γ∗ = (Γ∗ij)1≤i,j≤d and R∗ =

(R∗ij)1≤i,j≤d be two d× d matrices defined by

Γ∗ij =
Γij√

Γii
√

Γjj
, R∗ij =

Rij
Rjj

√
Γjj√
Γii

, 1 ≤ i ≤ d, 1 ≤ j ≤ d.

Let µ∗ = (µ∗1, . . . , µ
∗
d)
′ where

µ∗i =
µi√

Γiiγmax
, 1 ≤ i ≤ d

and γmax = max1≤i≤d |γi| with

γ ≡ −R∗−1


µ1/
√

Γ11

...

µd/
√

Γdd

 .
Because Z is an (S,Γ, µ,R)-SRBM in the orthant Rd

+. Then (3.1)–(3.3) hold. In particular,

for each x ∈ S,

Z(t) = X(t) +RL(t), t ≥ 0, Px-a.s.

It follows then, Px-almost surely, for each t ≥ 0,
γmax√

Γ11
Z1

(
t

γ2
max

)
...

γmax√
Γdd

Zd

(
t

γ2
max

)
 =


γmax√

Γ11
X1

(
t

γ2
max

)
...

γmax√
Γdd

Xd

(
t

γ2
max

)
+(4.19)
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+


R11

R11

√
Γ11√
Γ11

· · · R1d

Rdd

√
Γdd√
Γ11

...
. . .

...
Rd1

R11

√
Γ11√
Γdd

· · · Rdd
Rdd

√
Γdd√
Γdd




γmax√

Γ11
L1

(
t

γ2
max

)
...

γmax√
Γdd

Ld

(
t

γ2
max

)
 .

Let Z∗(t) be the left hand side of (4.19), then Z∗ = {Z∗(t), t ≥ 0} is an (S,Γ∗, µ∗, R∗)-

SRBM. By the definition of (Γ∗, µ∗, R∗), we have Γ∗ii = 1, R∗ii = 1 (i = 1, . . . , d) and

max1≤i≤d |γ∗i | = 1 where

γ∗ ≡ −R∗−1µ∗ =
γ

γmax
.

Therefore Z∗ is a standard SRBM. Let m∗ = (m∗1, . . . ,m
∗
d)
′ be the steady-state mean of the

SRBM Z∗. It follows that

mi =
√

Γii
γmax

m∗i , i = 1, 2, . . . , d,

and hence m can be computed in terms of m∗. 2

When the SRBM is standard, all the associated data are properly scaled, and therefore

the algorithm described in the next section is more stable.

Definition 4.2 We say a stationary density for Z is of product form (or has a separable

density) if the stationary density p0 can be written as

p0(z) = Πd
k=1p

k
0(zk), z = (z1, . . . , zk) ∈ S,(4.20)

where p′0, . . ., pd0 are all probability densities relative to Lebesgue measure on R+.

The following proposition is due to Harrison and Williams. (For a proof, see [26] Theo-

rem 9.2.)

Proposition 4.5 A standard SRBM Z has a product form stationary distribution if and

only if (3.29) holds and the following condition holds:

2Γjk = (Rkj +Rjk) for j 6= k.(4.21)

In this case, there is a constant C such that the density p is the exponential

z → C exp(−2γ · z), z = (z1, . . . , zd) ∈ S,(4.22)

i.e., p0 is given by (4.22) and pi is the restriction of this exponential to Fi (i = 1, 2, . . . , d),

where γ is defined in (3.29).
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Remark. Condition (4.21) holds if and only if I − R is skew symmetric; Harrison and

Williams [26] refer to (4.21) as a skew symmetry condition.

The above proposition asserts that the density p is of exponential form precisely when

the skew symmetry condition (4.21) is satisfied. If we choose q to be the above exponential

in (4.22), then r ≡ p/q is identically one when (4.21) is satisfied. When the skew symmetry

condition (4.21) is not satisfied, but is almost satisfied, we expect the density p is only

slightly perturbated from the above exponential. That is, r is nearly equal to one. Therefore,

we can think of r as some adjusting factor of how far the actual stationary density p is from

the exponential solution. Based on these observations, we choose q to be the exponential

in (4.22).

Corollary 4.1 Fix the reference density function q to be the exponential in (4.22), and

let dη be as in (4.7). If all the assumptions in Proposition 4.3 are satisfied, then for each

f ∈ L2 ∫
S
f(x)pn(x) dx→

∫
S
f(x)p(x) dx, as n→∞.

In particular, the approximating moment mn
i ≡

∫
S xipn dx converges to mi (i = 1, 2, . . . , d).

Proof. Since q is decaying exponentially, f(x) ≡ xi ∈ L2 = L2(S, dη). Therefore, the proof

of the corollary is an immediate consequence of Proposition 4.3. 2

Remark. Since the chosen q is smooth, our approximating function pn = rn ·q is also smooth,

whereas most of the time the stationary density p is singular. If we knew in advance the

order of the singularities at the non-smooth parts of the boundary, we might be able to

incorporate these singularities into the reference density function q, so that r = p/q would

be smooth. This would yield an algorithm which would converge faster. Unfortunately,

there is no general result on the order of the singularities of the stationary density of an

RBM in high dimensions.

The next proposition tells us how to choose a finite dimensional subspace Hn approxi-

mating H.

Proposition 4.6 For each integer n ≥ 1, let

Hn = {Af : f is a polynomial of degree ≤ n} .(4.23)

Then Hn ↑ H.
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Proof. It is obvious that Hn is increasing. The proof of the convergence Hn → H is an

immediate consequence of Proposition 7.1 and Remark 6.2 in the appendices of Ethier and

Kurtz [11]. 2

4.5 Numerical Comparisons

In this section, we will compare numerical results (QNET estimates) from our algorithm

with some known analytical results for particular RBM’s. The two cases discussed in this

section are the only cases for which explicit analytical solutions are known, except for

SRBM’s with exponential stationary densities. Because the exponential solutions are in-

corporated in our algorithm, these are the only exact solutions available for checking the

algorithm.

4.5.1 A Two-Dimensional RBM

Consider a two-dimensional RBM with covariance matrix Γ = I, drift vector of the form

µ = (µ1, 0)′ and reflection matrix

R =

 1 0

−1 1

 .
An RBM with these data (Γ, µ,R) arises as a Brownian approximation for a special type

of tandem queue, cf. [21]. For this RBM, our stationary condition (3.29) reduces to µ1 < 0.

This type of RBM was studied in Harrison [22]. There, after a transformation, the author

was able to obtain a solution of product form for the stationary density in polar coordinates.

The explicit form of the stationary density is

p(x) = Cr−1/2eµ1(r+x1) cos (θ/2) , x = (x1, x2) = (r cos θ, r sin θ),(4.24)

where C = π−1/2 (2|µ1|)3/2. Notice that x = 0 is the singular point of the density. The

above density p is square integrable in O with respect to interior Lebesgue measure, but

p is not square integrable over the boundary with respect to boundary Lebesgue measure.

Therefore, p is not in L2. By the scaling argument given in Proposition 4.4, it is enough to

consider the case when µ1 = −1. It follows from (4.24) (cf. Greenberg [19]) that

m1 =
1
2
, m2 =

3
4
.
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n 1 2 3 4
m2 0.50000 0.83333 0.75000 0.75873
n 5 6 7 8
m2 0.75133 0.75334 0.75225 0.75681

Table 4.1: Convergence of the Algorithm

Using our algorithm, taking n = 5 (n is the maximum degree of the polynomials we take in

(4.23)), we have QNET estimates

m1 = 0.50000, m2 = 0.75133.

The QNET estimate of m1 is exact as expected. If one takes the first station in the

tandem queue in isolation, the first station will correspond to a one-dimensional RBM,

whose stationary density is always of exponential form. It was rigorously proved in [22]

that the one-dimensional marginal distribution in x1 is indeed of exponential form. The

above comparison shows that our algorithm can catch some marginal exponentials. Table 4.1

shows that if we require a one percent of accuracy, which is usually good enough in queueing

network applications, the convergence is very fast, even for this very singular density.

4.5.2 Symmetric RBM’s

An RBM is said to be symmetric if it is standard (cf. Definition 4.1) and its data (Γ, µ,R)

are symmetric in the following sense: Γji = Γij = ρ for 1 ≤ i < j ≤ d, µi = −1 for 1 ≤ i ≤ d
and Rji = Rij = −r for 1 ≤ i < j ≤ d, where r ≥ 0 and r(d − 1) < 1. A symmetric RBM

arises as a Brownian approximation of a symmetric generalized Jakson network . In such a

network, each of the d station behaves exactly the same. Customers finishing service at one

station will go to any one of the other d− 1 stations with equal probability r and will leave

the network with probability 1− (d− 1)r. For d = 2, the symmetric queueing network was

used by Foschini to model a pair of communicating computers [14]. The author extensively

studied the stationary density of the corresponding two-dimensional symmetric RBM.

Now because the data (Γ, µ,R) of a symmetric RBM is, in an obvious sense, invariant

under permutation of the integer set {1, 2, . . . , d}, it is clear that the stationary density

p0(x) is symmetric, i.e.,

p0(x1, x2, . . . , xd) = p0(xσ(1), xσ(2), . . . , xσ(d)),
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for any permutation σ on {1, 2, . . . , d}. In particular,
∫
Fj
xi · pj dσj = δ ≡

∫
F1
x2 · p1 dσ1 for

all i 6= j and the marginal densities of p0 are same, and hence

m1 = m2 = · · · = md.

If we take f = x2
i , then the basic adjoint relationship (3.30) gives

1− 2m1 − r
d∑
j=2

∫
Fj

x1 · pj dσj = 0.(4.25)

Taking f = x1x2, we have

ρ − (m1 +m2) +
1
2

∫
F1

x2 · p1 dσ1 +
1
2

∫
F2

x1 · p2 dσ2(4.26)

− 1
2
r

d∑
j=3

∫
Fj

(x1 + x2)pj dσj = 0.

By symmetry, from (4.25) and (4.26) we get

1− 2m1 − δ(d− 1)r = 0,(4.27)

ρ− 2m1 + δ − δ(d− 2)r = 0.(4.28)

Solving these linear equations gives δ = (1− ρ)/(1 + r) and

m1 =
1− (d− 2)r + (d− 1)rρ

2(1 + r)
.(4.29)

Now we compare our numerical estimates of m1 with the exact values of m1 calculated from

formula (4.29). When d = 2, the conditions on data (Γ, µ,R) yield |ρ| < 1 and 0 ≤ r < 1.

Ranging ρ ∈ {−0.9,−0.5, 0.0, 0.5, 0.9} and r ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 0.95}, and taking n = 3,

we obtain QNET estimates for m1 (Table 4.2). Table 4.3 gives the relative errors between

these QNET estimates and the exact values.

