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HEAVY TRAFFIC LIMITS FOR SOME QUEUEING NETWORKS

BY MAURY BRAMSON! AND J. G. DAI®

University of Minnesota and Georgia Institute of Technology

Using a slight modification of the framework of Bramson [7] and
Williams [54], we prove heavy traffic limit theorems for six families of mul-
ticlass queueing networks. The first three families are single-station sys-
tems operating under first-in—first-out (FIFO), generalized-head-of-the-line
proportional processor sharing (GHLPPS) and static buffer priority (SBP)
service disciplines. The next two families are reentrant lines that oper-
ate under first-buffer—first-serve (FBFS) and last-buffer—first-serve (LBFS)
service disciplines; the last family consists of certain two-station, five-class
networks operating under an SBP service discipline. Some of these heavy
traffic limits have appeared earlier in the literature; our new proofs demon-
strate the significant simplifications that can be achieved in the present
setting.

1. Introduction. Queueing networks have been extensively used to
model computer systems, telecommunications networks and manufacturing
systems (see, e.g., Bertsekas and Gallager [2] and Yao [56]). Classical queue-
ing network theory imposes restrictive assumptions on the distributions of
the interarrival and service times, and on the service disciplines employed in
a queueing network (Jackson [36], Baskett, Chandy, Muntz and Palacios [1]
and Kelly [38]). These restrictions exclude the use of such theory for many
practical systems. Brownian model approximations have been employed as
an alternative tool for more general queueing networks (see, e.g., Harrison
and Nguyen [28]). They share two distinctive features: (a) the analysis of
a Brownian model is mathematically more tractable than that of the corre-
sponding queueing network, since a complicated Markov chain is replaced by a
diffusion process and (b) the Brownian model uses just the first two moments
of the interarrival and service times, and of the routing vectors associated
with the queueing network.

In the Brownian model for a queueing network, the workload process of the
queueing network is replaced by a multidimensional semimartingale reflect-
ing Brownian motion (SRBM). Many quantities for the SRBM, including the
stationary distribution, can be computed either exactly or numerically (Har-
rison and Williams [31], Dai and Harrison [16]). Ideally, these should provide
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estimates for the corresponding queueing networks. Unfortunately, this is not
always the case (Dai and Wang [22]); it is thus essential to determine when
a Brownian model can be used for the analysis of a queueing network. This
task is often carried out by establishing a heavy traffic limit for a sequence
of related queueing networks, which justifies the comparison with a Brown-
ian model when each server is heavily utilized. Such an assumption is rea-
sonable in many systems, including semiconductor wafer production lines,
where extremely high capital cost of equipment demands high utilization of
machines.

The order in which jobs at a station are executed is an important component
in heavy traffic limits. When each station has a single class of jobs, a queueing
network is referred to as a single-class network; when at least one station
has more than one job class, it is a multiclass network. In the latter setting,
a policy that specifies the order in which jobs at each station are served is
called a service discipline. Examples of service disciplines include first-in—
first-out (FIFO), generalized head-of-the-line proportional processor sharing
(GHLPPS) and static buffer priority (SBP) disciplines, each of which will be
defined in Section 2. When the routing is deterministic and only one class has
external arrivals, the network is called a reentrant line.

In a typical setup for heavy traffic limits, a sequence of queueing networks
indexed by r is given. The basic network topology remains fixed across the
entire sequence, with, however, the arrival and service rates, and the corre-
sponding distributions varying over r. As r — oo, the traffic intensity at each
station is assumed to converge to 1, that is, each service station is critically
loaded in the limit. In this setting, the queue length and workload processes
typically grow without bound as r — oo. For standard heavy traffic limits,
under diffusive scaling, the workload processes converge to a limit that is an
SRBM, with dimension equal to the number of stations in each network. The
corresponding limit of the queue lengths, with dimension equal to the number
of classes in each network, will be a constant multiple of the workload limit.
This last property is an example of state space collapse, a term first used in
Reiman [45], although such phenomena were observed earlier in Whitt [50]
and Foschini and Salz [27]. The nature of the queue length limit will be influ-
enced strongly by the service discipline for the networks in the sequence.

The study of heavy traffic limits of queueing systems has a long history,
which dates back to Kingman [39, 40], Prohorov [43], Borovkov [3, 4] and
Iglehart [33]. Heavy traffic limits, in the form of functional central limit
theorems, were first studied by Iglehart and Whitt [34, 35]; a survey can
be found in Whitt [51]. Reiman [44] proved a heavy traffic limit theorem for
single-class networks; his proof was simplified by Johnson [37] by studying the
corresponding fluid models. (Readers are referred to Chen and Mandelbaum
[8] for a survey on single-class networks.) There have been a number of heavy
traffic limits for multiclass queueing networks; see, for instance, Whitt [50],
Peterson [42], Reiman [46], Dai and Kurtz [18], Chen and Zhang [10-12],
Bramson [7] and Williams [54]; Williams [53] provides a survey. Examples
where heavy traffic limits do not exist were given in Whitt [52] and Dai and
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Nguyen [19]. Unconventional heavy traffic limits were obtained in Harrison
and Williams [32], and Coffman, Puhalskii and Reiman [14].

In this paper, we establish heavy traffic limits for six families of multiclass
queueing networks. The first three families are single-station systems that
operate under FIFO, GHLPPS and SBP service disciplines. The next two fam-
ilies are reentrant lines that operate under first-buffer—first-serve (FBFS) and
last-buffer—first-serve (LBFS) service disciplines. Last, we prove that, under
an additional, unconventional heavy traffic condition, the heavy traffic limit
holds for a given family of two-station, five-class networks that operate under
an SBP service discipline. Our proofs of the heavy traffic limit theorems are
based on a slight modification of the framework given in Bramson [7] and
Williams [54], in which state space collapse and fluid limits play a central
role. Our criteria consist of showing that (a) the reflecting matrix R, which
corresponds to the sequence of queueing networks, is completely . and (b) the
critically loaded fluid model, which corresponds to the queueing networks, is
uniformly convergent.

Some of our heavy traffic results are not new. Heavy traffic limits for
sequences of FIFO single-station systems were established in Reiman [44]
and in Dai and Kurtz [18]. (They also follow as a special case of Chen and
Zhang [10].) Chen and Zhang [11] proved a heavy traffic limit for a fam-
ily of FBFS reentrant lines. These known results are included here to show
how their proofs can be significantly simplified by using the framework of
Bramson [7] and Williams [54]. Presumably, this framework can be employed
for further heavy traffic limit theorems. In contemporaneous independent
work, Chen and Ye [9] have shown a heavy traffic limit theorem for LBF'S reen-
trant lines using this framework. Heavy traffic limits for SBP single-station
systems follow from Chen and Zhang [13].

This paper is organized as follows. Multiclass networks are introduced in
Section 2. In Section 3, we present the background for and state our main
results on heavy traffic limits; the remainder of the paper is devoted to demon-
strating these results. The equations of the queueing networks we consider
and the corresponding fluid model equations are given in Section 4. The frame-
work of Bramson [7] and Williams [54] is applied to our setting in Section 5.
The proofs of our heavy traffic limit theorems are given in Sections 6-8.
Such limits are demonstrated for single-station systems (Theorems 3.1-3.3) in
Section 6 and for FBFS and LBFS reentrant lines in Section 7 (Theorems 3.4
and 3.5). In Section 8, heavy traffic limits are demonstrated for a particular
family of two-station, five-class reentrant lines (Theorem 3.6).

2. Open multiclass queueing networks. Multiclass queueing networks
were introduced in Section 1. In this section, we give a more detailed descrip-
tion of these networks. Each station is assumed to have a single server, with
unlimited waiting space. When a job arrives from outside the network, it
receives service at a finite number of stations, after which it leaves the net-
work. At any given time during its lifetime in the network, the job belongs
to one of the job classes. The job changes classes as it moves through the
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network, changing classes each time a service is completed; all jobs within a
class are served at a unique station. Since the network is multiclass, more
than one class might be served at a station. Each job is assumed to eventually
leave the network. The ordered sequence of classes that a job visits in the
network is called its route; if all jobs follow the same route, the network is
called a reentrant line.

We use J to denote the number of service stations and K to denote the
number of job classes in the network. Stations are labelled j =1, ..., J, and
classes are labelled £ = 1,..., K. We use €(j) to denote the set of classes
belonging to station j and use s(%k) to denote the station to which class %
belongs; when j and % appear together, we implicitly set j = s(%). Associated
with each class % of a queueing network, there are two i.i.d. sequences of
random variables, u;, = {u,(i), i > 1} and v, = {v,(i), i > 1}, an ii.d.
sequence of K-dimensional random vectors, ¢* = {$*(i), i > 1}, and two real
numbers, «;, > 0 and m, > 0. We assume that the 3K sequences

1 K
(21) ul,...,uK,vl,...,vK,qb,...,q’)

are mutually independent. We refer to them as the primitive increments of
the network. We set a, = var(u;(1)) and b, = var(v,(1)), and assume that
a; < oo and b, < oo, and that u, and v, are unitized, that is, E[u,(1)] =1
and E[v,(1)] = 1. For each i, u,(i)/a; denotes the interarrival time between
the (i — 1)st and the ith externally arriving job at class &, m,v,(7) denotes the
service time for the ith class % job and ¢*(i) denotes the routing vector of the
ith class % job. It follows that for each class k, m, is the mean service time
for class % jobs, «; is the external arrival rate to class %, and a, and b, are
the squared coefficients of variation for interarrival and service times. (The
squared coefficient of variation of a positive random variable is defined to be
the variance divided by the squared mean.) We allow «; = 0 for some classes
k and we set & = {k: a; # 0}. We assume that the routing vector ¢*(i) takes
values in {ey, ey, ..., ex }, where ¢ is the K-dimensional vector of all 0’s and,
for ] = 1,..., K, ¢; is the K-dimensional vector with /th component 1 and
other components 0. When ¢”(i) = e;, the ith job departing class % becomes a
class [ job. We let P;; = P{¢"(i) = e;} be the probability that a job departing
class k becomes a class [ job. The K x K matrix P = (Py;) is the routing
matrix of the network. We assume our networks are open, that is, the matrix
def / N2
Q=I+P+(P)y+- -

is finite, which is equivalent to (I — P’) being invertible, with @ = (I — P')~L.
[The prime symbol (') on a vector or a matrix denotes the transpose and [
denotes the identity matrix.]