When r = 1 there is no corresponding SRBM. It is expected that when ρ is big (the skew

symmetry condition (4.21) is far from being satisfied), the stationary density is very singular

as r ↑ 1. This phenomenon seems to be indicated in Table 4.3, where the performance of the

algorithm degrades as r increases to one. When the dimension d is 3, then the restriction on

the data gives −1/2 < ρ < 1 and 0 ≤ r < 1/2. Table 4.4 gives the relative errors between

some QNET estimates and the exact values for m1 in this case. When the dimension d is

4, then the restriction on the data gives −1/3 < ρ < 1 and 0 ≤ r < 1/3; relative errors

between QNET estimates and exact values for m1 are found in Table 4.5.
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r \ ρ −0.90 −0.50 0.00 0.50 0.90
0.20 0.341667 0.375000 0.416667 0.458333 0.491667
0.40 0.228571 0.285714 0.357143 0.428571 0.485714
0.60 0.143750 0.218750 0.312500 0.406250 0.481250
0.80 0.077778 0.166667 0.277778 0.388889 0.477778
0.90 0.050000 0.144737 0.263158 0.381579 0.476316
0.95 0.037179 0.134615 0.256410 0.378205 0.475641

Table 4.2: QNET Estimates for m1 when d = 2 (n = 3)

r \ ρ −0.90 −0.50 0.00 0.50 0.90
0.20 9.75e−16 4.44e−16 −7.99e−16 −2.42e−16 3.39e−16
0.40 3.89e−15 −7.77e−16 −7.77e−16 5.18e−16 1.49e−15
0.60 4.63e−15 3.17e−15 8.88e−16 2.73e−15 −2.42e−15
0.80 2.32e−15 −4.33e−15 −1.20e−15 −2.63e−14 3.83e−15
0.90 −6.91e−14 2.45e−14 −2.08e−13 −1.81e−12 −7.46e−13
0.95 −9.59e−14 6.69e−13 5.44e−12 3.32e−11 1.04e−10

Table 4.3: Relative Errors when d = 2 (n = 3)

ρ \ r 0.10 0.30 0.40 0.45
−0.40 1.49e−16 2.04e−15 1.39e−15 −1.06e−14
−0.20 1.14e−15 −2.12e−15 −1.06e−15 −6.16e−14

0.00 −5.43e−16 −2.68e−15 −7.77e−15 −6.54e−14
0.80 −4.61e−16 −9.79e−15 8.65e−14 9.21e−12
0.90 −1.47e−15 −1.75e−14 3.66e−13 7.73e−12

Table 4.4: Relative Errors when d = 3 (n = 3)

ρ \ r 0.10 0.20 0.30 0.33
−0.30 −2.06e−15 4.60e−15 −2.01e−14 −2.23e−13
−0.15 −1.29e−15 7.18e−15 1.39e−14 −5.32e−12

0.00 9.16e−16 8.88e−16 −1.08e−14 −6.06e−12
0.80 −3.88e−15 7.40e−16 3.23e−12 4.60e−10
0.90 −5.14e−15 2.34e−14 4.78e−12 1.53e−11

Table 4.5: Relative Errors when d = 4 (n = 3)
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4.6 Queueing Network Applications

4.6.1 Queues in Series

Consider a network of d queues in series as pictured in Figure 4.1. The departure process

from one service station forms the arrival process at the next service station. This serial

queueing system has been studied by many authors, [15, 22, 45, 55, 49, 20] to name a

few. Different authors studied this queueing system with different objectives. We will focus

on the performance analysis of this network. To be more specific, we are interested in

calculating the long-run average waiting time wj that customers experience at station j.

We will approximate the d-dimensional workload process, as described in Section 1.2 when

d = 2, by a d-dimensional semimartingale reflected Brownian motion (SRBM) Z in the

orthant Rd
+. Then we will use the algorithm described in Sections 4.1 through 4.4 to solve

for the stationary density of the corresponding SRBM numerically. From this, we will get

back to the average waiting time in the original queueing system.

To find the long-run average waiting times even for this “simple” queueing system is

difficult with general distributions (i.e., when they are not all exponential). The problem is

that the arrival process to any queue beyond the first is not a renewal process; see Suresh

and Whitt [49] and Berman and Westcott [1].

We characterize the network of queues in series by the (2d+ 1)-tuple

(C2
a , ρ1, C

2
s1 , . . . , ρd, C

2
sd

),

where d is the number of stations in the network, and as specified in Section 1.2, C2
a is the

squared coefficient of variation for the interarrival time distribution, ρi is the mean service

C2
a

-

λ = 1

C2
s1

��
��

1

ρ1

- r r r -
C2
sd

��
��
d

ρd

-

Figure 4.1: A Network of d Queues in Series
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time at station i and C2
si is the squared coefficient of variation of the service time distribution

at station i. We assume the arrival rate to station 1 is one so that ρi is the traffic intensity

at station i. Using the method proposed in Harrison and Nguyen [24], as illustrated in

Section 1.2, the d-dimensional current workload process W (t) = (W1(t), . . . ,Wd(t))′ can be

replaced (approximated) by a d-dimensional SRBM Z in the orthant Rd
+ associated with

data (Γ, µ,R). When d = 2, it has been derived in Section 1.2 that

Γ =

 ρ2
1(C2

a + C2
s1) −ρ1ρ2C

2
s1

−ρ1ρ2C
2
s1 ρ2

2(C2
s1 + C2

s2)

 , µ =

 ρ1 − 1

ρ2/ρ1 − 1

 , R =

 1 0

−ρ2/ρ1 1,

 .
Using the algorithm developed in an earlier part of this chapter, we can calculate the steady

state mean m = (m1,m2, . . . ,md)′ of Z. It is suggested in [24] that the expected waiting

times w = (w1, . . . , wd)′ be approximated by the long-run average workload levels, and

hence we have the estimates

wj
.= mj , j = 1, . . . , d.

In the following, we will compare our QNET estimates of average waiting times for

many system configurations and a variety of system parameters with simulation estimates

as well as with estimates from other approximation schemes. Readers should notice that in

using QNET to estimate w, there are two levels of errors that might occur. The first level

comes from the model replacement (wj
.= mj), and the second level of error comes from the

numerical calculation of mj .

Fraker’s Experiment

Here we consider Fraker’s [15] experiment. Fraker simulated eight different cases of eight

single-server queues in series. In all cases, the external arrival process is Possion, and

all service time distributions are Erlang. Each of four traffic intensities (ρ = 0.3, 0.5, 0.7

and 0.9) and each of four Erlang service-time distributions (M = E1, E4, E8, and D =

E∞) is assigned randomly to two of the eight nodes (M for exponential distributions or

memoryless, and D for deterministic). Fraker’s simulations consisted of three separate runs

of 2500 customers each, with the first 500 being discarded to damp out the transient effects.

Statistics were collected for six blocks of 1000 customers each. As pointed out by Whitt

[55], the simulation runs were not long enough for good statistical accuracy, and no single

estimate can be relied upon, but the total experiment clearly yields meaningful comparisons

of approximations.
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Whitt [55] compared his QNA approximations [54] with the first three cases of Fraker’s

simulation and approximation results. Currently, our QNET software is still under testing,

and there is a limitation of the network size. We truncate Fraker’s network by considering

the first three stations as a sub-network of three queues in series. Table 4.6 compares various

approximations of expected waiting at station j (j = 1, 2, 3) with Fraker’s simulation results

in the first three cases. All numbers except our QNET estimates are taken from Table 1–3

of [55]. The SIM column gives Fraker’s simulation results, and the column under “Fraker”

contains Fraker’s approximation results. The QNA approximation results are listed in

the QNA column, and our QNET estimates are in the QNET column. From Table 4.6,

we can see that our QNET approximations, rooted in heavy traffic theory, perform very

well, even under moderate traffic intensities. We remark that Fraker’s approximations

are especially designed for tandem queueing systems with Erlang service times, whereas

our QNET method can handle a quite general class of networks. Table 4.7 shows the

convergence of our algorithm for Case I, where (m1, . . . ,mk)′ is the steady-state mean of

the corresponding k-dimensional SRBM that arises from the sub-network of the first k

stations in series (k = 2, 3, 4, 5). From this table, we see that our algorithm is robust

regardless of dimension.

Shimshak’s Experiment

Shimshak [45] also developed approximations for expected waiting times of queues in series

and compared them with simulations. He simulated two single-server queues in series with

three different renewal arrival processes. In Shimshak’s experiments I, III, and IV the

interarrival time distributions are, respectively, exponential with C2
a = 1, hyperexponential

(a mixture of two exponential distributions) with C2
a = 4.0, and Erlang (E10) with C2

a = 0.1.

(In experiment II the second queue has ten servers, so it will not be considered here.)

Experiments III and IV are interesting additions to Fraker’s experiment in the previous

subsection because the external arrival process is non-Poisson.

These three cases were used by Whitt in [55] to validate his QNA software package.

We follow his line of exposition except that we leave out two first moment approximation

schemes which perform very poorly most of the time in these comparisons. The tandem

queue contains four free variables. They are the two traffic intensities (ρ = 0.6 and 0.8) and

two Erlang service time distributions (E1 and E10, C2
s = 1.0 or 0.1) at the two nodes. In

each experiment, one of these four variables is held fixed. Hence, each experiment consists
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Parameters Waiting Times

j ρj Csj SIM Fraker QNA QNET∗

case I
1 0.7 1/8 0.98 0.92 0.92 0.92
2 0.5 1 0.30 0.38 0.38 0.34
3 0.5 0 0.19 0.13 0.16 0.21

case II
1 0.9 1 6.25 8.10 8.10 8.10
2 0.7 1/8 0.84 0.92 0.92 0.92
3 0.3 1/4 0.01 0.04 0.04 0.03

case III
1 0.9 0 4.70 4.05 4.05 4.05
2 0.9 1/4 2.19 1.80 2.32 1.89
3 0.5 1 0.24 0.23 0.24 0.33
∗n = 5

Table 4.6: Comparisons with Fraker’s Experiments

m1 m2 m3 m4 m5 n

0.918750 0.327284 0.194887 0.202654 0.015241 3
0.918750 0.331946 0.197427 0.215913 0.015034 4
0.918750 0.327474 0.196155 0.197442 3
0.918750 0.332758 0.198488 0.203457 4
0.918750 0.333974 0.212011 3
0.918750 0.335945 0.205642 4
0.918750 0.334451 0.204894 5
0.918750 0.327135 3
0.918750 0.330338 4
0.918750 0.330561 5

Table 4.7: Convergence of the Algorithm
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of eight cases, containing all combinations of three variables, each with two possible values.

In experiment I the service time distribution at node 1 is always E10; in experiments III

and IV the traffic intensity at node 1 is always 0.8.

Shimshak’s simulations were obtained using GPSS and the regenerative method. The

number of customers simulated in each case ranged from 15,000 to 25,000, depending on

the traffic intensity. The statistical reliability is indicated by 95% confidence intervals. The

simulation results and the approximations for expected total waiting times appear in Ta-

bles 4.8–4.10. The Fraker, Page and Marchal approximations are approximations devised by

Shimshak using earlier methods. All the numbers except QNET estimates are taken from

Table 6–8 of [55]. The half width of the 95% confidence interval is in parentheses below

the simulation estimates. The estimated relative error appears below the approximation in

parentheses. It is the approximation value minus the simulation value divided by the simu-

lation value. The blanks in the Fraker column in Table 4.9 mean his approximation failed

in these cases. We take n = 6 for our QNET calculations. In Table 4.8, except for Case 7,

our QNET estimates give very good approximations of the total waiting times. In case 7,

the squared coefficient of variation of the interarrivals is C2
a = 1, which is big compared to

the squared coefficient of variation of the service times at both stations, C2
s1 = C2

s2 = 0.1.

Case 7 in Table 4.8 shows that our QNET method fails to catch the high variability of

the arrival process to the second queue, and therefore underestimates the average waiting

time at the second station. Table 4.9 shows that our QNET approximations are uniformly

better than QNA approximations, whereas in Table 4.10, our QNET approximations fail

to get good approximations at all. Notice that in Table 4.10, for Case 2, Case 4, Case 6

and Case 8, because C2
a = C2

s1 = 0.1, there is a product form formula to calculate the

corresponding steady-state mean m. In other words, the QNET calculation for m is exact ,

and all errors come from the model replacement. Presumably, this is due to the fact that

traffic intensities are not high enough, and Table 4.10 confirms this. The rows with the

largest errors have very small waiting times. This suggests that more validation of QNET

is needed.
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C2
a = 1, C2

s1 = 0.1

case ρ C2
s2 SIM Fraker Page Marchal QNA QNET∗

1 0.6 1.20 1.19 1.20 1.18 1.25 1.19
0.6 1.0 (0.09) (−0.01) (0.00) (−0.02) (0.04) (−0.01)

2 0.8 2.27 2.30 2.31 2.28 2.38 2.34
0.6 1.0 (0.23) (0.01) (0.02) (0.01) (0.05) (0.03)

3 0.6 0.78 0.77 0.84 0.84 0.84 0.70
0.6 0.1 (0.06) (−0.02) (0.08) (0.07) (0.08) (−0.10)

4 0.8 1.83 1.90 1.99 1.98 1.98 1.87
0.6 0.1 (0.22) (0.04) (0.09) (0.08) (0.08) (0.02)

5 0.6 3.41 3.07 3.10 3.06 3.21 3.26
0.8 1.0 (0.43) (−0.10) (−0.09) (−0.10) (−0.06) (−0.04)

6 0.8 4.33 3.85 3.70 3.84 4.07 4.23
0.8 1.0 (0.60) (−0.14) (−0.10) (−0.11) (−0.06) (−0.02)

7 0.6 1.93 1.60 1.73 1.72 1.77 0.86
0.8 0.1 (0.27) (−0.17) (−0.10) (−0.11) (−0.08) (−0.55)

8 0.8 2.48 2.43 2.58 2.57 2.63 2.34
0.8 0.1 (0.29) (−0.02) (0.04) (0.04) (0.06) (−0.06)

Average relative error −0.05 −0.01 −0.02 +0.01 −0.09

Average absolute relative error 0.06 0.07 0.07 0.06 0.11
* n = 6 for QNET estimates.

Table 4.8: Comparisons with Shimshak’s Experiment I
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C2
a = 4, ρ1 = 0.8

case ρ2 C2
s SIM Fraker Marchal QNA QNET∗

1 0.6 1.0 9.08 10.30 10.39 9.39 9.03
1.0 (1.38) (0.13) (0.14) (0.03) (−0.01)

2 0.6 0.1 6.49 7.91 7.72 7.17
1.0 (0.73) (0.22) (0.19) (0.10)

3 0.6 1.0 8.55 10.17 9.86 8.98 8.57
0.1 (1.20) (0.19) (0.15) (0.05) (0.00)

4 0.6 0.1 6.01 7.43 7.31 6.67
0.1 (0.73) (0.24) (0.22) (0.10)

5 0.8 1.0 12.31 13.50 13.54 12.92 12.77
1.0 (2.26) (0.10) (0.10) (0.05) (0.04)

6 0.8 0.1 9.64 10.78 10.67 10.13
1.0 (1.33) (0.12) (0.11) (0.05)

7 0.8 1.0 11.13 12.55 11.90 11.49 10.95
0.1 (1.37) (−0.13) (0.07) (0.03) (−0.02)

8 0.8 0.1 7.40 9.21 9.23 7.86
0.1 (0.95) (0.24) (0.25) (0.06)

Average relative error +0.14 +0.16 +0.12 +0.04

Average absolute relative error 0.14 0.16 0.12 0.05
* n = 6 for QNET estimates.

Table 4.9: Comparisons with Shimshak’s Experiment III
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C2
a = 0.1, ρ1 = 0.8

case ρ2 C2
s SIM Fraker Marchal QNA QNET∗

1 0.6 1.0 2.30 2.24 2.21 2.29 2.55
1.0 (0.19) (−0.03 (−0.04) (0.00) (0.11)

2 0.6 0.1 0.59 0.58 0.59 0.56 0.82
1.0 (0.04) (−0.02) (0.00) (−0.05) (0.39)

3 0.6 1.0 1.95 1.81 1.84 1.89 2.18
0.1 (0.45) (−0.07) (−0.06) (−0.03) (0.12)

4 0.6 0.1 0.25 0.27 0.35 0.20 0.41
0.1 (0.02) 0.08 (0.40) (−0.20) (0.65)

5 0.8 1.0 3.84 4.27 4.26 4.21 4.24
1.0 0.33 (0.11) (0.11) (0.10) (0.10)

6 0.8 0.1 1.82 1.77 1.75 1.85 2.08
1.0 (0.19) (−0.03) (−0.04) (0.02) (0.14)

7 0.8 1.0 2.68 2.79 2.88 2.77 2.98
0.1 (0.52) (0.04) (0.07) (0.03) (0.11)

8 0.8 0.1 0.46 0.50 0.58 0.43 0.64
0.1 (0.22) (0.09) (0.26) (−0.06) (0.39)

Average relative error +0.02 +0.09 −0.02 +0.25

Average absolute relative error 0.06 0.12 0.06 0.25
* n = 6 for QNET estimates.

Table 4.10: Comparisons with Shimshak’s Experiment IV
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Suresh and Whitt’s Experiment

Recently, Suresh and Whitt [49] did extensive simulations for a network of two queues in

tandem. Their objective is to find a best order of two queues to minimize the average total

waiting time, or equivalently to minimize the average sojourn time. They also compare their

simulations with QNA approximations. For the purpose of this section, we are interested

in comparing simulation results and approximation results for the expected waiting time at

the second station only, because, in both QNA and QNET, the expected waiting time at

the first station is approximated by Kingman’s heavy traffic formula

w1 = ρ1

(
ρ1

1− ρ1

)(
C2
a + C2

s1

2

)
,

which has been tested intensively and found to be relatively good, see [54]. If the departure

process from station 1 were a renewal process and its squared coefficient of variation C2
d

could be calculated in some way, Kingman’s formula could be used again to yield an estimate

for the expected waiting at the second station. Unfortunately, the arrival process to the

second queue (or the departure process from the first queue) is typically not renewal, see [49]

and Berman and Westcott [1]. It is this difficulty which is challenging queueing performance

analysts, and Whitt’s QNA is trying to overcome the difficulty. The QNET method now

provides another way for us to estimate the expected waiting at the second station. We

should emphasize that QNET can do more in this respect, that is, it gives an approximation

of the joint densities of the waiting times at the two stations.

Suresh and Whitt used the SIMAN simulation program to get the simulation estimates

of the expected steady-state waiting times. In each case, they performed ten independent

replications, using 30,000 arrivals in each replication, and they estimated 90% confidence

intervals using t-statistics. An initial portion of each run (2000 customers) was discarded

to allow the system to approach steady state. They considered various variability pa-

rameter triples (C2
a , C

2
s1 , C

2
s2) for all combinations of the traffic intensities ρ1 and ρ2 in a

representative range. For C2
s1 6= C2

s2 they considered five variability triples (C2
a , C

2
s1 , C

2
s2),

namely, (0.5, 0.5, 2.0), (1.0, 0.5, 8.0), (1.0, 2.0, 4.0), (4.0, 0.5, 1.0) and (4.0, 1.0, 4.0), ordered

lexicographically; we will refer to them as Case 1, Case 2, Case 3, Case 4 and Case 5,

respectively. For C2
s1 = C2

s2 , they considered two variability triples (C2
a , C

2
s1 , C

2
s2), namely,

(1.0, 0.5, 0.5) and (1.0, 4.0, 4.0); we refer to them as Case 6 and Case 7. When C2
s1 6= C2

s2 ,

for each queue they considered four values of ρi: 0.3, 0.6, 0.8, 0.9. Thus, associated with

each variability triple are 32 cases of two queues in series:
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(4 values of ρ1)× (4 values of ρ2)× (2 orders) = 32 cases.

When C2
s1 = C2

s2 , they consider five values of ρi: 0.1, 0.2, 0.3, 0.6 and 0.9. Thus for each triple

there are 15 cases of two queues in series (they consider only ρ1 6= ρ2, because otherwise

the order does not matter).

When C2 = 0.5, the E2 distribution (Erlang of order 2, the convolution of two exponen-

tials) is used in the simulation; when C2 = 1.0, the exponential (M) distribution is used;

when C2 > 1, the H2 distribution (hyperexponential, a mixture of two exponentials) with

balanced means is used. Tables 4.11–4.17 give simulation estimates, Whitt’s QNA estimates

and QNET estimates of the average waiting time at the second station for all seven cases

and two orders. In all tables, “Order I” refers to the given triple, and “Order II” is the

reverse order. “Di” denotes the difference between the approximation and the simulation

estimate. This difference is the minimum of the absolute difference and the absolute relative

difference, where

absolute relative difference =
|approximation− simulation estimate|

simulation estimate
.

“D1” stands for QNET difference, and “D2” stands for QNA difference. We take n = 5 for

all QNET estimates. The estimated 90% confidence interval appears below the simulation

estimate in each case. From Table 4.11-4.17, we see that except for Table 4.14 (Case 5), the

QNET estimates give very good approximations most of the time. In situation (Order II of

Case 2), the overall QNET estimates are not best, but still under heavy traffic (ρ1, ρ2 ≥ 0.8),

the QNET estimates are much better than the QNA approximations. This confirms the so

called “heavy traffic theory”, which asserts that QNET estimates are “good” under heavy

traffic. These Tables clearly demonstrate that even under moderate traffic intensities, the

QNET estimates are still good, and Table 4.16-4.17 show that QNET performs surprising

well under low traffic intensities.