We define the cumulative arrival, cumulative service and cumulative rout-
ing processes by the sums

n

Usn) = S upi) V)= Yopi),  @r(n)= 3 640),
i=1

i=1 i=1
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where n =1,2,...and 2 =1,..., K. For each class %, m,V(n) is the total
amount of service required for the first n class % jobs. Also, for each % and
t>0,let E, ={E,(¢), ¢t > 0} denote the renewal process associated with the
ii.d. sequence {u,(i), i > 1}, that is,

E,(t) = max{n: Uy(n) < t}.

For t > 0, E,(a,t) counts the number of external arrivals to class % in (0, ¢].
We also write V, = {V,(n), n > 1} and ®* = {®*(n), n > 1}. The processes

(2.2) Ei,...,E,,V,,...,Vg,®, . .. ®¥

are referred to as the primitive processes. They contain the same information
as the primitive increments in (2.1).

A service discipline dictates the order in which jobs are served at each sta-
tion. A service discipline is said to be nonidling if a server is always active
when there are jobs waiting to be served at its station. In this paper, we
restrict our disciplines to three families of disciplines: first-in—first-out (FIFO),
generalized-head-of-the-line proportional processor sharing (GHLPPS) and
static buffer priority (SBP), which we now define.

Under the FIFO discipline, jobs at each station are served on a first-in—
first-out basis, regardless of their class designations. Under a GHLPPS service
discipline with weight vector B = (B4, ..., Bg), with B, > 0 for all %, the server
at each station simultaneously serves the leading job of each (nonempty) class.
The server allocates effort to each class % in proportion to the number of jobs
in that class, weighted by B,. Such disciplines are mathematical idealiza-
tions of certain round-robin processor sharing disciplines, which are common
in telecommunication networks. When the weight vector g8 = (1,...,1), the
GHLPPS discipline becomes the head-of-the-line proportional processor shar-
ing (HLPPS) service discipline in Bramson [5, 7] and Williams [54].

Under an SBP discipline, the classes at each station are assigned a fixed
ranking. When the server switches from one job to another, the new job will
be taken from the leading (or longest waiting) job at the highest ranking
nonempty class at the server’s station. We assume that the ranking is strict,
that is, there is no tie in the ranking. We also assume that the service discipline
is preemptive resume. That is, when a job with a higher rank than the one
currently being served arrives at the server’s station, the service of the current
job is interrupted. When service of all jobs with higher ranks is completed, the
interrupted service continues from where it left off. Two SBP disciplines for
reentrant lines that have been studied in the literature are first-buffer—first-
serve (FBFS) and last-buffer—first-serve (LBFS). Under the FBFS discipline,
earlier classes along the route are assigned higher priorities. Under the LBFS
discipline, later classes along the route are assigned higher priorities.

All of these disciplines are examples of head-of-the-line (HL) disciplines,
that is, only the leading job from each class may receive service at any given
time. It is assumed that the discipline is nonidling and that service within each
class is on a FIFO basis; each class receives a proportion (possibly zero) of the
associated server’s time, where this proportion may be random, but it is kept
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constant between changes in the arrival or departure processes. Furthermore,
these proportions should depend, in a measurable way, on the “state” of the
queueing network and they should not anticipate (external) interarrival times,
service times or routing vectors for future arrivals. Readers are referred to
Bramson [5] for precise definition of such disciplines. (Williams [54] gives a
slightly more general definition.)

In this paper, we focus our study on six network models. The first three
consist of the multiclass single-server stations (i.e., J = 1) under the FIFO,
GHLPPS and SBP service disciplines. The other three models are the family
of reentrant lines under FBFS and LBF'S disciplines and the two-station, five-
class re-entrant line pictured in Figure 1, in Section 3.

3. Heavy traffic limit results. To state our heavy traffic results, we
require additional terminology. This is provided in Sections 3.1-3.5, where
performance processes, traffic equations, initial conditions, scaling and heavy
traffic conditions and the definition of reflecting Brownian motion are dis-
cussed. Our heavy traffic results are then presented in Section 3.6.

3.1. Performance processes. The processes Z, D, W and Y are used to mea-
sure the performance of our queueing network. The processes Z = {Z(t), ¢t >
0} and D = {D(t), ¢t > 0} are both K dimensional, with Z,(¢) denoting
the number of class % jobs at time ¢ and D,(¢) denoting the cumulative
number of departures from class %k over [0, ¢]. They are called the queue
length process and departure process, respectively. The other two processes,
W ={W(), t >0} and Y = {Y(¢), ¢ > 0}, are both J dimensional. For each
station j, W;(¢) denotes the amount of work for server j (measured in units of
remaining service time) embodied in those jobs that are at station j at time ¢.
If no more arrivals (either external and internal) are allowed at station j after
time ¢, server j needs to work W;(¢) additional units of time before the station
is empty. The process W is called the (immediate) workload process. For each
station j, Y,(¢) denotes the total amount of time that the server at station j
has been idle over [0, ¢]. Y is called the (cumulative) idle-time process. The
queue length and workload processes measure congestion and delay in the
network; the idle-time process measures utilization of the resources (servers)
in the network.

3.2. Traffic equations. To investigate open multiclass queueing networks,
we employ the solution A, [ =1, ..., K, of the traffic equations

K
3.1 N=a,+ ) NPy
=1

or, equivalently, in vector form, of A = a + P’A. (All vectors in this paper are
to be interpreted as column vectors unless explicitly stated otherwise.) Since
the network corresponding to P is open, the unique solution in (3.1) of A is
A = Qa. The term A, is referred to as the nominal total arrival rate at class
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k; it depends on both external and internal arrivals. If, for each class %, there
is a long-run average rate of flow into the class that is equal to the long-run
average rate out of that class, this rate will equal A,.

Employing m and A, the ¢raffic intensity p; for the jth server is defined as

(3.2) pj= D My
ked(j)

In vector form, p is given by p = CMA, where M = diag(m) and C is the
constituency matrix

1, ifked()),

(3.3) Cip= {0, otherwise.

[For a d-dimensional vector x, diag(x) denotes the d x d matrix whose diagonal
entries are given by the components of x and all other entries are 0.] When
p; < 1, p; is also referred to as the nominal fraction of time that server j is
busy. In this paper, we are interested in networks in which p; is close to 1 for
each station j. Such networks are said to be “heavily loaded.”

3.3. Initial conditions. Heavy traffic limit theorems have frequently
required the corresponding networks to be empty initially [10, 18, 42, 46].
Here, we allow each class to have a positive number of jobs at time 0; we
assume that the probabilistic behavior of these jobs is the same as for jobs
arriving at the class after time 0 (in terms of service requirement and rout-
ing). This assumption is less general than those in [7, 54], where the initial
jobs are allowed to have different service time distributions. We restrict our-
selves to the current framework to keep the exposition simple.

Depending on the discipline used, the amount of information encoded in
the initial state can differ. The initial state should have enough information
so that, under the service discipline, the evolution of the queueing network is
completely determined by the initial state and the primitive processes in (2.2).
For a GHLPPS or an SBP discipline, we take Z(0) to be the initial state.
[Recall that the kth component Z,(0) is the number of jobs initially in class
k.] For a FIFO service discipline, however, one needs to specify the order of
the initial jobs at each station or, equivalently, the order in which the initial
jobs depart after their service completions. The initial state for a network with
the FIFO discipline is given by

{D(s) for 0 < s < W;(0)} for each k € €(j).

3.4. Scaling and heavy traffic conditions. We will use & and m" to denote
the vectors of the external arrival rates and mean service times for a family
of networks indexed by r, where r tends to infinity through strictly increasing
values in (0, co). (With some abuse of notation, we refer to such a family as a
sequence of networks.) Let A" = Qa" and p" = CM" X", with M" = diag(m").
We assume that the set & = {k: o}, # 0} and the routing matrix P do not
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depend on r. We assume further that «” and m” are so chosen that, as r — oo,
(34) a,—>a,>0 forke&, m),—->m,>0 fork=1,...,K

and that p” — e at the rate

(3.5) r(p" —e)— v,

where e is the J-dimensional vector of all 1’s and y is some J-dimensional
vector. Note that (3.4) and (3.5) imply that

(3.6) p=CM\=e,

namely, each station is critically loaded in the limit. The interarrival times at
class k are given by {u,(i)/a}, i =1,...} and the service times by {mjv,(i):
i =1,...}. Therefore, the squared coefficients of variation of the interarrival
times and service times for class %, a¢;, and b;, do not depend on the index r.

Conditions (3.4) and (3.5) are referred to as heavy traffic conditions; they
will be employed in Section 3.6. Readers who are not familiar with this set-
ting may be puzzled by our reason for introducing a sequence of networks. As
motivation, consider the following situation. In a production system, it is up to
the manager to decide how quickly jobs are to be released into the system. In
particular, one must decide how heavily the system should be loaded to effec-
tively use its resources. Ideally, one would like to choose each p; close to 1. A
sequence corresponding to such a network arises by varying the load condi-
tion imposed by the manager; one envisions the network as a member of the
sequence, with r chosen large since p is close to e. The heavy traffic limit that
corresponds to this sequence of networks should then provide insight on the
behavior of the original network. For the reentrant line pictured in Figure 1,
with m constant and satisfying

my + Mg+ Mg = My + My,

let af = 1/(m,+mgz+ms)—1/r, with r > 0. Then, p; = py = 1-(m,+mgz+ms)/r
and so the heavy traffic conditions (3.4) and (3.5) are satisfied with y; =
Yo = —(my + mg + mp).

Station 1 Station 2
[e3}
my My
ms my
ms

FiG. 1. A two-station, five-class priority network.
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When p" — e as r — oo, we expect the queue length, workload and idle-
time processes to grow. With functional central limit theorems in mind, we

define the scaled queue length process Z’(t) = (Z{(t), ey ~§{(t))’ by
Z(t) = r 1 Z5(r%).

For 0 < ¢ < 1, the scaled process Z "(t) records the queue lengths over [0, r?]
at resolution 1/r. (Each job is assigned weight 1/r.) As r increases, the scaled
process employs longer and longer time intervals at coarser and coarser reso-

lutions. We similarly define W"(t) and ?’(t) by
Wi(t) =r 'Wi(r%) and Yi(¢)=r 'Y} (r%).

3.5. Reflecting Brownian motion. In this section, we recall the definition
of semimartingale reflecting Brownian motion (SRBM). Such processes will
be the limits for our heavy traffic limit theorems. Throughout this section, £
denotes the o-algebra of Borel subsets of Ri, fis avectorin R/, Tisa J x J
symmetric and strictly positive definite matrix, R is a J x J matrix and v is
a probability measure on (RY, 2).

The following definition of an SRBM is taken from Williams ([55], Section 6).

DEFINITION 3.1 (SRBM). An SRBM associated with the data (Ri, 0,I',R,
v) is an {9 }-adapted, J-dimensional process W, defined on some filtered prob-
ability space (Q, 7, {%}, P), such that P-a.s.:

(i) W has continuous paths with W(¢) € RY for ¢ > 0 and
(ii)) W = X + RY for appropriate J-dimensional processes X and Y.

The processes X and Y satisfy the following properties. Under P,

(iii) X is a Brownian motion with drift vector 6 and covariance matrix I,
such that X(0) has distribution » and
(iv) {X(¢t) — X(0) — 6t, F, t > 0} is a martingale.

The process Y is an {.%; }-adapted, J-dimensional process such that P-a.s., for
each j=1,...,d,

(v) Y;(0) =0,
(vi) Y; is continuous and nondecreasing,
(vii) Y; can increase only at times ¢ where W;(¢) = 0.

In (vii), we mean that, for each ¢t > 0, W;(¢) > O implies Y;(t — §) =
Y;(t + 8) for some & > 0. This is equivalent to [;~ W;(s) dY;(s) = 0 for all
Jj. Loosely speaking, an SRBM behaves like a Brownian motion with drift
vector 6 and covariance matrix I' in the interior of the orthant Ri, with
the processes being confined to the orthant by instantaneous “reflection” (or
“pushing”) at the boundary, where the direction of “reflection” on the jth face,
F={xe RY: x; = 0}, is given by the jth column of R. The parameters 6,
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I' and R are called the drift vector, covariance matrix and reflection matrix of
the SRBM, respectively. Results of Reiman and Williams [47] and Taylor and
Williams [49] show that a necessary and sufficient condition for the existence
and uniqueness (in distribution) of the SRBM associated with ([RQ_{, 0,I', R, v),
for each initial distribution v on (RY, %), is that the reflection matrix R be
completely ., which is defined as follows. For a J x J matrix R and a subset
S c {1,...,dJ}, the principal submatrix associated with # is the | £] x | 7|
matrix obtained from R by deleting the rows and columns that are not in #,
where | 7| is the cardinality of #. A J x J matrix R is an ./ matrix if there
exists u > 0 such that Ru > 0. (Vector inequalities are to be interpreted com-
ponentwise.) The matrix R is completely ./ if each principal submatrix of R
is an . matrix.

In Definition 3.1, the SRBM W has the semimartingale decomposition
(ii) with respect to a Brownian motion X defined on some probability space.
In the stochastic differential equation literature, such a W is called a weak
solution of (i)—(vii). If, for a Brownian motion X defined on a given proba-
bility space, there exist W and Y that are defined on the same probability
space, are adapted to X and satisfy conditions (i)—(vii) of Definition 3.1 with
{Z;} being the filtration generated by X, then W is called a strong solution of
(i)—(vii). Note that in the strong solution setting, condition (iv) is redundant
because Brownian motion minus the drift is always a martingale with respect
to its own filtration. If the reflection matrix R satisfies an appropriate spec-
tral radius condition, such as in Harrison and Reiman [30], the strong solution
always exists and is unique.

3.6. Heavy traffic limit theorems. We state here the heavy traffic limit
theorems 3.1-3.6, which are the main results of the paper. For these results,
we need some general assumptions. Recall that @ and m are the limits in (3.4)
and that A = Qa. We henceforth assume that (3.4) holds and that A, > O for
all &.

Let H* be the K x K matrix given by

r _ | Pu(l—Py), forl=1,
(3.7) H”I - { _PklPkl” for [ 75 l/,
with [,’ = 1,..., K. One can check that H” is the covariance matrix of the

routing vector ¢*(1). Thus, it is symmetric and nonnegative definite. Set

S = C(diag()\lbl, co Axbg)

(3.8) X

+MQ(diag(a§al, akar)+ Y )\ka) Q’M)C’.
k=1

Since Y% , A, H* and the two diagonal matrices in (3.8) are each symmetric
and nonnegative definite, % is symmetric and nonnegative definite. The role
of the diagonal matrices diag(aiay, ..., a%ag) and diag(A1b;, ..., Agbg) is to
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quantify the randomness of the interarrival and service times. Similarly, the
matrix Zsz1 A, H* quantifies the randomness of the routing vectors. Thus,
the matrix 2 can be thought of as measuring the randomness in the queue-
ing network due to the preceding three quantities. We always assume that
3, is positive definite. Since X is always nonnegative definite, this is equiva-
lent to the determinant of X being positive. This condition is needed for the
uniqueness of the SRBM discussed after Definition 3.1.

To properly talk about the convergence of the stochastic processes under
discussion, we employ the path spaces D?[0, 00), with d € Z,,. Each path x €
D?[0, <) is a function x: [0, o0) — R? that is right continuous in [0, o), and
has left limits on (0, o). We endow the path space with the usual Skorohod
J;-topology (see, e.g., Ethier and Kurtz [26]). We note that when a limit point
is a continuous path, convergence in the Skorohod topology is equivalent to
uniform convergence on compact intervals. For a sequence of stochastic pro-
cesses {¢7, r > 0} taking values in D?[0, co) for some d € Z, we use £ = &*
to denote the convergence of ¢ to &* in distribution.

In the following definition, we assume that (3.4) and (3.5) hold, and employ
the following notation. Let A denote a K x J nonnegative matrix. Also, set

(3.9) G = CMQP'A,
(3.10) R=(I+G)},
(3.11) 6 = Ry,

(3.12) I'= R3R.

In defining R in (3.10), we implicitly assume that I + G is invertible.

DEFINITION 3.2. Let A denote a K x J nonnegative matrix. For a sequence
of networks indexed by r that satisfy (3.4) and (3.5), set X" = W™ — RY".
Assume that

(3.13) (W7, X", Y7, Z") = (W, X*,Y*, Z*) asr— oo

for some W*, X*, Y* and Z*, where W* = X* + RY* is an (RY, 6,T, R, v)
SRBM. Also, assume that

(3.14) Z* = AW*.
Then, (3.13) is said to be a heavy traffic limit with lifting matrix A.

The condition (3.14) is an example of state space collapse. It says that the
K-dimensional process Z*, corresponding to the classes of the networks, is
deterministically given by the J-dimensional process W*, corresponding to
the stations. Note that by the discussion following Definition 3.1, for a heavy
traffic limit theorem to hold, the reflection matrix R needs to be completely /.

For (3.13) to hold, the initial data must satisfy

(3.15) W’(0) = W*(0) asr — oo
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for some nonnegative random vector W*(0). State space collapse in (3.14)
implies that Z*(0) = AW*(0), and hence

(3.16) |Z"7(0) — AW”(0)| — O in probability as r — oco.

In general, (3.15) is not needed for (3.16), since it is possible for Z"(0) and
W7 (0) to be in a fixed proportion, but for both to diverge as r — oc.

We note that the matrix A typically depends on the discipline and other fea-
tures of the networks in the preceding sequence. When the service discipline
is FIFO, we set

Aw=()\1ws(1),...,)\Kws(K)) for w € RJ.

We then need the following stronger condition on the initial data to show
(3.13):

(3.17) r~t sup |Dj(s)— A4s| — O in probability as r — oo
0<s<W’(0)

for ke €(j), j=1,...,J. We can check that (3.16) follows from (3.17). Note
that when

(3.18) W’ (0) =0 asr — oo,

(3.16) and (3.17) are both automatically satisfied. To understand the following
theorems, the reader may find it useful to substitute (3.18) for (3.16) and (3.17).
We now state the main results of this paper, which consist of the following
six heavy traffic limit theorems. The first three theorems are for multiclass
single-station systems. The last three theorems are for reentrant lines.

THEOREM 3.1 (FIFO single station). Assume that the service discipline is
FIFO and that J = 1. Assume (3.4) and let the K x 1 matrix A = (Aq, ..., Ag)
be given by A;, = Ay Assume further that (3.5), (3.15) and (3.17) all hold. Then,
the heavy traffic limit (3.13) holds with lifting matrix A.

A heavy traffic limit for FIFO single-station systems was first proved by
Reiman [46] for W*(0) = 0, under the additional assumption that jobs can
make at most a prespecified number of visits to each class before leaving
the station. This assumption does not allow the feedback to be Markovian.
Dai and Kurtz [18] provided a simpler proof in the more general Markov
setting. Chen and Zhang [10] demonstrated heavy traffic limits for a family
of FIFO networks that include single-station systems. Both papers considered
zero initial data.

It is known that the network version of Theorem 3.1, with more than one
station, does not hold in general; see Dai and Wang [22], Whitt [52] and Dai
and Nguyen [19]. A sequence of networks satisfying (3.4) is said to be asymp-
totically of Kelly type if m, = m; whenever s(k) = s(I). Bramson [7] and
Williams [54] showed that the heavy traffic limit theorem holds for FIFO net-
works which are asymptotically of Kelly type.
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THEOREM 3.2 (GHLPPS single station). Assume that the service dis-
cipline is GHLPPS with weight vector B = (B1,...,Bg) and that J = 1.
Assume (3.4) and let the K x 1 matrix A = (A, ..., Ag) be given by

L= (Apmy/Br) '
YK (nmE/By)

Assume further that (3.5), (3.15) and (3.16) all hold. Then, the heavy traffic
limit (3.13) holds with lifting matrix A.

When the weight vector 8 = (1, ..., 1), the GHLPPS discipline reduces to
the HLPPS discipline. Bramson [7] and Williams [54] showed that the heavy
traffic limit holds for HLPPS networks. For a general weight vector B, it is
not difficult to show that the network version of Theorem 3.2 does not hold.

THEOREM 3.3. (Static buffer priority single station). Assume that the ser-
vice discipline is SBP and that J = 1. Assume (3.4) and let the K x 1 matrix
A=(Aq,...,Ag) be given by A, = 1/m,, if k is the lowest priority class at the
station and 0 otherwise. Assume further that (3.5), (3.15) and (3.16) all hold.
Then, the heavy traffic limit (3.13) holds with lifting matrix A.

Whitt [50] showed the limit theorem when the station has no feedback, that
is, every job visits the station exactly once before leaving the system.
Our next two theorems are for FBFS and LBF'S reentrant lines.

THEOREM 3.4 (FBFS reentrant line). Consider a reentrant line with the
FBFS service discipline. Assume (3.4) and let the K x J matrix A be given
by Ay, = 1/my, if k is the lowest priority class at station j and O otherwise.
Assume further that (3.5), (3.15) and (3.16) all hold. Then, the heavy traffic
limit (3.13) holds with lifting matrix A.