In Table 4.14, QNET performs very badly when the traffic intensities are not heavy or

are unbalanced heavy. In fact, from Table 4.14, we see that in “Order I” (similarly in “Order

II”, when ρ1 ≥ ρ2), station 1 is heavier loaded than station 2. The high variability of the

arrival process to station 1 is smoothed out to a certain extent, and QNET is able to catch

the correct variability for the arrival process to the second station. When ρ1 < ρ2, QNET

performs badly. At this point, we do not know exactly why this happens. Intuitively, the

first station is lightly loaded, and service time variability is small, therefore, customers need

almost no waiting at station 1, get serviced with low variability and go to the second queue.
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Therefore, the high variability of the arrival process to station 1 is carried over to the arrival

process to station 2, see Reiman [40]. Somehow, QNET fails to catch this high variability

of the arrival process to the second station and significantly underestimates the expected

waiting time at the second station. This again demonstrate the need for more validation

of the QNET method. Table 4.18 aggregates all balanced heavy traffic cases and gives an

overall comparison of QNET estimates with QNA estimates under heavy traffic. It is clear

from this table that QNET approximations are much better than QNA approximations

under balanced heavy traffic conditions.
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(C2
a = 0.50, C2

s1 = 0.50, C2
s2 = 2.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 10.12 10.13 10.010 0.01 0.01 7.75 8.97 7.946 0.02 0.13
0.512 0.430

0.9 0.8 4.00 4.00 3.856 0.04 0.04 6.58 7.94 6.292 0.05 0.26
0.219 0.368

0.9 0.6 1.12 1.12 1.039 0.08 0.08 5.07 6.24 4.976 0.02 0.25
0.035 0.260

0.9 0.3 0.16 0.16 0.127 0.03 0.03 4.17 4.60 4.309 0.03 0.07
0.003 0.154

0.8 0.9 10.12 10.13 10.153 0.00 0.00 3.48 3.54 3.444 0.01 0.03
0.670 0.116

0.8 0.8 4.00 4.00 3.706 0.08 0.08 3.07 3.14 2.895 0.06 0.08
0.158 0.085

0.8 0.6 1.12 1.12 1.068 0.05 0.05 2.46 2.46 2.374 0.04 0.04
0.030 0.042

0.8 0.3 0.16 0.16 0.129 0.03 0.03 1.74 1.82 1.670 0.04 0.09
0.005 0.044

0.6 0.9 10.12 10.13 9.687 0.05 0.05 1.08 1.00 0.966 0.12 0.03
0.786 0.024

0.6 0.8 4.00 4.00 4.007 0.00 0.00 1.00 0.88 0.912 0.09 0.03
0.125 0.011

0.6 0.6 1.12 1.12 1.072 0.05 0.05 0.86 0.69 0.736 0.13 0.04
0.024 0.020

0.6 0.3 0.16 0.16 0.133 0.03 0.03 0.63 0.51 0.491 0.14 0.02
0.002 0.006

0.3 0.9 10.12 10.13 9.562 0.06 0.06 0.16 0.14 0.136 0.03 0.01
0.719 0.002

0.3 0.8 4.00 4.00 4.024 0.01 0.01 0.16 0.13 0.129 0.03 0.00
0.272 0.002

0.3 0.6 1.12 1.12 1.090 0.03 0.03 0.15 0.10 0.112 0.04 0.01
0.032 0.001

0.3 0.3 0.16 0.16 0.131 0.03 0.03 0.12 0.07 0.075 0.05 0.00
0.003 0.001

Average Difference 0.04 0.04 0.06 0.07
* n = 5 for QNET estimates

Table 4.11: Expected Waiting Times at the Second Queue: Case 1
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(C2
a = 1.00, C2

s1 = 0.50, C2
s2 = 8.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 36.09 34.81 37.04 0.03 0.06 24.32 29.04 24.05 0.01 0.21
4.41 1.76

0.9 0.8 14.05 13.75 13.35 0.05 0.03 18.36 24.22 18.12 0.01 0.34
1.26 0.93

0.9 0.6 3.89 3.87 3.80 0.02 0.02 10.54 16.28 12.63 0.17 0.29
0.24 0.80

0.9 0.3 0.55 0.55 0.52 0.03 0.03 6.60 8.63 7.55 0.13 0.14
0.02 0.38

0.8 0.9 36.42 35.15 37.58 0.03 0.06 11.38 11.47 10.74 0.06 0.07
5.26 0.45

0.8 0.8 14.28 13.89 13.78 0.04 0.01 9.65 9.57 8.95 0.08 0.07
1.57 0.47

0.8 0.6 3.94 3.91 3.84 0.03 0.02 6.29 6.43 6.33 0.01 0.02
0.25 0.27

0.8 0.3 0.55 0.56 0.49 0.06 0.06 2.94 3.41 3.36 0.12 0.02
0.02 0.10

0.6 0.9 36.45 35.72 34.61 0.05 0.03 3.68 3.23 2.86 0.29 0.13
3.73 0.14

0.6 0.8 14.40 14.11 13.16 0.09 0.07 3.31 2.69 2.57 0.29 0.05
1.50 0.11

0.6 0.6 4.02 3.97 3.96 0.03 0.02 2.72 1.81 2.07 0.31 0.13
0.24 0.04

0.6 0.3 0.56 0.57 0.52 0.04 0.05 1.38 0.96 1.11 0.24 0.14
0.02 0.03

0.3 0.9 36.45 36.27 31.12 0.17 0.17 0.55 0.46 0.24 0.31 0.22
4.44 0.01

0.3 0.8 14.40 14.34 13.33 0.08 0.07 0.54 0.38 0.25 0.29 0.13
0.60 0.00

0.3 0.6 4.05 4.03 4.10 0.01 0.02 0.50 0.26 0.27 0.23 0.01
0.25 0.01

0.3 0.3 0.57 0.58 0.55 0.02 0.03 0.39 0.14 0.20 0.18 0.06
0.02 0.00

Average Difference 0.05 0.05 0.16 0.12
n = 5 for QNET estimates

Table 4.12: Expected Waiting Times at the Second Queue: Case 2
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(C2
a = 1.00, C2

s1 = 2.00, C2
s2 = 4.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 22.03 23.53 23.026 0.06 0.02 19.13 21.99 18.447 0.04 0.19
2.776 1.520

0.9 0.8 9.07 9.30 8.887 0.02 0.05 16.23 19.93 16.562 0.02 0.20
0.544 1.427

0.9 0.6 2.64 2.61 2.829 0.07 0.08 13.00 16.52 14.538 0.11 0.14
0.116 1.192

0.9 0.3 0.39 0.37 0.402 0.02 0.03 12.22 13.24 12.967 0.06 0.02
0.008 1.738

0.8 0.9 20.92 22.84 23.698 0.12 0.04 8.45 8.69 8.981 0.06 0.03
2.050 0.426

0.8 0.8 8.70 9.02 8.686 0.00 0.04 7.57 7.87 7.747 0.02 0.02
0.378 0.376

0.8 0.6 2.57 2.54 2.577 0.00 0.01 5.95 6.53 6.438 0.08 0.01
0.079 0.343

0.8 0.3 0.38 0.36 0.399 0.02 0.04 4.88 5.23 4.896 0.00 0.07
0.004 0.146

0.6 0.9 20.31 21.71 21.969 0.07 0.01 2.61 2.44 2.618 0.00 0.07
2.683 0.067

0.6 0.8 8.13 8.58 8.131 0.00 0.05 2.43 2.21 2.352 0.03 0.06
0.311 0.079

0.6 0.6 2.45 2.41 2.485 0.02 0.03 2.13 1.84 2.012 0.06 0.09
0.086 0.063

0.6 0.3 0.37 0.34 0.368 0.00 0.02 1.52 1.47 1.566 0.03 0.06
0.015 0.044

0.3 0.9 20.25 20.61 21.480 0.06 0.04 0.39 0.35 0.345 0.04 0.00
3.439 0.009

0.3 0.8 8.01 8.14 8.408 0.05 0.03 0.38 0.32 0.345 0.04 0.03
0.472 0.008

0.3 0.6 2.26 2.29 2.337 0.03 0.02 0.36 0.26 0.321 0.04 0.06
0.081 0.009

0.3 0.3 0.35 0.33 0.340 0.01 0.01 0.30 0.21 0.248 0.06 0.04
0.007 0.005

Average Difference 0.03 0.03 0.04 0.07
* n = 5 for QNET estimates

Table 4.13: Expected Waiting Times at the Second Queue: Case 3
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(C2
a = 4.00, C2

s1 = 0.50, C2
s2 = 1.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 10.73 8.77 12.541 0.14 0.30 9.56 8.38 11.788 0.19 0.29
1.650 2.949

0.9 0.8 3.00 3.46 3.325 0.10 0.04 9.43 10.45 15.032 0.37 0.30
0.102 1.716

0.9 0.6 0.69 0.97 0.725 0.03 0.25 4.12 13.85 16.603 0.75 0.17
0.016 1.426

0.9 0.3 0.10 0.14 0.076 0.02 0.06 3.12 17.13 19.682 0.84 0.13
0.001 2.000

0.8 0.9 7.70 11.18 16.269 0.53 0.31 2.87 3.31 3.130 0.08 0.06
2.358 0.155

0.8 0.8 4.17 4.42 4.803 0.13 0.08 3.75 4.13 4.114 0.09 0.00
0.398 0.240

0.8 0.6 0.80 1.24 0.907 0.11 0.33 3.21 5.47 6.147 0.48 0.11
0.026 0.526

0.8 0.3 0.10 0.18 0.088 0.01 0.09 1.20 6.77 6.941 0.83 0.02
0.001 0.387

0.6 0.9 3.41 15.15 18.706 0.82 0.19 0.69 0.93 0.788 0.10 0.14
2.371 0.020

0.6 0.8 2.62 5.98 6.987 0.62 0.14 0.77 1.16 0.934 0.17 0.23
0.717 0.018

0.6 0.6 1.17 1.68 1.471 0.21 0.14 1.05 1.54 1.302 0.19 0.18
0.039 0.018

0.6 0.3 0.10 0.24 0.129 0.02 0.11 0.75 1.90 1.755 0.57 0.08
0.002 0.049

0.3 0.9 2.11 18.97 20.014 0.89 0.05 0.10 0.13 0.105 0.01 0.03
2.027 0.001

0.3 0.8 0.96 7.50 8.165 0.88 0.08 0.10 0.17 0.117 0.02 0.05
0.492 0.002

0.3 0.6 0.62 2.11 2.031 0.70 0.04 0.10 0.22 0.142 0.04 0.08
0.051 0.002

0.3 0.3 0.17 0.30 0.205 0.03 0.10 0.15 0.27 0.178 0.03 0.09
0.005 0.002

Average Difference 0.33 0.15 0.30 0.12
* n = 5 for QNET estimates

Table 4.14: Expected Waiting Times at the Second Queue: Case 4
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(C2
a = 4.00, C2

s1 = 1.00, C2
s2 = 4.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 26.11 22.56 25.776 0.01 0.12 20.25 20.25 20.453 0.01 0.01
2.604 1.104