THEOREM 3.5 (LBFS reentrant line). Consider a reentrant line with the
LBFS service discipline. Assume (3.4) and let the K x J matrix A be given
by Ay = 1/my, if k is the lowest priority class at station j and 0 otherwise.
Assume further that (3.5), (3.15) and (3.16) all hold. Then, the heavy traffic
limit (3.13) holds with lifting matrix A.

When the service discipline is FBFS, Chen and Zhang [11] proved the heavy
traffic limit theorem under (3.18). Therefore, Theorem 3.4 is not new (except
for the more general initial data). Nevertheless, it is a good illustration of
the framework developed in Bramson [7] and Williams [54] for proving heavy
traffic limit theorems; it is, in particular, much shorter than a proof “from
scratch.”

Finally, consider the two-station, five-class reentrant line pictured in
Figure 1. We assume that the service discipline there is the SBP discipline

(3.19) {(5,3,1),(2,4)}

that gives the highest priority to class 5, the next priority to class 3 and the
lowest priority to class 1 at station 1, and the highest priority to class 2 and
the lowest priority to class 4 at station 2.
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THEOREM 3.6 (A two-station, five-class priority network). Consider the two-
station, five-class priority network in Figure 1, with priority ranking given in
(3.19). Assume (3.4) and let the 5 x 2 mairix A be given by

1/m, 0
0 0
(3.20) A= 0 0
0 1/my
0 0
Assume further that (3.5), (3.15) and (3.16) all hold, and that
(321) al(m2 + m5) < 1.

Then, the heavy traffic limit (3.13) holds with lifting matrix A.

The preceding network has certain interesting properties that are discussed
in Section 8. In addition to the proof of Theorem 3.6, a partial converse,
Theorem 8.1, is given there.

A number of assumptions in the preceding theorems can be relaxed. The
i.i.d. assumptions on the primitive increments u, v and ¢ in (2.1), which were
used in Theorems 3.1-3.6, can be replaced, in Theorems 3.1-3.4 and 3.6 by
the assumption that the functional central limit theorem holds for each of
the primitive processes E, V and ®. The i.i.d. assumption employed in our
theorems allows us to quote results from Williams [54]. In proving heavy traf-
fic convergence, Williams employed this assumption to show that each limit
process is an SRBM that has the martingale property given in Definition 3.1
(iv) and hence that the process is unique in distribution. When the unique-
ness is guaranteed through other means (e.g., the reflection matrix R in
Definition 3.1 is of the type given in Harrison and Reiman [30]), the i.i.d.
assumption can be relaxed to a functional central limit theorem assumption for
E, V and ®. When J = 1, R is of the type given in Harrison and Reiman [30].
For a FBFS reentrant line, R is of upper triangular form and so is also of
Harrison and Reiman type. For a LBFS reentrant line, R is not of Harrison
and Reiman type and the i.i.d. assumption is needed for the proof in this case.
(For the last observation, see the Appendix of Dai, Yeh and Zhou [24].)

Bramson [6] and Williams [55] considered more general initial data than
that assumed in Section 3.3. They allowed the service times and routing vec-
tors for the initial jobs to have distributions that are different from those for
the jobs arriving at the network after time 0. They also allowed the residual
external interarrival time for the first job arriving at each class % after time
0 and the residual service time for the first job in class & to depend on each
other and on the other parts of the initial data. To keep the exposition simple,
we employ our more restrictive assumptions.

For our sequence of queueing networks in (3.13), we employed the same
primitive increments u, v and ¢ for each r to construct the interarrival times,
service times and routing vectors. In a more general setting, these three vari-
ables are given by triangular arrays of random variables, where the underlying
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u, v and ¢ may vary. Heavy traffic limit theorems under this more general
setup show that the approximations given by (3.13) are robust under pertur-
bations of the interarrival, service and routing vectors. The purpose of the
present setup is to keep the notation simple. Since Bramson [6] and Williams
[55] use the framework of triangular arrays, all of the theorems in this paper
can be generalized straightforwardly to that setting.

4. Queueing network and fluid model equations. In this section, we
write down systems of equations for the queueing networks of interest to
us. We also introduce fluid models, which are the continuous, deterministic
analogs of queueing networks; their fluid model equations are the analogs of
the queueing network equations.

4.1. Queueing network equations. We consider a sequence of queueing net-
works indexed by r, with performance processes Z”, D", W”" and Y" defined
as in Section 3.1. To describe the dynamics of the queueing network, we
introduce two additional K-dimensional processes, A" = {A"(¢), ¢t > 0} and
T" ={T"(t), t = 0}, where A} (t) denotes the total number of arrivals, over
[0,t], at class % (including both external and internal arrivals) and T'(t)
denotes the amount of time that server s(%) has spent serving class % jobs
over [0, ¢]. One can check that A", D", T", W", Y" and Z" satisfy the queue-
ing network equations

@41 A1) = E'(t) + Y OH(D}0)),
k

4.2) Z"()=Z"(0)+ A"(t) — D" (2),

4.3) W'(@)=CV"(A"(t)+ Z7(0)) — CT"(¢),

4.4) CT"(t)+Y'"(¢t) = et,

(4.5) Y')(¢) can increase only at times ¢ where W.(¢) =0, j=1,...,d,

for all ¢ > 0. Here C is the constituency matrix defined in (3.3), e denotes the
J vector of all 1’s, E}(¢) = E,(a)t) and Vi (n) = m},V,(n). We note that T
and Y are continuous in ¢ and that A", D", W” and Z" are right continuous
with left limits. All of the variables are nonnegative in each component, with
A", D", T" and Y" being nondecreasing. By assumption, we have

(4.6) A”(0)=D"(0)=T"(0)=0 and Y’(0)=0.

In (4.5), we mean that Y'(¢3) > Y'(¢;) implies W’.(¢) = 0 for some ¢ €
[t1, t9], which reflects the nonidling property. Since Y7 is continuous, this also
can be written as

@7 /0°° W) dY'(t) =0,  j=1,...,d.

All queueing networks that we work with are HL networks, which were intro-
duced in Section 2. For such networks, we have

(4.8) VI(D(t)) < T"(t) < V(D' (¢) + e)
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in addition to (4.1)-(4.5), where the inequalities are componentwise and e
denotes the K vector of all 1’s.
From our perspective, the 6-tuple

4.9 X'(t) = (A"(t), D"(t), T"(¢), W'(t), Y'(¢), Z"(t)),  ¢=0,

contains all of the essential information on the evolution of the system. As in
Bramson [7], we refer to X" as the queueing network process for the queueing
network or, in the HL setting, as the HL queueing network process. The previ-
ous equations do not specify the discipline of the queueing network. We next
give the appropriate equations for the FIFO, GHLPPS and SBP disciplines.

FIFO queueing networks. We recall that for FIFO queueing networks, jobs
are served in the order of their arrival at each station. This property can be
written as

(4.10) HE+ W) = Zh(0) + Ay(D),  k=1,...,K,

for all ¢ > 0. [As in Section 2, we implicitly set j = s(%2) when j and % appear
together.] Together, (4.1)-(4.5), (4.8) and (4.10) form the FIFO queueing net-
work equations; the corresponding 6-tuple X" is referred to as a FIFO queueing
network process. One can check that these equations, together with the values
taken by (E, V,®,a", m") and

(4.11) {Dy(t) for t < W(0), k=1,..., K},

determine X" (¢) for all ¢ > 0. (One also needs to specify an ordering among
classes to take care of possible ties among arrivals of customers at different
classes.) Thus, the quantity in (4.11) serves the role of the initial data for
these equations.

GHLPPS networks. Under a GHLPPS discipline with weight vector 8 =
(B;), all nonempty classes present at a station are served simultaneously, with
the fraction of time spent serving a class, say %, being proportional to 8, times
the number of jobs in the class. All service goes into the first job of each class to
arrive at the station, with the job departing from the station when the service
requirement is attained.

The GHLPPS property can be written as

(4.12) T7(¢) = fo " 278(s)ds

for all + > 0, where, for k=1, ..., K,

. BrZi(8) 2. BiZi(s), if ) BiZj(s) >0,
(4.13) Zk’B(s)={ le€(§) le€ ()
0, otherwise.

The term Z Z’B (s) is the proportion of effort devoted by the server s(k) to
the class % at time s. Together, (4.1)—(4.5), (4.8) and (4.12) form the GHLPPS
queueing network equations; the corresponding 6-tuple X" is referred to as a
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GHLPPS queueing network process. The equations, together with the values
taken by (E,V,®,a", m") and Z"(0), determine X"(¢) for all ¢ > 0; Z"(0)
serves the role of the initial data for these equations.

SBP networks. Under an SBP discipline, classes at each station are
assigned a fixed ranking, with jobs from higher ranking classes being served
first. For each class %, we denote by Z} *(¢) the total number of jobs present
in classes whose priorities are at least as great as k and denote by T, *(t) the
cumulative time that server s(%) has spent on classes whose priorities are at
least as great as k. Since the discipline is assumed to be preemptive resume,
the SBP property is given by

t— T;’“L(t) can increase only at times ¢ where Z;;’+(t) =0
k=1,...,K,

for all ¢ > 0. [In this setting, (4.5) is redundant since it is equivalent to (4.14)
when £ is the lowest ranked class at its station.] As in (4.7), we can instead
write this as

(4.15) /z (td(E-Ty* () =0, k=1,...,K.

(4.14)

Together, (4.1)—(4.5), (4.8) and (4.15) form the SBP queueing network equa-
tions; the corresponding 6-tuple X" is referred to as an SBP queueing network
process. These equations, together with the values taken by (E, V, ®,a", m")
and Z7(0), determine X' (¢) for all ¢ > 0; Z"(0) therefore serves the role of the
initial data for these equations.

4.2. Fluid model equations. The formal deterministic analog of a queueing
network process has components that satisfy the equations
(4.16) A(¢) = at + P'D(¢),
(4.17) Z(t) = Z(0)+ A(t) — D(2),
(4.18) W(t)=CM(A(t)+ Z(0)) — CT(1),
(4.19) CT(t)+Y(t) = et,
(4.20) Y;(¢) can increase only at times ¢ where Wi(¢) =0, j=1,...,d,
for all ¢ > 0. The analog of (4.8) is given by

(4.21) T(t) = MD(¢).
Here, @« = (ay,...,ag) is assumed to have nonnegative components, M =
diag(m), where m = (m, ..., mg) has positive components, and P is a sub-

probability transition matrix.
The equations in (4.16)—(4.20) are known as fluid model equations; their
solutions, written as

X(2) = (A(®), D(t), T(2), W(2), Y (t), Z(8)), =0,
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are referred to as fluid model solutions. When (4.21) is included with
(4.16)—(4.20), we refer to the corresponding quantities as HL fluid model equa-
tions and HL fluid model solutions. When convenient, we employ the same
vocabulary for the fluid model analogs of queueing network quantities, such
as the workload W.

We are interested in HL fluid model solutions for which « = lim,_, ., o" and
m =lim,_ ., m", where &, m" and P are the means of sequences of queueing
network processes as in (4.1)—(4.5) and (4.8). Formally, one obtains (4.16)—
(4.21) from (4.1)(4.5) and (4.8) by scaling both time and the weight of the
individual jobs by r, and applying the law of large numbers to E"(.), V"(-)
and ®(-) in (4.1), (4.3) and (4.8).

We assume that all of the components of X are continuous and nonnegative,
with A, D, T and Y being nondecreasing. One can check that

A0)=D(0)=T(0)=0 and Y(0)=0
all follow from (4.16)—(4.20), and that
(4.22) W(t) =CMZ(t) forallt>0,

follows from (4.17), (4.18) and (4.21). Using (4.16)—(4.21), it is easy to show
that each component of X is Lipschitz continuous. That is, for some N > 0
[depending on («, m, P)],

|F(t2) = f(¢)] = Nty —¢;] forall y,¢, >0

if f is any of the preceding functions. (When dealing with vectors, we always
employ the max norm, although this is a matter of convenience.) In particular,
each component of X is absolutely continuous and hence differentiable almost
everywhere with respect to Lebesgue measure on [0, c0). A time ¢ > 0 is said
to be a regular point for the fluid model solution X if X is differentiable at
this time. Whenever we employ the derivative of a component of X at a time
t, we implicitly assume that ¢ is a regular point. We use f(¢) to denote the
derivative of a function f at ¢.

For each service discipline, there are additional equations for X to satisfy.
Such equations are similar to those that specify the discipline of the corre-
sponding queueing network process. Fluid model solutions need not be unique,
even though their queueing network counterparts determine the evolution of
the corresponding queueing network uniquely. This is, for example, the case
for the fluid model that corresponds to the well known Lu-Kumar network
in [41]. (Dai and Weiss [23], Section 5 presented a divergent fluid solution
with Z(0) = 0; another solution is given by Z(¢) = 0 for ¢ > 0.)

The FIFO fluid model equations consist of (4.16)—(4.21), together with

(4.23) Dy(t+ W(t)) = Z,(0) + Ax(2), k=1,..., K,
for all ¢ > 0. The initial data are given by
(4.24) {D(t) for t < W;(0), k=1,...,K}.
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These last two conditions are the analogs of (4.10) and (4.11). By (4.19)—(4.21),
Y mypDy(t)=1 fort <Wy(0)and j=1,...,d,

ket (j)

which serves as a consistency condition on the initial data.
The GHLPPS fluid model equations consist of (4.16)—(4.21) together with

(4.25) T,(t)=Z%t) for Y B,Z)(t)>0,k=1,...,K,
le€(j)
where
Z8(t) = BrZi(?) for Y B,Z,(t) > 0.

Yiee(s) BiZi(t) lecl)

The equality (4.25) states that when a station j is nonempty, the server allo-
cation rates 7',(¢) exist and are proportional to the weighted fluid level of each
class k. [When a station is empty, 7',(¢) may still be positive and so (4.12) need
not hold for the fluid model.] Here, Z(0) serves the role of the initial data for
the GHLPPS fluid model equations.

The SBP fluid model equations consist of (4.16)—(4.21) together with

(4.26) T7(t)=1 when Z}(¢)>0,k=1,...,K,

for all regular values of ¢. [In this setting, (4.20) is redundant, since it is
equivalent to (4.26) when % is the lowest ranked class at its station.] The
corresponding 6-tuples X are the SBP fluid model solutions. Here, Z(0) serves
the role of the initial data for these equations.

5. Heavy traffic limits and uniform convergence of fluid models.
Consider a sequence of queueing networks that satisfies (3.4) and (3.5), and
has FIFO, GHLPPS or SBP service discipline. We can then define the corre-
sponding fluid model, with parameters « = lim,_, , ", m = lim,_, , m” and P,
as in Section 4.2. Each fluid model solution X = (A, D, T, W, Y, Z) satisfies
the fluid equations (4.16)—(4.21) and additional equations that are specific to
the service discipline.

In this section, we provide criteria under which heavy traffic limits hold
for such sequences of networks, based on the behavior of the corresponding
fluid models and their reflection matrices. These results are modifications of
results in Bramson [7] and Williams [54]. To state the conditions on the fluid
models succinctly, we introduce the following terminology.

DEFINITION 5.1. Let A be a K x J nonnegative matrix. A fluid model is
said to be uniformly convergent with lifting matrix A if there exists a function
h: R, — R, with A(¢) — 0 as ¢ — oo, such that for each fluid model solution
X with |Z(0)| =1,

(5.1) |Z(t) — Z(c0)| < h(t) forall t>0
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for some Z(co) € RE satisfying

(5.2) Z(oo) = Aw for some w € R7.

Condition (5.1) requires that all fluid model solutions, with |Z(0)| = 1, con-
verge uniformly quickly to limits that satisfy (5.2). (Recall that fluid model
solutions need not be unique.) The next two lemmas state that for critical
FIFO, GHLPPS and SBP networks, two additional properties automatically
follow. These results are used for Theorems 5.1-5.3. They may be skipped
by readers who are not concerned with the proofs of the theorems. As in
Section 3.6, the following K x J lifting matrices A are assigned to each of
the disciplines: for FIFO,

L= Ak if Jj= s(k)’
(5.3) Ay = {0, otherwise;

for GHLPPS,
A
(5.4) Ay = _k%
ey Mmi /By
and for SBP,
(5.5) A, = 1/m,, if k is the lowest priority class at station j,
' 7o, otherwise.

LEMMA 5.1.  Assume that a fluid model operates under a FIFO, GHLPPS
or SBP discipline and is uniformly convergent. Then, there exists an h(-), with
h(t) - 0 as t — o0, so that (5.1) and (5.2) hold for each fluid model solution
X(+) with |Z(0)| < 1.

LEMMA 5.2.  Assume that a fluid model operates under a GHLPPS or SBP
discipline and is uniformly convergent. For each fluid model solution with
Z(0) = Aw for some w € R, we have Z(t) = Z(0) for ¢t > 0. Assume that a
fluid model operates under the FIFO discipline and is uniformly convergent.
For each fluid model solution with D(t) = A4t for 0 < ¢t < W;(0), we have

Z(t)y=Z(0) for all t = 0.

Lemma 5.1 states that (5.1) and (5.2) remain valid under |Z(0)| < 1 if
they are satisfied under [Z(0)| = 1. Lemma 5.2 states that for the GHLPPS
and SBP disciplines Z(¢) = Z(0) for all ¢ if Z(0) = Aw; for FIFO, the same
conclusion holds if we instead assume that D,(¢) = At for 0 < ¢ < W;(0). This
shows that bifurcation from these initial states cannot occur. Lemmas 5.1
and 5.2 are proved at the end of the section. The reasoning is elementary in
each case.

In this paper, we use the following heavy traffic limit results for sequences
of networks with the FIFO, GHLPPS and SBP disciplines. In each case, the
two main conditions are that the fluid model corresponding to sequences of
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queueing networks, with the limits (3.4), be uniformly convergent and that
the reflection matrix R given in (3.10) exist and be completely /.

THEOREM 5.1 (FIFO networks). Assume that the service discipline of a
sequence of queueing networks is FIFO and that A is given by (5.3). Assume
that (3.4), (3.5), (3.15) and (3.17) hold. If (i) the corresponding FIFO fluid
model is uniformly convergent with lifting matrix A and (ii) the matrix R in
(3.10) is completely ., then the heavy traffic limit holds with lifting
matrix A.

THEOREM 5.2 (GHLPPS networks). Assume that the service discipline of a
sequence of queueing networks is GHLPPS with weight vector B = (B1, ..., Bk)
and that A is given by (5.4). Assume that (3.4), (3.5), (3.15) and (3.16) hold. If
(i) the corresponding GHLPPS fluid model is uniformly convergent with lifting
matrix A and (i) the matrix R in (3.10) is completely .7, then the heavy traffic
limit holds with lifting matrix A.

THEOREM 5.3 (SBP networks). Assume that the service discipline of «a
sequence of queueing networks is SBP and that A is given by (5.5). Assume
that (3.4), (3.5), (3.15) and (3.16) all hold. If (i) the corresponding SBP fluid
model is uniformly convergent with lifting matrix A and (ii) the matrix R in
(3.10) is completely ./, then the heavy traffic limit holds with lifting
matrix A.

The proofs of Theorems 5.1-5.3 are similar, and all follow from the rea-
soning employed in Bramson [7] and Williams [54] for related networks. We
provide a brief summary here.

Since the FIFO, GHLPPS and SBP disciplines are all HL, it suffices to
check that the conditions of Theorem 7.1 in Williams [54] are satisfied in each
case. Most of the assumptions in Theorem 7.1 are automatically satisfied,
because our construction of each sequence of networks is in terms of the same
primitive increments « and v, which have finite second moments, and because
of the initial conditions given in the first paragraph of Section 3.3 and the
assumptions (3.4), (3.5) and (3.15) on &”, m" and VT”(O). Two further conditions
in Theorem 7.1 remain to be verified for each discipline, namely that (a) the
matrix R in (3.10) exists and is completely ./, and that (b) multiplicative state
space collapse (MSSC) occurs for the sequence X”. The latter condition means
that, for each ¢ > 0,

127() = AW ()l
W ()l v 1

(5.6) — 0 in probability

as r — oo, where || - ||, denotes the sup norm on [0, ¢] and a v b = max(a, b).
We explicitly assume (a) in part (ii) of each of Theorems 5.1-5.3. So, to demon-
strate the heavy traffic limits in each of these theorems, it remains to
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demonstrate MSSC in each case. The condition, (3.16) is needed for the
GHLPPS and SBP disciplines, and (3.17) is needed for FIFO.

MSSC for SBP networks, in Theorem 5.3, follows immediately from
Theorem 4 of Bramson [7], where the results are phrased slightly differently.
There, uniform convergence of the fluid model and the resulting properties
in Lemmas 5.1 and 5.2 are all assumed. The current approach is more effi-
cient, since the properties given in the lemmas follow automatically because
of the discipline.