0.9 0.8 9.14 8.91 10.105 0.10 0.12 20.25 20.25 25.409 0.20 0.20
0.854 2.870

0.9 0.6 2.32 2.51 2.652 0.13 0.05 20.25 20.25 23.394 0.13 0.13
0.130 2.348

0.9 0.3 0.32 0.36 0.357 0.04 0.00 20.25 20.25 21.580 0.06 0.06
0.012 2.733

0.8 0.9 29.08 24.62 33.220 0.12 0.26 8.00 8.00 9.201 0.13 0.13
5.395 0.534

0.8 0.8 10.30 9.73 11.360 0.09 0.14 8.00 8.00 8.455 0.05 0.05
0.723 0.535

0.8 0.6 2.51 2.74 2.868 0.13 0.05 8.00 8.00 8.643 0.07 0.07
0.188 0.441

0.8 0.3 0.32 0.39 0.399 0.08 0.01 8.00 8.00 7.991 0.00 0.00
0.009 0.327

0.6 0.9 31.58 28.03 31.279 0.01 0.10 2.25 2.25 2.298 0.00 0.00
3.484 0.063

0.6 0.8 11.89 11.07 12.942 0.08 0.14 2.25 2.25 2.443 0.08 0.08
1.016 0.099

0.6 0.6 2.90 3.11 3.389 0.14 0.08 2.25 2.25 2.523 0.11 0.11
0.150 0.045

0.6 0.3 0.34 0.44 0.444 0.10 0.00 2.25 2.25 2.316 0.03 0.03
0.011 0.054

0.3 0.9 32.35 31.31 27.840 0.16 0.12 0.32 0.32 0.269 0.05 0.05
1.955 0.005

0.3 0.8 12.73 12.37 13.667 0.07 0.10 0.32 0.32 0.286 0.04 0.04
1.304 0.005

0.3 0.6 3.48 3.48 3.611 0.04 0.04 0.32 0.32 0.330 0.01 0.01
0.226 0.009

0.3 0.3 0.41 0.50 0.528 0.11 0.03 0.32 0.32 0.328 0.01 0.01
0.020 0.006

Average Difference 0.065 0.086 0.063 0.063
* n = 5 for QNET estimates

Table 4.15: Expected Waiting Times at the Second Queue: Case 5
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(C2
a = 1.00, C2

s1 = 0.50, C2
s2 = 0.50)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 4.84 4.43 4.793 0.01 0.08 4.84 4.43 4.910 0.01 0.10
0.269 0.215

0.9 0.6 0.46 0.49 0.410 0.05 0.08 5.54 5.35 5.658 0.02 0.05
0.006 0.410

0.9 0.3 0.06 0.07 0.043 0.02 0.03 6.01 5.89 5.635 0.07 0.05
0.001 0.293

0.9 0.2 0.03 0.03 0.013 0.01 0.02 6.05 5.99 6.180 0.02 0.03
0.000 0.442

0.9 0.1 0.01 0.01 0.002 0.00 0.01 6.07 6.05 6.047 0.02 0.00
0.000 0.253

0.6 0.6 0.54 0.59 0.552 0.02 0.04 0.54 0.59 0.552 0.02 0.04
0.008 0.009

0.6 0.3 0.07 0.08 0.057 0.01 0.02 0.61 0.65 0.644 0.04 0.01
0.001 0.011

0.6 0.2 0.03 0.03 0.018 0.01 0.01 0.64 0.67 0.669 0.03 0.00
0.000 0.011

0.6 0.1 0.01 0.01 0.003 0.00 0.01 0.67 0.67 0.668 0.00 0.00
0.000 0.015

0.3 0.3 0.08 0.09 0.079 0.00 0.01 0.08 0.09 0.079 0.00 0.01
0.001 0.001

0.3 0.2 0.03 0.04 0.026 0.00 0.01 0.08 0.10 0.087 0.00 0.01
0.000 0.001

0.3 0.1 0.01 0.01 0.004 0.00 0.01 0.09 0.10 0.094 0.01 0.01
0.000 0.001

0.2 0.2 0.03 0.04 0.031 0.00 0.01 0.03 0.04 0.031 0.00 0.01
0.000 0.001

0.2 0.1 0.01 0.01 0.005 0.00 0.01 0.03 0.04 0.035 0.00 0.00
0.000 0.001

0.1 0.1 0.01 0.01 0.004 0.00 0.01 0.01 0.01 0.006 0.00 0.00
0.000 0.000

Average Difference 0.01 0.02 0.02 0.02
* n = 5 for QNET estimates

Table 4.16: Expected Waiting Times at the Second Queue: Case 6



CHAPTER 4. COMPUTING THE STATIONARY DISTRIBUTION 102

(C2
a = 1.00, C2

s1 = 4.00, C2
s2 = 4.00)

Order I Order II
ρ1 ρ2 QNET QNA SIM D1 D2 QNET QNA SIM D1 D2

0.9 0.9 26.43 30.09 25.505 0.04 0.18 26.43 30.09 28.072 0.06 0.07
2.955 2.921

0.9 0.6 3.47 3.34 3.405 0.02 0.02 20.57 24.62 22.857 0.10 0.08
0.144 4.542

0.9 0.3 0.51 0.48 0.530 0.02 0.05 20.27 21.34 20.511 0.01 0.04
0.019 1.629

0.9 0.2 0.20 0.19 0.199 0.00 0.01 20.26 20.74 19.132 0.06 0.08
0.005 2.606

0.9 0.1 0.04 0.04 0.046 0.00 0.00 20.25 20.37 20.067 0.01 0.02
0.001 1.768

0.6 0.6 2.94 2.74 2.874 0.02 0.05 2.94 2.74 2.918 0.01 0.06
0.103 0.116

0.6 0.3 0.48 0.39 0.457 0.02 0.07 2.32 2.37 2.494 0.07 0.05
0.013 0.114

0.6 0.2 0.20 0.15 0.188 0.01 0.04 2.27 2.30 2.231 0.02 0.03
0.004 0.088

0.6 0.1 0.04 0.03 0.045 0.00 0.01 2.25 2.26 2.271 0.01 0.00
0.002 0.135

0.3 0.3 0.42 0.34 0.378 0.04 0.04 0.42 0.34 0.371 0.05 0.03
0.011 0.009

0.3 0.2 0.17 0.13 0.153 0.02 0.02 0.39 0.33 0.356 0.03 0.03
0.006 0.006

0.3 0.1 0.04 0.03 0.039 0.00 0.01 0.34 0.32 0.346 0.01 0.02
0.002 0.012

0.2 0.2 0.16 0.13 0.141 0.02 0.01 0.16 0.13 0.145 0.02 0.02
0.003 0.006

0.2 0.1 0.04 0.03 0.034 0.01 0.01 0.15 0.13 0.134 0.01 0.01
0.002 0.003

0.1 0.1 0.04 0.03 0.034 0.00 0.01 0.04 0.03 0.033 0.00 0.01
0.002 0.003

Average Difference 0.015 0.035 0.031 0.037
* n = 5 for QNET estimates

Table 4.17: Expected Waiting Times at the Second Queue: Case 7
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Order I Order II

Case ρ1 ρ2 QNET-D QNA-D QNET-D QNA-D

1 0.9 0.9 0.01 0.01 0.02 0.13
0.8 0.8 0.08 0.08 0.06 0.08

2 0.9 0.9 0.03 0.06 0.01 0.21
0.8 0.8 0.04 0.01 0.08 0.07

3 0.9 0.9 0.06 0.02 0.04 0.19
0.8 0.8 0.00 0.04 0.02 0.02

4 0.9 0.9 0.01 0.12 0.01 0.01
0.8 0.8 0.09 0.14 0.05 0.05

5 0.9 0.9 0.14 0.30 0.20 0.29
0.8 0.8 0.13 0.08 0.08 0.00

6 0.9 0.9 0.01 0.08 0.01 0.10
0.6 0.6 0.02 0.04 0.02 0.04

7 0.9 0.9 0.04 0.18 0.06 0.07
0.6 0.6 0.02 0.05 0.01 0.06

Average 0.05 0.09 0.05 0.10

Table 4.18: Overall Comparisons with QNA Approximations in Heavy Traffic
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4.6.2 Analysis of a Multiclass Queueing Network

The two-station open queueing network pictured in Figure 4.2 has been suggested by Ge-

lenbe and Pujolle [16] as a simplified model of a certain computer system. Server 1 represents

a central processing unit (CPU) and server 2 a secondary memory. There are two classes of

programs (jobs, or customers) flowing through the system, and they differ in their relative

use of the CPU and the secondary memory. Jobs of class j (j = 1, 2) arrive at station 1

according to a Poisson process with rate α; and after completing service there they may

either go on to station 2 (probability qj) or leave the system (probability 1 − qj); each

service at station 2 is followed by another service at station 1, after which the customer

either return to station 2 or else leaves the system, again with probability qj and 1 − qj ,
respectively. The service time distribution for class j customers at station i (i, j = 1, 2) is

the same on every visit; its mean is τij and its coefficient of variation (standard deviation

divided by mean) is Cij . Customers are served on a first-in-first-out basis, without regard

to class, at each station. The specific numerical values that we will consider are such that

class 1 makes heavier demands on the secondary memory but class 2 consumes more CPU

time. Denoting by Qi (i = 1, 2) the long-run average queue length at station i, including

the customer being served there (if any), our goal is to estimate Q1 and Q2.