To demonstrate MSSC for the FIFO and GHLPPS networks given in
Theorems 5.1 and 5.2, one needs to modify slightly the proofs of Theorems 1
and 1’ of Bramson [7]. In Theorem 1, the FIFO networks are assumed to sat-
isfy the additional condition that m;, = m, for s(k) = s({) (that is, the sequence
X" is asymptotically of Kelly type) in place of uniform convergence. For these
networks, the conclusion of Proposition 6.3 in Bramson [7] contains a stronger
version of uniform convergence and the conclusions of Lemmas 5.1 and 5.2.
As mentioned on page 134 of Bramson [7], Proposition 6.3 is the only place
in the proof of Theorem 1 where this condition is used. Assuming uniform
convergence instead, one can show MSSC by closely following the same steps.
The only other difference in the two arguments is that multiplicative strong
state space collapse, in addition to MSSC, is demonstrated in Theorem 1. To
demonstrate this stronger variant of MSSC, one employs a suitable norm on
X" rather than working directly with Z”. As a result, the proof simplifies
slightly, when instead demonstrating MSSC for Theorem 5.1.

MSSC for HLPPS networks is demonstrated in Theorem 1’. Proposition 7.2,
the analog of Proposition 6.3, holds for such networks and is applied in the
same manner. Upon replacing the proposition with the assumption of uni-
form convergence, the same proof shows that MSSC holds for the sequences
of GHLPPS networks given in Theorem 5.2. Since the proof of Theorem 1’
already deals with Z" rather than X", the changes required in the preceding
paragraph, for replacing X" by Z” for FIFO networks, are not needed here.
The summary provided at the beginning of Section 7 of Bramson [7], for adapt-
ing the proof of Theorem 1 to that of Theorem 1’, can be used as a guide for
demonstrating MSSC for GHLPPS networks.

Checking the uniform convergence of a fluid model may involve entropy
arguments (for FIFO networks of Kelly type and HLPPS networks), compar-
isons with Markov chains (for single station FIFO and GHLPPS networks) and
piecewise linear Lyapunov functions (for SBP networks). The completely .
property can always be checked, at least numerically, because of the lin-
ear algebra involved. For single-station networks, the completely . property
becomes trivial, since R reduces to a positive scalar.

We now return to the proofs of Lemmas 5.1 and 5.2. Instead of demonstrat-
ing Lemma 5.1, it is natural to work in a more general setting. For a given
fluid model solution X(-) and ¢ > 0, we set

X¢(¢) = (A(t +¢) — A(c), D(t +¢) — D(c), T(t +¢) — T(c), W(t +c),
Y(t+c¢)—Y(c), Z(¢t +c))
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for ¢ > 0; X°(-) corresponds to restarting X(-) at time c. We employ the fol-
lowing concepts of shift and scaling invariance, which were first employed in
Stolyar [48].

DEFINITION 5.2. A fluid model is said to be shift invariant if for each fluid
model solution X(-), X¢(-) is also a fluid model solution for each ¢ > 0. A fluid
model is said to be scale invariant if for each fluid model solution X(-), c=*X(c-)
is also a fluid model solution for each ¢ > 0.

Plugging into the fluid model equations (4.16)—(4.21), (4.23), (4.25) and
(4.26), it is not difficult to check that FIFO, GHLPPS and SBP fluid models
are all shift and scale invariant. So, Lemma 5.1 is included in the following
result.

LEMMA 5.3.  Assume that a fluid model is shift and scale invariant, and
assume that there exists a function h: R, — R,, with h(t) - 0 as t - oo,
such that (5.1) and (5.2) hold for each fluid model solution X(-) with |Z(0)| = 1.
Then, there exists an h(-), with h(t) — 0, so that (5.1) and (5.2) hold for each
fluid model solution X(-) with |Z(0)| < 1.

PrROOF. We may assume without loss of generality that 4 is bounded and
nonincreasing. For example, letting  denote the original choice of 4, we may
set h(¢) = sup,.; h(¢') A M for large enough M, since Z(-) is Lipschitz, where
a A b =min(a, b).

We first show that, for any fluid model solution X(+),

(5.7) Z(0) =0 implies Z(¢t) =0 forallt>0.

Assume, on the contrary, that | Z(¢;)| = ¢ > 0 for some ¢; > 0. Then, by the con-
tinuity of Z(.), for any N > 1, there exists ¢, € (0, ¢;), so that |Z(¢y)| = ¢/N.
Set §~<(t) = (N/c)X%(ct/N), t > 0. By the shift and scale invariance of the
fluid model, §((-) is also a solution; it clearly satisfies |Z(O)| = 1. However,
|Z((N/c)(t1 — 1)) = (N/¢)|Z(t1)| = N; since N is arbitrary, this contra-
dicts (5.1). So (5.7) holds.

Because of (5.7), it suffices to consider |Z (0)] € (0,1] to demonstrate the

lemma. Setting ¢ = = |Z(0)|, it follows that X(- ) =c 1X(c) is a fluid model
solution with |Z(O)| = 1. So, by assumption, |Z(t) - Z(oo)| < h(t) for ¢t > 0,
where Z(oo) Aw for some i € RY. Equivalently, |Z(ct) — Z(o0)| < ch(t) for
t > 0, where Z(o0) = A(cw). Therefore

| Z(t) = Z(c0)| < ch(c™'t) < h(?),

as desired. O

The demonstration of Lemma 5.2 also employs the shift invariance of the
FIFO, GHLPPS and SBP disciplines.
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PROOF OF LEMMA 5.2. It suffices to show in all three cases that for each
¢ > 0, there exists a fluid model solution X(-), with | Z(0)| < 1 and X(-) = X°(-).
Then, by Lemma 5.1,

|Z(t) — Z(o0)| = |Z(t + ¢) — Z(c0)| < h(c)

for appropriate Z(oo) and any ¢ > 0, where A(c) — 0 as ¢ — oo, and A(-) does
not depend on Z (+). Consequently, Z(¢t) is constant.

We construct §<(-) by shifting X(-) by —c and defining X(-) over [0, c] to be
i(-), the invariant fluid model solution with Z (t) = Z(0) and ﬁ(t) = At for
all t. Over t > ¢, this means that

A(t) = A(c)+ A(t—c¢),  D(t)=D(c)+ D(t—c),
T(t) = T(c)+ T(t - c), Y(t)=Y(c)+Y(t—oc),
W(t)=W(t-c), Z(t)= Z(t - o).

It is not difficult to see that 32() always satisfies the fluid model equations
(4.16)—(4.21), and, when the discipline is GHLPPS or SBP, either (4.25) or
(4.26) holds. In particular, g(() is a fluid model solution for the GHLPPS and
SBP disciplines. Using the assumption that D,(t) = A,t for 0 < t < W;(0),
one can check that >~(( -) also satisfies (4.23) when X(-) and X(-) are FIFO. (The
behavior of §~((-) on the time interval [c, ¢ + W;(c)] requires a little work.) So,

X(-) is, in this case, a fluid model solution for the FIFO discipline. O

6. Proofs of Theorems 3.1, 3.2 and 3.3. In this section, we prove
Theorems 3.1-3.3, which are the heavy traffic limits for single-station systems
operating under the FIFO, GHLPPS and SBP disciplines. Since J = 1, the
matrix R defined in (3.10) reduces to a scalar. One can check that it is always
positive and hence that R is completely .. Therefore, by Theorems 5.1-5.3,
to prove Theorems 3.1-3.3, it is enough to show that each fluid model is uni-
formly convergent with the corresponding lifting matrix A, which is specified
in (5.3)-(5.5) for each discipline. In our proofs, we drop the station index j,
since there is only one station in the system.

Before proceeding with the proofs of the theorems, we point out, in
Lemma 6.1, that for all critically loaded one-station fluid models, the total
workload CMQZ(¢t) is invariant. This observation is needed in the proofs of
Theorems 3.1 and 3.3.

LEMMA 6.1.  For a one-station, critically loaded fluid model,
(6.1) CMQ(Z(t)— Z(0))=0

holds for all solutions and all t.
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PrOOF. By (4.16), (4.17) and the definition of @,
CMQ(Z(t) — Z(0)) = tCMQa — CMD(?).

Because of (4.21) and the equalities A = Q@a and CM A = 1, this equals ¢t —
CT(t). By (4.19), ¢t > CT(¢) always holds and so CMQZ(¢) is nondecreasing.

Suppose now that CMQZ(¢,) > 0 for some ¢;. Then, by the preceding para-
graph, CMQZ(t) > 0 for all ¢ > ¢;. Since Z(t) # 0 implies that W(¢) > 0,
it follows from (4.19) and (4.20) that ¢t — CT(¢) remains constant on [¢;, c0).
So, CMQZ(¢) is constant on [#{, 00). Since CMQZ(¢) is continuous in ¢ and is
always nonnegative, (6.1) follows from this. O

The following corollary of Lemma 6.1 is used in the proofs of Theorems 3.1
and 3.2. It follows immediately from (6.1) and the inequalities

|1Z(t)|min{m,} < CMQZ(t,) = CMQZ(ty) < K|(I — PYH|Z(ty)| max{m;}
for ¢;, t5 > 0, where | - | denotes the max norm for both vectors and matrices.

COROLLARY 6.1.  For a one-station, critically loaded fluid model,
(6.2) |1Z(0)|/a = |Z(?)| <alZ(0)], ¢=0,
for appropriate a > 0, depending only on M and P.

6.1. Proof of Theorem 3.1. To show that a critical one-station FIFO fluid
model is uniformly convergent, we need to show that for |Z(0)| = 1, Z(¢)
converges uniformly to a scalar multiple of A. The reasoning consists of four
main steps. Let 7(s) = s + W(s), Z(¢) = A"1Z(¢) and B = A"}(aCM + P')A,
where A = diag(A). We first show, in Step 1, that

(6.3) Z(7(s)) = BZ(s) fors=>0.

In Step 2, we show that B is the transition matrix of an irreducible aperiodic
K -state Markov chain. Letting 7"(s) denote the n-fold iterate of 7(s), it then
follows, in Step 3, that Z(7"(s)) converges to a multiple of A as n — oo, where
the convergence is uniform in s. In Step 4, we conclude from this that Z(¢)
converges to a multiple of A as ¢ — oo. This is the desired result.

Step 1. (6.3) holds.