This open queueing network is within the class for which Harrison and Nguyen [24] have

proposed an approximate Brownian model, but their initial focus is on the current workload

process or virtual waiting time process W (t) = (W1(t),W2(t))′, rather than the queue length

process; one may think of Wi(t) as the time that a new arrival to station i at time t would

have to wait before gaining access to the server. Harrison and Nguyen proposed that the

process W (t) be modeled or approximated by an RBM in the quadrant whose data (Γ, µ,R)
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Figure 4.2: Model of an Interactive Computer
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are derived from the parameters of the queueing system by certain formulas. Specializing

those formulas to the case at hand one obtains

µ = R(ρ− e), Γ = TGT ′ and R = M−1,(4.30)

where e is the two-vector of ones, ρ = (ρ1, ρ2)′ is the vector of “traffic intensities”

ρ1 =
α1

1− q1
τ11 +

α2

1− q2
τ12 and ρ2 =

α1q1

1− q1
τ21 +

α2q2

1− q2
τ22,

and the matrices M , T and G are given by:

M =


1
ρ1
F11

1
ρ2
F12

1
ρ1
F21

1
ρ2
F22

 ,

where

F =


α1τ11

(1− q1)2
+

α2τ12

(1− q2)2

α1τ11q1

(1− q1)2
+

α2τ12q2

(1− q2)2

α1τ21q1

(1− q1)2
+

α2τ22q2

(1− q2)2

α1τ21q1

(1− q1)2
+

α2τ22q2

(1− q2)2

 ;

T =


τ11

1− q1

τ11

1− q1

τ12

1− q2

τ12

1− q2

τ21q1

1− q1

τ21

1− q1

τ22q2

1− q2

τ22

1− q2

 ;

and

G =



α1 +
α1

1− q1
g1 − α1q1

1− q − 1
g12 0 0

− α1q1

1− q − 1
g12 α1q1 +

α1q1

1− q1
g2 0 0

0 0 α2 +
α2

1− q2
g3 − α1q2

1− q2
g34

0 0 − α1q2

1− q2
g34 α2q2 +

α2q2

1− q2
g4



,
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α1 = 0.5, α2 = 0.25, q1 = 0.5, q2 = 0.2

class 1 class 2
station 1 station 2 station 1 station 2

case mean SCV mean SCV mean SCV mean SCV
1 0.5 1.0 0.5 2.0 1.0 0.0 1.0 1.0
2 0.5 0.2 0.5 2.0 1.0 0.0 1.0 1.0
3 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0
4 0.5 3.0 0.5 2.0 0.5 0.0 1.0 1.0
5 0.5 3.0 0.5 1.0 0.5 0.0 1.0 0.2

Table 4.19: Parameters for the Multiclass Queueing Network

where

g1 =
(
C2
s11

+ q1C
2
s21

)
, g2 =

(
C2
s21

+ q1C
2
s11

)
, g12 =

(
C2
s11

+ C2
s21

)
,

g3 =
(
C2
s12

+ q2C
2
s22

)
, g4 =

(
C2
s22

+ q2C
2
s12

)
, g34 =

(
C2
s12

+ C2
s22

)
.

Let us denote by m = (m1,m2)′ the mean vector of the stationary distribution of

the RBM whose data (Γ, µ,R) are computed via (4.30). In the approximation scheme of

Harrison and Nguyen [24], which they call the QNET method , one approximates by mi both

the long-run average virtual waiting time and the long-run average actual waiting time at

station i (i = 1, 2). By Little’s law (L = λW ), we then have the following QNET estimates

of the average queue length at the two stations:

Q1 = ρ1 +
(

α1

1− q1
+

α2

1− q2

)
m1(4.31)

Q2 = ρ2 +
(
α1q1

1− q1
+

α2q2

1− q2

)
m2(4.32)

Gelenbe and Pujolle [16] have simulated the performance of this simple queueing net-

work in the five different cases described by Table 4.19,obtaining the results displayed in

Table 4.20. All of the numerical results in the latter table except the QNET estimates are

taken from Table 5.3 of [16]: the row labelled “SIM” gives simulation results, whereas the

row labelled “TD” gives a “time division” approximation based on the classical theory of

product-form queueing network, and that labelled “DC” gives a “diffusion approximation”

that is essentially Whitt’s [54] QNA scheme for two-moment analysis of system performance

via “node decomposition”. In essence, this last method uses a diffusion approximation to the
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case 1 case 2 case 3 case 4 case 5
ρ 0.81 0.31 0.81 0.31 0.66 0.56 0.66 0.31 0.66 0.31
Q Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

SIM 3.62 0.49 3.15 0.45 1.92 1.24 2.35 0.51 2.37 0.50
TD 4.33 0.45 4.33 0.45 1.90 1.29 1.91 0.45 1.91 0.45
DC 3.66 0.50 2.91 0.49 1.90 1.29 2.77 0.53 2.77 0.50

QNET 3.83 0.50 3.40 0.49 1.90 1.29 2.48 0.54 2.41 0.48

Table 4.20: Mean Number of Customers for the Network Represented in Figure 4.2

queue length process of each station individually, after artificially decomposing the network

into one-station subnetworks; the QNET method captures more subtle system interactions

by considering the joint stationary distribution of an approximating two-dimensional diffu-

sion process, the mean vector m of that stationary distribution being computed by means

of the algorithm described in Chapter 4.

As Table 4.20 indicates, our QNET method gives very good approximations, somewhat

better overall than either the TD or DC approximations. The network described by case 3

is in fact a “product form network”, and for it all these approximation schemes give exact

results.



Appendix A

Detailed Description of the

Algorithm

In this appendix, we will give a detailed description of one version of the general algorithm

described in Chapter 4. This version has been implemented in a software package, called

BNET, to calculate the stationary density of a semimartingale Reflected Brownian motion

(SRBM) in an orthant Rd
+. BNET will be the kernel of a larger software package, tentatively

called QNET, that can be used for performance analysis for a wide class of queueing network

models. This implementation of BNET is by no means “optimal”. However, the numerical

results in Sections 4.5–4.6 show that it performs quite well.

The actual code of BNET for this implementation is in “C”. In the first four sections,

we will give a description of the algorithm that is independent of any particular language,

and in Section 5 we will give the “C” code for most essential functions (routines) in BNET.

A.1 Input Parameters and Scaling

Inputs

The input parameters to BNET are (d,Γ, µ,R, n), where

a) d is a positive integer. It is the dimension of the state space of an SRBM;

b) Γ is a d× d positive definite matrix. It is the covariance matrix of an SRBM;

c) µ is a d-dimensional vector. It is the drift vector of an SRBM;

108
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d) R is a d× d matrix with diag(R) > 0. It is the reflection matrix of an SRBM;

e) n is a positive integer. It is the maximum degree of polynomials that we used in (4.23).

In input mode, BNET will exit immediately and send a corresponding error message to a

user, if one of the following happens:

i) d or n is not a positive integer;

ii) Γ is not symmetric or not positive definite;

iii) diag(R) 6> 0, SRBM does not exist;

iv) R is not invertible, stationary distribution does not exist;

v) R−1µ 6< 0, stationary distribution does not exist.

Scaling

After all the input parameters have passed the five tests above, we then scale parameters

(Γ, µ,R) as follows.

Γ∗ij =
Γij√

Γii
√

Γjj
, R∗ij =

Rij
Rjj

√
Γjj√
Γii

, µ∗i =
µi√

Γiiγmax
,

where γmax is the largest component of

γ ≡ −R∗−1


µ1/
√

Γ11

...

µd/
√

Γdd

 > 0.

The idea of the scaling above is to obtain a (Γ∗, µ∗, R∗)-SRBM with Γ∗ii = 1, R∗ii = 1 and

max1≤i≤d γ
∗
i = 1, where

γ∗ ≡ −R∗−1µ∗ =
γ

γmax
.

We believe that using this normalized set of data (Γ∗, µ∗, R∗) will make BNET more robust.

The logic of the scaling was explained in Proposition 4.4. Suppose that m∗ is the steady-

state mean of a (Γ∗, µ∗, R∗)-SRBM. Then we have the steady state mean m = (m1, . . . ,md)′

of the SRBM Z given by

mi =
√

Γii
γmax

m∗i , i = 1, 2, . . . , d.(A.1)
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The memory spaces of (Γ, µ,R) can be used to store the converted data (Γ∗, µ∗, R∗).

The spaces of off-diagonal elements of Γ can be used to store the corresponding element of

Γ∗. Since the diagonal elements of Γ∗ are one, the spaces of diagonal elements of Γ still

keep old values, i.e., Γii’s. The old Γii values are needed in (A.1). Similarly, the spaces of

µ and R can be used to store the corresponding element of µ∗ and R∗. In the mean time,

we need additional spaces to keep the constant γmax, which is needed in (A.1).

From now on, (d,Γ, µ,R, n, γmax) refers to converted data (with the asterisk omitted),

instead of original input data. Notice that γmax and the diagonal elements of Γ are not

accessed until the final output routine, see (A.1).

A.2 Indexing

In light of the definition of Hn in (4.23), we need a systematic and efficient way to enumerate

the elements of the following family of functions:{
xi11 x

i2
2 · · ·x

id
d : 0 < i1 + i2 + · · ·+ id ≤ n, ij ’s are non-negative integers

}
.

It is equivalent to enumerate the elements of following subset of Zd+:

I(d, n) ≡ {(i1, i2, . . . , id) : i1 + i2 + · · ·+ id ≤ n, ij ’s are non-negative integers } .

First, we have #I(d, n) = Cdn+d ≡ (d+1)(d+2) · · · (d+n)/n!. To see this, suppose that there

are n balls and d vertical bars. Mix these d+n objects, and arrange them on a straight line.

For each such arrangement, let i1 be the number of balls to the left of the first bar, and i2

be the number of balls between the first bar and the second bar. Similarly we can define i3,

. . ., id. Obviously, such an (i1, . . . , id) ∈ I(d, n), and each arrangement corresponds exactly

one element in I(d, n). The total number of such arrangements is Cdd+n (Balls and bars are

assumed to be indistinguishable). Therefore, we have shown #I(d, n) = Cdd+n. Since the

dimensions of these sets I are used frequently, we can pre-compute them and store them in

a d× (n+ 1) matrix C, i.e.,

Clk ≡ #I(l, k) = C ll+k =
(l + 1)(l + 2) · · · (l + k)

k!
, 1 ≤ l ≤ d, 0 ≤ k ≤ n.

Now for an I = (i1, i2, . . . , id) ∈ I(d, n), we are going to map it into an integer, denoted

as Index(d, I), between 1 and Cdn. In the future, we are going to access this I through the
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integer. The function Index() is defined as follows:

Index(d, I) ≡ #I(d, i1 + i2 + · · ·+ id − 1) +(A.2)

+ #I(d− 1, i2 + · · ·+ id − 1) + · · ·+

+ #I(1, id − 1) + 1.

From this definition, we have Index(d, (0, . . . , 0)) = 1 and Index(d, (0, . . . , 0, n)) = Cdn.

Conversely, given an 1 ≤ i ≤ Cdn, we need to find the unique I = (i1, i2, . . . , id) ∈ I(d, n)

so that i = Index(d, I). Such an I is going to be denoted as InverseIndex(d, i), or simply

Ii. We are going to add one more component for Ii, i.e.,

Ii = (i0, i1, . . . , id), with i0 = i1 + . . .+ id.

Keeping track of i0 sometimes makes our description easier as we will see shortly. Let kd
be the smallest k such that

#I(d, k − 1) < i ≤ #I(d, k),

and kd−1 be the smallest k such that

#I(d− 1, k − 1) < i−#I(d, kd − 1) ≤ #I(d− 1, k).