PrOOF. Combining (4.16) and (4.17), we have

Z(s) = Z(0)+ as — (I — P')D(s),  s=0.
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Thus, for s > 0,
(6.4) Z(s+W(s)=Z(0)+a(s+ W(s))— (I — P)YD(s+ W(s))

6.5) — Z(0) + a(s + W(s)) — (I — P')(Z(0) + A(s))
— aW(s) + P'(Z(0) + A(s)) + as — A(s)

6.6) — aW(s) + P'(Z(0) + A(s) — D(s))

(6.7 = (aCM + P')Z(s),

where we have used the FIFO equation (4.23) to get (6.5), (4.16) to get (6.6),
and (4.17) and (4.22) to get (6.7). Substitution of Z = A~'Z and B = A™!
(aCM + P’)A implies (6.3). O

Step 2. B is the transition matrix of an irreducible aperiodic K-state
Markov chain.

PrROOF. Observe that each entry of B is nonnegative and that the kth row
of B is given by

ak)\zl()\lml, ey AKmK) -+ )\Zl(Alplk, ey )‘KPKk)'
Therefore, the sum of the entries of the kth row of B is

K K
Ayt Yo my A NPy = aphyt A (A — ) = 1,
=1 =1
where we have used (3.1) and (3.6). It follows that B is a stochastic matrix. We
claim that B is irreducible. Note that for any n > 1, B* = A~! («CM + P')"A.
Fix k. Since A;, > 0, it follows from A = Q« that the kth component of (P')* a,
which we denote by c;, is positive for some n > 1. Also,

(aCM + P')" > (P')y"1aCM,

with the kth row of (P')*'aCM being given by c,(m4, ..., mg), each compo-
nent of which is strictly positive. It follows that B}, > 0 for appropriate n and
all [. Consequently, B is irreducible.

We still need to show that B is aperiodic. This is a simple consequence of
the observation that «;, > 0 for some % and that the kth diagonal entry of
aCM is given by «,m,, which is therefore positive for this k. O

By Step 2 and discrete time Markov chain theory,

(6.8) B" - Il asn— o

for some matrix I1, where all rows of [1 are identical and the entries 4, ..., 7
are positive and sum to 1. Set 7 (2) = >, 7,2

Step 3. Z(7"(s)) — Am(Z(0)) as n — oo, where convergence is uniform
over all s and initial data |Z(0)| = 1.
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PROOF. By Step 1 and (6.8),
(6.9) Z(m"(s)) = AB"Z(s) — AllIZ(s) asn — oc.

To see the uniformity of the convergence in (6.9) over all s and initial data
satisfying |Z(0)| = 1, note that

(6.10) |AB"Z(s) — ATIZ(s)| < K|A||B" — || Z(s)].

By Corollary 6.1, the right side of (6.10) is at most a K|A||A~!||B" —II|, which
does not depend on s or on Z(0), since |Z(0)| = 1 is assumed.

We can write AIIZ(s) on the right side of (6.9) as Am(Z(s)), which is a scalar
multiple of A. By Lemma 6.1, CMQZ(7"(s)) is constant and so the limit, as
n — oo, does not depend on s. It follows that 7(Z(s)) = w(Z(0)) must always
hold. This implies the claim. O

Step 4. Z(t) — Am(Z(0)) as t — oo, where convergence is uniform over
initial data satisfying |Z(0)| = 1.

ProOF. By the upper bound in (6.2), |Z(s)|, and hence 7(s) —s = W(s),
remains bounded for all s. It follows that

(6.11) ™ (s) < cn

for appropriate ¢, and all n > 1 and s € [0, 7(0)). Also, note that since W(s)
is continuous in s, so is 7(s). Hence, for every t € [7(0), 7" +1(0)), there
exists an s € [0, 7(0)) with ¢ = 77 (s). Setting 7°°(0) = lim,,_, ., 7*(0), we have,
in particular, that for ¢ € [cn, 7°(0)), ¢t = 7" (s) for some s € [0, 7(0)) and
n>n-1."

The last observation, together with Step 3, implies that

(6.12) sup |Z(t) —Aw(Z(0))] -0 asn — co
tefen, °(0))

uniformly over initial data satisfying |Z(0)| = 1. It follows from the lower
bound in (6.2) that 7*(0) > n/c for appropriate ¢ > 0. So 7*°(0) = co. Together
with (6.12), this implies the claim. O

This concludes the proof of Theorem 3.1.

6.2. Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of
Theorem 3.1, but simpler, since we can use Z(t¢) rather than iterate Z(s -+
W(s)). To show that a critical one-station GHLPPS fluid model is uniformly
convergent, we need to show that for |Z(0)| = 1, Z(¢) converges uniformly to
a scalar multiple of (A\;m{/B1, ..., Axgmg/Bk) .-



76 M. BRAMSON AND J. G. DAI

By the lower bound in (6.2), Z(t) # 0 for all ¢. Applying (4.16) and (4.17),
and then (4.21) and (4.25), we obtain

K
Z)(t) =y + ) PyuDy(t)— Dy(t)
(6.13) k=t

1 K
= ——(azlz(t)|5 + > PuBirZy(t)/m, — BzZz(t)/mz>,
|Z(t)lp o1
where |Z(2)|; = X5 BrZ (). Let Z,(t) = BrZ,(t)/(Apm}). Substituting into
(6.13), we can check that

. K —_— —
(6.14)  Z,(t) = %Tgl(m (Z(al’\kmk)\l_l + A P ) Z(t) - Zz(t))'
k=1
Therefore,
o 1 _
(6.15) Z(t) = ———GZ(1),
where

G = diag(Bipu1,---» Brug)(B—1I) and B=A"1(aCM + P)A,
and u;, = 1/m,. Solving (6.15) gives

(6.16) Z(t) = exp(G /0 t |——Z—(—ls)—|ﬁds) Z(0).

[Here, exp(H) =1+ - -+ H"/n! +---.]

The matrix B was employed in the proof of Theorem 3.1. In Step 2, it
was shown that B is the transition matrix of an irreducible Markov chain.
Consequently, G is the infinitesimal generator of a continuous time Markov
chain. On the other hand, by the lower bound in (6.2), |Z(¢)|s is bounded
away from 0, uniformly for all fluid model solutions with |Z(0)| = 1. Hence,
fot 1/|Z(s)|gds — oo uniformly as ¢ — oo. It follows from continuous time
Markov chain theory that

t
6.17) exp(G/O |—Z(—ls)|—ds> I ast— oo,
B

where all rows of II are identical, and convergence is uniform over |Z(0)| = 1.
Let 7 be a row of Il and let 7(z) = ¥, 7,2, for z € RX. From (6.16)
and (6.17), we have

Z(t) — em(Z(0)) ast— oo,
where e the K vector of all 1’s. Therefore,
Z(t) — (Mymy/Bqs .., Agmg/Bg) m(Z(0)) ast— oo,

with convergence being uniform over all fluid model solutions X satisfying
|Z(0)| = 1. This demonstrates Theorem 3.2.
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6.3. Proof of Theorem 3.3. To show that a critical one-station priority fluid
model is uniformly convergent, we need to show that for |Z(0)| = 1, Z(¢)
converges uniformly to a scalar multiple of A, with A, = 1/m,, if & is the lowest
priority class at the station and A, = 0 otherwise. The argument differs from
those of Theorems 3.1 and 3.2. We show that fluid levels in nonlowest priority
classes reach zero in a finite time. We then use Lemma 6.1 to conclude that
the fluid level in the lowest priority class remains constant after that time.

To show that the fluid levels of nonlowest priority classes reach zero, we
construct a Lyapunov function of the fluid levels for such classes. We introduce
the following notation. Denote by K the class with lowest priority and by
# = {1,..., K — 1} the set of higher priority classes. Set M, equal to the
(K —1) x (K —1) diagonal matrix, with diagonal entries m,, 2 =1,..., K—1.
Partition the transition matrix P according to

P= (P wvw P #K)
Pxw Pxx)’
where P, , is the (K — 1) x (K — 1) submatrix of P with (%, [)th entry P,
P,k is the (K — 1) column vector with kth component P, and Py, is the
(K —1) row vector with 2th component Pg,. For a vector y, (v, yx) denotes
the corresponding partition. Also, set @ » = (I — (P ) )_1 and e the (K —1)
vector of all 1’s, and define

(6.18) f(t)=eM,Q4Z,(1),

which is the total workload for the modified network, which is obtained by
removing fluid upon arrival at K.

We wish to show that f(¢) = O for ¢ > 6 and appropriate 6 > 0. Using (4.16)
and (4.17), we have

(6.19) Z 4(t) = Z 4(0) + ayt + (Pgy) Dg(t) = (I = (Py) ) Dy(2)-
Substitution of (6.19) into (6.18) implies that
(6.20) fO)=eMyQyay+eMyQy(Pry)Di(t)— Y Ty(®).
keH
By the traffic equation (3.1), Ay = ap + (Pyy) Ay + (Pry) Ak, and so
Qroy =ty — Qy(Pry) g < Ay
Therefore,

(6.21) e'M#Q%adyfe’M%)tyz Z Akmkzl—/\KmK.
keH

When f(¢) > 0, then Y,., Z,(¢t) > 0 and hence Dg(¢) = 0 and ¥,
T(t) = 1. Substitution of this and the bound in (6.21) into (6.20) implies
that f(t) < —Agmy whenever f(t) > 0. It follows without difficulty, since f(-)
is absolutely continuous, that f(¢) = 0 and hence Z,(¢) =0 for k€ # and ¢ >
&' = f(0)/(Agmg). By Lemma 6.1, the total workload for the entire network
is constant and so Z g(¢) = Z g(8') for t > &'. Set Z(0) = (0,...,0, Zx(8")).
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Clearly, Z(t) = Z(oc) for t > §'. By (6.18), with ¢ = 0, § = supz(g)1 & is
finite. This demonstrates Theorem 3.3.

7. Proofs of Theorems 3.4 and 38.5. In this section, we prove
Theorems 3.4 and 3.5, which are the heavy traffic limits for reentrant lines
with FBFS and LBFS static buffer priorities. By Theorems 3.1 and 3.2 of Dai,
Yeh and Zhou [24], under either discipline, the matrix R given by (3.10) is
completely .. Using Theorem 5.3, it therefore suffices to prove that the cor-
responding fluid models in each case are uniformly convergent, with the lifting
matrices given in Theorems 3.4 and 3.5. The proof of this for FBFS is quite
quick; the proof for LBF'S is more involved.