Inductively, we can define kd−2, . . ., and k1, where k1 is the smallest k such that

#I(1, k− 1) < i−#I(d, kd − 1)−#I(d− 1, kd−1 − 1) + . . .+ #I(2, k2 − 1) ≤ #I(d− 1, k).

We can use either linear search or binary search to locate above k. Having found (kd, kd−1,

. . ., k1), we define

i0 = kd, i1 = kd − kd−1, i2 = kd−1 − kd−2

...

id−1 = k2 − k1, id = k1.

Then I = (i0, i1, . . . , id) has the desired property. Again, like C’s, these I’s can be pre-

computed and stored in a Cdn × (d+ 1) matrix I, i.e., for i = 1, . . . , Cdn,

Ii = (Ii0, Ii1, . . . , Iid).



APPENDIX A. DETAILED DESCRIPTION OF THE ALGORITHM 112

A.3 Basis and Inner Product

Natural Basis of Hn

Now we are able to enumerate the polynomials in Hn as Af2, . . ., AfCnd . The typical

element of fi’s looks like

fi(x1, x2, . . . , xd) = xIi11 xIi22 · · ·x
Iid
d .

For 2 ≤ i ≤ Cdn, the first step is to store Afi. It has two parts, interior part which is equal

to Gfi and boundary part which is equal to (D1fi, . . . , Ddfi). Function Gfi is a polynomial

of degree Ii0 − 1 with d variables and Dlfi is a polynomial of degree Ii0 − 1 with d − 1

variable (l = 1, . . . , d). Following the enumeration scheme in the previous section, only the

coefficients of these polynomials need to be stored. For each i, we enumerate the coefficients

of Gfi from 1, . . . , Cd(Ii0−1). For j = 1, 2, . . . , d,

a. if Iij ≥ 1,

Gfi(Ii1, . . . , Ii(j−1), Iij − 1, Ii(j+1), . . . , Iid) ≡ Iijµj ;

b. if Iij ≥ 2, because Γjj = 1,

Gfi(Ii1, . . . , Ii(j−1), Iij − 2, Ii(j+1), . . . , Iid) ≡
1
2
Iij(Iij − 1);

c. if Iij ≥ 1 & Iik ≥ 1, k = j + 1, . . . , d,

Gfi(Ii1, . . . , , Iij − 1, . . . , Iik − 1, . . . , Iid) ≡ IijIikΓjk;

d. for all the other cases of (i1, . . . , id) with i1 + · · ·+ id ≤ Ii0 − 1,

Gfi(i1, · · · , id) = 0.

Similarly, for l = 1, 2, . . . , d, we enumerate the coefficients of Dlfi from 1, . . . , C(d−1)(Ii0−1).

Dlfi has only d− 1 variable because xl = 0. For j = 1, 2, . . . , d,

e. if Iil = 1,

Dlfi(Ii1, . . . , Îil, Iid) ≡ Rll;

f. if Iil = 0 & Iij ≥ 1,

DlfI(Ii1, . . . , Iij − 1, . . . , Îil, . . . , Iid) ≡ IijRjl;
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g. all the other cases

Dlfi(i1, . . . , îl, . . . , id) = 0,

where îl means this component is missing in a vector. Therefore we can store Afi in a

sequence of records

Afi =

 Afi ·itr = Gfi

Afi ·bd[1 . . . d] = (D1fi, . . . , Ddfi),
i = 2, 3, . . . , Cdn,

(Af1 = 0 and is omitted).

Inner product

Let f = (f · itr, f · bd1, . . . , f · bdd) be a polynomial of degree k, i.e., f · itr is a d variable

polynomial of degree k and f · bdl is a d − 1 variable polynomial of degree k. Let g =

(g · itr, g ·bd1, . . . , g ·bdd) be another polynomial of degree m, the inner product 〈f, k, g,m〉
between f and g is defined as

〈f, k, g,m〉 ≡
∫
S

(f ·itr)(g ·itr) exp(−2γ ·x) dx+
1
2

d∑
l=1

∫
Fl

(f ·bdl)(g ·bdl) exp(−2γ ·x) dσl

=
∑

i1+...+id≤k

∑
j1+...+jd≤m

(f ·itr)(i1, i2, . . . , id)(g ·itr)(j1, j2, . . . , jd)×

× (i1 + j1)!
(2γ1)i1+j1+1

× · · · × (id + jd)!
(2γd)id+jd+1

+
1
2

d∑
l=1

∑
i1+...+îl+...id≤k

∑
j1+...+ĵl+...jd≤m

(f ·bdl)(i1, . . . , îl, . . . id)×

× (g ·bdl)(j1, . . . , ĵl, . . . , jd)
(i1 + j1)!

(2γ1)i1+j1+1
× · · · l̂ term · · · × (id + jd)!

(2γd)id+jd+1
.

Because this inner product function is used frequently in BNET, reducing its run time will

significantly improve the efficiency of BNET. Function call to calculate weighting factor

(il + jl)/(2γl)i1+j1+1 is expensive. Therefore we can also pre-compute them and store them

as w, i.e.,

w[l][i] ≡ i!
(2γl)i+1

, 1 ≤ l ≤ d, 0 ≤ i ≤ 2n.

A.4 Stationary Density

There are several ways to find rn defined in Proposition 4.3. In this section, we present two

ways to do it. One is to use orthogonalization, the other is to solve a linear equation.
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Orthogonalizing Basis Elements

Let ψ2 = Af2, and for i = 3, . . . , Cdn, let

ψi ≡ Afi −
i−1∑
k=2

〈Afi, ψk〉
〈ψk, ψk〉

ψk.

Then {ψ2, ψ3, . . . , ψCdn} is an orthogonal basis of Hn. Let

ψ1 = (1, 1, . . . , 1) and φ0 = (1, 0, . . . , 0).

Then the orthogonal complement φn (see Proposition 4.3) of ψ1 onto Hn is given by

φn ≡ ψ1 −
Cdn∑
k=2

〈ψk, ψ1〉
〈ψk, ψk〉

ψk.

Hence

rn ≡
φn

〈φn, φ0〉
.

Letting

pn = rn exp(−2γ ·x),

we have ∫
S

(pn ·itr) dx = 1, mj
.=
∫
S

(xi pn ·itr) dx = 〈x̃i, rn〉,

where x̃i is the polynomial (xi, 0, . . . , 0).

Solving Linear Equation

The orthogonal complement φn of ψ1 on to Hn is equal to

φn = ψ1 − ψ̄1,

where ψ̄1 is the projection of ψ1 on to Hn. Because {Afi, 2 ≤ i ≤ Cdn} is a basis for Hn,

there exist constants a2, . . . , aCdn such that

ψ̄1 =
Cdn∑
i=2

aiAfi.

Therefore

φn = ψ1 −
Cdn∑
i=2

aiAfi.
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By definition, 〈φn,Afi〉 = 0 (i = 2, . . . , Cdn), and hence we obtain the following liner

equation:

Aa = b,(A.3)

where

A = (〈Afi,Afj〉)2≤i,j≤Cdn , a = (a2, . . . , aCdn)′, b = (〈ψ1,Af2〉, . . . , 〈ψ1,AfCdn〉)
′.

The matrix A is positive definite, therefore it has an inverse A−1. Hence a is given by

the unique solution A−1b of the linear equation (A.3). Once φn is found, the rest part of

argument in getting stationary density is identical to that in the first part of this section.

A.5 “C” code for BNET

In this section, we present a “C” code of BNET. The main() function of BNET is defined

as follows.

#include "bnet.h"
#include <malloc.h>
#include <math.h>
poly rn;
main()
{

extern void InputScaling();
void PreCompute(), Basis(), Density();
poly *Af;
extern void Output();

InputScaling();
PreCompute();
Af = (poly *) malloc((unsigned) (c[d][n]+1) * sizeof(poly));
if (!Af) Bneterror("Allocation Failure for Af in basis()");
Basis(Af);
Density(Af);
Output();

}

The header file "bnet.h" will be described shortly. The data type poly will be defined

in the file "bnet.h". The function InputScaling() mainly deals with reading input pa-

rameters (d,Γ, µ,R, n) and scaling them as described in detail in Section A.1. The function
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Output() gives whatever output that a user needs. These two functions are user dependent,

hence we will not give their definitions here. We declared these two functions as external

functions, because they are very likely located in a file different from the one that main()

resides, or perhaps they are in a pre-compiled front–end module. The malloc() is a system

function, allowing us to dynamically allocate memory space. A header file "malloc.h"

or "stdlib.h", depending on a particular system, should be included. In the following,

we will concentrate on the implementation of three functions PreCompute(), Basis() and

Density(). Even for these three functions, the definitions are not complete. But we do

cover the most important parts of these routines. We also leave out such implementation

details as checking errors, minimizing memory space usage and making a compact code. we

believe the current code is easier for readers to read, without dealing with some unimportant

coding details. To be definite, we assume that these three functions together with main()

are in one file, say "bnet.c". The following file "bnet.h" is included in the file "bnet.c".

/* This is "bnet.h" file */

extern int d; /* dimension */
extern int n; /* maximum degree of polynomials */
extern double *Gamma[]; /* covariance matrix */
extern double mu[]; /* drift vector */
extern double *R[]; /* reflection matrix */
extern double gamma[]; /* = -R^{-1}mu */
extern int *c[]; /* a d by (n+2) matrix holding "C"

as described in Indexing section */
extern int *I[]; /* as described in Indexing section */
extern int *Ib[]; /* defined as I, but used over the

boundary piece */
extern double *w[]; /* a d by (2n+1) matrix holding

weighting factors used in inner() */

typedef struct {
double itr[];
double *bd[];

} poly;
extern poly rn; /* the new unknown "rn", the density

pn = rn exp(-2 gamma x) */
/* bnet utility functions */
extern int *ivector(); /* allocate memory space to hold a vector */
extern double *dvector(); /* allocate memory space to hold a vector */
extern int **imatrix(); /* allocate memory space to hold a matrix */
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extern double **dmatrix(); /* allocate memory space to hold a matrix */
extern void free_ivector(); /* free spaces allocated by ivector() */
extern void free_dvector(); /* free spaces allocated by dvector() */
extern void free_imatrix(); /* free spaces allocated by imatrix() */
extern void free_dmatrix(); /* free spaces allocated by dmatrix() */
extern void Bneterror(); /* bnet error handling function */

The variables that are declared in "bnet.h" are global ones. Input parameters (d,Γ, µ,R,

n, γ) will be defined and rescaled in the function InputScaling(), which we will not define

here. Matrix c[1 . . . d][−1 . . . n] is used to store those combinatorial numbers as defined

in Section A.2. Matrix I[2 . . . cdn][0 . . . d] is used to store all the index for polynomials

in the interior as described in Section A.2. Matrix Ib[2 . . . c(d−1)n][0 . . . (d − 1)] is defined

similarly to store all the index for polynomials over the boundary Fl (l = 1, . . . , d), see

function PreCompute(). Type poly is a new data type aiming to store a polynomial of

arbitrary degree. A polynomial f with poly type has two parts, interior part f.itr and

boundary part f.bd. We will dynamically allocate memory space for a polynomial with

type poly. If a polynomial f is of degree k ≥ 0, then f.itr will be an array ranging from

1 to cdk and f.bd will be a d× c(d−1)k matrix, whose lth row is an array ranging from 1 to

c(d−1)k corresponding to the lth boundary piece of the polynomial. The last eight functions

declared in "bnet.h" are utility functions. We illustrate the usage of functions ivector()

and free_ivector(). The call v=ivector(l, h) will allocate memory spaces for a pointer

v to hold a vector of integers v[l . . . h], and the call free_ivector(v, l, h) frees all the

space of v allocated by ivector(). The prefix i means that the relevant quantities are

of integer type. The call of utility function Bneterror() will make BNET exit a system

and print out a relevant warning message to a user. The usage of the rest of functions are

similar, noting the prefix d means that the relevant quantities are of double type. These

utility functions are not specified here. Interested readers are referred to [37] for details.

The following function PreCompute() computes and stores the combinatorial numbers,

the indexes and weighting factors that we need later. The function combi(l, k), which is

not defined this document, returns 0 if k = −1 and C ll+k if k ≥ 0.

int *I[], *Ib[], *c[];
double *w[];

void PreCompute() {
void ComputeC();
int **ComputeIndex();
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double **ComputeWeight();

ComputeC();
I = ComputeIndex(d);
Ib = ComputeIndex(d-1);
w = ComputeWeight(); /* w[l][i] = i!/(2 gamma_l)^{i+1} */

}

void ComputeC() {
int i, l;
extern int combi();

c = imatrix(0, d, -1, n); /* make c[d+1][n+2] matrix */
for (l=0; l<=d; l++) for (i=-1; i<= n; i++)
c[l][i] = combi(l, i); /* c[l][-1] = 0 */

}

int **ComputeIndex(dim)
int dim; /* dim = d and d-1 */

{
int i, *II[], *InverseIndex();

II = (int **)malloc((unsigned)c[dim][n]*sizeof(int *));
for (i=1; i<=c[dim][n]; i++) II[i] = InverseIndex(dim, i);
return (II);

}

int *InverseIndex(dim, i)
int dim, i;

{
int j, *k, *II;

k = ivector(1, dim);
for (j=dim; j>=1; j--) {
k[j] = -1;
while(i>c[j][k[j]]) k[j]++; /* linear search */
i -= c[j][k[j]-1];
}
II = ivector(0, d);
II[0] = k[dim];
for(j=1; j<dim; j++) II[j] = k[dim-j+1] - k[dim-j];
II[dim] = k[1];
free_ivector(k, 1, dim);
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return (II);
}

void ComputeWeight()
{

int i, l;
/* extern double pow() is a math library function */
long factorial();
int twon;

twon = 2 * n;
w = dmatrix(1, d, 0, twon);
for (l=1; l<=d ; l++) for (i=0; i<= twon; i++)
w[l][i] = factorial(i)/pow(2*gamma[l], (double) i+1);

}

In the following routine Basis(), we find the natural basis Af2, . . . ,Afcdn . Readers can

refer to Section A.3 for more details. Function Index() is straightforwardly implemented

according to the description in Section A.2. Function initpoly() is nothing but allocate

enough space to hold a ith degree polynomial and initialize to be zero.

void Basis(Af)
poly *Af;

{
int i, j, l, k;
int *II, *IIb;
poly initpoly();
long Index();

II = ivector(0, d);
IIb= ivector(0, d-1);
for (i=2; i<=c[d][n]; i++) {

initpoly(A+i, I[i][0]-1);
/* starts filling interior polynomial */
for (j=0; j<=d; j++) II[j] = I[i][j];
for (j=1; j<=d; j++) {

if (II[j]>=1) {
II[0]--; II[j]--;
Af[i].itr[Index(d, II)]=I[i][j]*mu[j];
if (II[j]>=1) {

II[0]--; II[j]--;
Af[i].itr[Index(d,II)] = I[i][j]*(I[i][j]-1)/2;
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II[0]++; II[j]++;
}
II[0]++; II[j]++;

}
}
for (j=1; j<=d; j++) for (l=j+1; l<=d; l++)

if (II[j] >=1 && II[l] >=1) {
II[0] -= 2; II[j]--; II[l]--;
Af[i].itr[Index(d, II)] = I[i][j] * I[i][l] * Gamma[j][l];
II[0] += 2; II[j]++; II[l]++;

}
/* starts filling boundary polynomials */
for (j=1; j<=d; j++) {

if (II[j] == 1) {
IIb[0] = II[0] - 1;
for (l=1; l<j; l++) IIb[l] = II[l];
for (l=j; l<d; l++) IIb[l] = II[l+1];
Af[i].bd[j][Index(d-1, IIb)] = R[j][j];

}
if (II[j] == 0) {
for (l=1; l<=d; l++) if (II[l] >= 1) {

II[l]--;
for (k=0; k<j; k++) IIb[k] = II[k];
for (k=j; k<d; k++) IIb[k] = II[k+1];
IIb[0]--; II[l]++;
Af[i].bd[j][Index(d-1, IIb)] = II[l] * R[l][j];

}
}

}
}
free_ivector(II, 0, d);
free_ivector(IIb, 0, d-1);

}

void initpoly(f, k)
poly *f;
int k;

{
int l, i;

f->itr = dvector(1, c[d][k]);
for (i=1; i<=c[d][k]; i++)
(f->itr)[i] = 0.0;
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f->bd = dmatrix(1, d, 1, c[d-1][k]);
for (l=1; l<=d; l++)
for (i=1; i<=c[d-1][k]; i++)

(f->bd)[l][i] = 0.0;
}

long Index(dim, II)
int dim, *II;

{
long tmp=1;
int l, k=II[0]-1;

for (l=dim; l>=1; l--) {
tmp += c[l][k];
k -= II[dim-l+1];

}
return (tmp);

}

Our next task is to define the function Density() to find the weighted density function

rn. In the definition, we need to calculate the inner product of two polynomials. Suppose

that f and g are two polynomials with type poly of degree k and m, respectively. Then

function inner(f, t, g, m) should return the inner product of f and g. It is implemented

according the formula given in the “Inner Product” section. We comment that in calculat-

ing a term like (i1 + j1)!/(2γ1)i1+j1+1, one would like to use those pre-compute weighted

factors w[l][i]. Apparently, storage for these quantities is not a problem, however, it saves

tremendous number of functions calls to calculate (i1 + j1)! and (2γ1)i1+j1+1 in real time.

The function half_linear(f, t, a, g, m, h) performs h = f + ag with m ≤ t, where

f and g are polynomials of degree k and m, respectively, and a is a real number.

void Density(Af)
poly *Af;

{
int i, j, l, k;
poly phi_0;
double tmp;
extern double inner();
extern void half_linear();
extern void initpoly();
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extern void orthogonalize();

/* give space and initialize */
initpoly(&rn, n-1);
initpoly(&phi_0, 0);
phi_0.itr[1] = 1.0; /*phi_0 = (1; 0, 0, ..., 0) */
rn.itr[1] = 1.0; /*p = psi_1=(1; 1, 1, ..., 1) */
for (l=1; l<=d; l++) {
rn.bd[l][1] = 1.0;
phi_0.bd[l][1] = 1.0;

} /* set phi_0 = phi_1 */
/* end of initialization */

orthogonalize(Af);
for ( k=2; k<=c[d][n]; k++) {
tmp = inner(Af[k], I[k][0]-1, Af[k], I[k][0]-1);
if ( tmp ==0.0)

Bneterror(" Can not be normalized when finding density");
tmp = - inner(phi_0, 0 , Af[k], I[k][0]-1)/tmp;
half_linear( rn, n-1, tmp, Af[k], I[k][0]-1, &rn);

}
/* normalize */
for (l=1; l<=d; l++) /* set phi_0 back to phi_0 */
phi_0.bd[l][1] = 0.0;

tmp = inner( phi_0, 0, rn, n-1);
if ( tmp==0.0) Bneterror(" can not be noramlized into a density");
tmp = 1/tmp;
for ( i=1; i<=c[d][n-1]; i++)
rn.itr[i] *= tmp;

for ( j =1; j<=d; j++)
for ( i=1; i<=c[d-1][n-1]; i++)

rn.bd[j][i] *= tmp;
}

void orthogonalize(Af)
poly *Af;

{
int t, i;
double tmp;
extern double inner();
extern void half_linear();
extern void Bneterror();
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for ( t=3; t<=c[d][n]; t++) for ( i =2; i<t; i++) {
tmp = inner(Af[i], I[i][0]-1, Af[i], I[i][0]-1);
if (tmp ==0.0) Bneterror(" Can not orthogonalize, divisor zero ");
tmp = -inner(Af[t], I[t][0]-1, Af[i], I[i][0]-1)/tmp;
half_linear( Af[t], I[t][0]-1, tmp, Af[i], I[i][0]-1, &Af[t]);

}
}

double inner(f, t, g, m)
poly f, g;
int t, m;

{
int i, j, l, k;
double tmp=0.0;
double prod;

for ( i =1; i<=c[d][t]; i++) for ( j =1; j<=c[d][m]; j++) {
prod = 1.0;
for (l =1; l<=d;l++)

prod *= w[l][I[i][l]+I[j][l]];
tmp += f.itr[i]*g.itr[j]* prod;

}
for ( k =1; k<=d; k++) {
for ( i =1; i<=c[d-1][t]; i++) for ( j =1; j<=c[d-1][m]; j++) {

prod = 1.0;
for (l =1; l<k;l++)

prod *= w[l][Ib[i][l]+Ib[j][l]];
for (l =k; l<d ;l++)

prod *= w[l+1][Ib[i][l]+Ib[j][l]];
tmp += 0.5 * f.bd[k][i] * g.bd[k][j] * prod;

}
}
return (tmp);

}

void half_linear(f, t, a, g, m, h)
/* h = f + a * g, deg(f)=t, deg(g) =m m<= t */
int t, m;



APPENDIX A. DETAILED DESCRIPTION OF THE ALGORITHM 124

poly f, g, *h;
double a;

{
int i, j;
extern void Bneterror();

if ( t<m) Bneterror(" the degree of first poly should be bigger ");
for ( i=1; i<=c[d][m]; i++)

h->itr[i] = f.itr[i] + a * g.itr[i];
for ( j =1; j<=d; j++) for ( i=1; i<=c[d-1][m]; i++)

h->bd[j][i] = f.bd[j][i] + a * g.bd[j][i];
}
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