By (3.6), p = e automatically holds in both settings. We can assume without
loss of generality that «; = 1. It then follows that >_;.,;y m; = 1 for each j. In
the proofs, we enumerate the classes according to the order of their appearance
along the route of the reentrant line. For a fluid model solution X, we find it
convenient to set d(¢f) = D,(¢) for the departure rate from a class k. As
mentioned in Section 4.2, because of the absolute continuity of X, we need
only consider d,(¢) at ¢ which are regular points of X.

PROOF OF THEOREM 3.4. We use induction to prove that, for each 2 =
1,..., K, there exists a ¢, > 0 such that, for any fluid model solution X
with |Z(0)] = 1, Z,(¢) is constant on [#;,00) for [ = 1, ..., k. Furthermore,
this value is zero if [ is not a lowest priority class, that is, the last class to be
visited at some station. Since the discipline is FBFS, the case £ = 1 is imme-
diate. For the induction step, we assume that Z,(¢) is constant on [#,_;, 0o) for
l=1,...,k—1. We break the argument into two cases, depending on whether
or not the class % has lowest priority.

We note that for ¢ > ¢, ¢, dj_1(¢) = dp_9(t) = -+ = di(t) = a7 = 1.
Set &, = {l < k:s(l) = s(k)}. If Z,(¢) > 0, then by the FBFS property,
Zle%e mldl(t) =1. SO, for Zk(t) >0and ¢ > th_1,

le#\{k}

Case (i). Class k is not a lowest priority class. In this case, 3, ,, m; < 1
and so

Zi(t) =dp_1(t) — dp(t) =1 — (1 - > mz) <0
leti\{k}
whenever Z,(¢) > 0 and ¢ > ¢,_;. Setting
Zyp(th-1)
(1= ey mi) — 1

it follows that Z,(¢) = 0 for ¢ > ¢},. Since |Z(0)| = 1 and «; = 1, we have
Zy(t) < |1Z(t)] < t+1for all t. So, we can choose t;, > ¢,_; independently of
the fluid solution X, with Z,(¢) = 0 for ¢ > ¢,.

t/k =tp1+
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Case (ii). Class k is a lowest priority class. Since 3., m; = 1, it follows
from (7.1) that d,(¢) = 1, whenever Z,(¢t) > 0 and ¢ > ¢,_;. From this, it
follows that Z,(t) = d,_1(t) — d,(t) = 0. When Z,(t) = 0, Z,(¢) = 0 holds.
(Recall that ¢ is a regular point of X.) It follows that Z,(¢) is constant on
[t,_1, 00). So, we simply choose ¢, = t;_; in this case. O

PrROOF OF THEOREM 3.5. We use induction to prove that, for each & =
1,..., K, there exists a #;, > 0 such that, for any fluid model solution X with
|Z(0)| =1, Z,(¢t) is constant on [, 00) for I = k, 4+ 1,..., K. Furthermore,
this value is zero if [ is not a lowest priority class, that is, the first class to be
visited at some station. Since the discipline is LBFS, the case 2 = K is imme-
diate. For the induction step, we assume that Z;(¢) is constant on [£;,, c0),
forl=Fk+1,k+2,..., K. As before, we break the argument into two cases,
depending on whether or not the class % has lowest priority.

We first present some preliminaries. It is convenient for bookkeeping pur-
poses to append an extra one-class station, denoted by & = 0, to the begin-
ning of the network, with m, = 1 and Zy(0) = 1. Then, Z,(¢) = 1 always
holds and the evolution of X proceeds as before in the remainder of the net-
work. (For the new network, |Z(0)] = 2.) Set &, = {l > %k : s(I) = s(k)}
and &), , = {h <1 < k:s() =s(h)}, for h,k =0,1...,K and h < &,
and set m;, = Y., m;. Since Z;(¢) is assumed to be constant on [¢;,, ),
dp(t) =dy1(t)=--- =dg(t) for t > t; ;. By the fluid model equations (4.19)
and (4.21), > jcp(;) mid;(¢) < 1 always holds for each j. Consequently,

(7.2) di(t) <1/my, fort=>t,
and, by the LBFS discipline,
(7.3) dp(t)y=1/m,; fort>t,, ;, whenever Z,(¢) > 0.
We employ the functions f,(-) and g, ,(-), where
O LO=Y 20 gu0= ¥ m( T 20)
1<k ledy I<l'<k
We can check that
Fr(t) = fr(0) + 1 — Dy(2),

(7.5) g1 (t) = 8 1(0) + 3 my(Dy(t) — Dy(2)).
ledy )

The meaning of f,(-) is clear. The functions g, ,(-) are more difficult to moti-
vate; the main point is that, by (7.6), g, ,(-) have a fixed sign over the intervals
of interest to us in Cases (i) and (ii) of the proof.

LEMMA 7.1. Let X be a solution of the fluid model equations (4.16)—(4.21)
and (4.26) for a reentrant line whose discipline is LBFS, with p = e. Assume
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that for given classes h and k, with h < k, Z;(t) is constant on (u,v) for
l=Fk+1,...,Kand Z,(t) > 0 on (u, v). Then,

(76) gh,k(t) =1- mhdk(t) on (u, l)).

PROOF. By (7.5),
Snp(t)= D my(di(t) — dp(t)).

le‘fih. k

Since Z,;(¢), { > £+ 1, is constant on (u, v), this equals

% mi(di(®) - du(0) = ( £ midi(®)) - iadi(0)

led), legy,

on (u,v). On (u,v), Z,(¢) > 0 and hence ;. ,, m;d;(t) = 1. This implies
(7.6). O

We first consider the case where % is not a lowest priority class at a station,
which implies that m, < 1.

Case (i). Class % is not a lowest priority class. We wish to show that for
appropriate ¢,, not depending on X, Z,(¢) = 0 on [¢;, oc). We do this in two
steps. In Step 1, we show that for appropriate ¢, satisfying (7.7), Z,(¢}) = 0.
In Step 2, we show that Z,(t) = 0 on [¢),, 00). Since the bound in (7.7) is
uniform over all X, ¢, can be chosen not to depend on X.

Step 1. For each fluid model solution X, there is a t), satisfying Z,(¢},) =0
and

(7 £, — thss € 0, (tpr +2)/(1/m, — D],

PROOF. By (7.5), f1(t) = 1 —d,(t) for t > 0. So, by (7.3), whenever ¢ > £, 4
and Z,(t) > 0, f,(t) = 1-1/m,; < 0. Consequently, there exists a ¢), satisfying
fi(t),) =0, and hence Z,(¢},) = 0, with

(7.8) by —the1 € (0, Fr(tryr)/(1/my, — 1))

Since |Z(0)| =2 and a; = 1, f,(¢) < |Z(t)| < t+2 for all ¢£. Together with (7.8),
this implies (7.7). O

Step 2. Choose t), as in Step 1. Then, Z,(¢) = 0 for t € [t},, 00).

PrROOF. We assume the claim is not true and that there exists an interval
[a, b] C [t),, o) such that Z,(a) = 0 and Z,(¢) > O for ¢ € (a, b]. We show
that, depending on the sign of g, ,(¢) close to a, this results in a contradiction
for either t <a or ¢t > a.

Let A be the first class before % that is nonempty at time a, that is,

(7.9) h=max{l < k: Z,(a) > 0}.



HEAVY TRAFFIC LIMITS 81

(The class £ = 0 ensures that the set is not empty.) By the continuity of
Z(-), there is an interval (u, v) C [¢,,1, b], containing a, on which Z,(¢) > 0.
Always, gj, 1(¢) = 0. By the choice of 4 and [a, b], g, ,(a) =0 and g, ,(t) >0
for ¢ € (a, v] C (a, b] also hold.

Suppose now that m;, < m;. On (a,v), Z,(¢) > 0 and so, by (7.3), d,(¢) =
1/my. Therefore, by Lemma 7.1, g, ,(¢) = 1 — m/m,;, < 0 on (a,v). This
contradicts the last sentence of the previous paragraph. Suppose instead that
my > my. By (7.2), d;(t) < 1/m,, and so by Lemma 7.1, g;, ,(¢) > 1—m;/m, >
0 on (u,a) C (u,v). This contradicts g, ,(a) = 0 and the nonnegativity of
&n.x(+)- So, there exists no point a as specified at the beginning of the proof.
This implies that Z,(t) = 0 for ¢ € [}, 00). O

We now consider the case where % is the lowest priority class at a station,
which implies that m, = 1.

Case (ii). Class k is a lowest priority class. We wish to show that for appro-
priate ¢, not depending on X, Z,(¢) is constant on [£;, c0). This requires three
steps. In Step 1, we show that Z,(¢) is nondecreasing on [¢,.{, 00). Set

e =min{l — m;: [ is not a lowest priority class}.

Then ¢ > 0. In Step 2, we show that for appropriate ¢}, satisfying (7.11),
Z4(t}) < e. Then, in Step 3, we show that Z,(¢) is constant on [¢),, c0). Since
the bound in (7.11) is uniform over all X, ¢, can be chosen not to depend on X.
Steps 2 and 3 are the analogs of Steps 1 and 2 in Case (i). The reasoning here
is similar, except that there are more alternatives to be considered in Step 3.

Step 1. For each fluid model solution X, Z,(¢) is nondecreasing on [¢,_ 1, 00).

PrOOF. For a given ¢ € [¢,,, 00), set h = max{l < k: Z,;(¢) > 0}. Since
Z,(t), l = k+1, is constant on [, 1, 00), we have d;(¢) = d,(¢) for [ > k. Also,
since Z,(t) = 0 and hence Z,(t) = 0, for h < I < k, we have d,(t) = d,_(t)
for h <[ < k — 1. It therefore follows from (4.21) and the LBFS property that
(7.10) dpa(t) Do my+di(t) 3 my= 3 di(t)ym; =1

le'fh,k le‘f’h\jh,k le'fh
Also, Yjc5, m; < 1 and, by (7.2), d(¢) < 1. So, by (7.10), dj,_1(¢) > 1 and hence
Z () = dj_1(t) — d(t) = 0. Since t € [¢},,00) is arbitrary, this implies that
Z,(t) is nondecreasing on the set. O

Step 2. For each fluid model solution X, there is a regular point ¢),, with
Z,(t)) < e and

(7.1D tlk —lpy1 € (Oa (tk+1 + 3)/8]
PROOF. Assume that, on the contrary, for a given w > ¢, 4, Z,(t) > & for

all regular ¢ € (¢,,1, w). Then, f,(¢) is constant over [¢, ., w], where f,(¢) is
given by (7.4). To see this, note that since Z,(¢) > 0 for ¢ € (¢;,1, w), it follows
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from (7.3) that d,(¢) = 1/m, = 1. Together with (7.5), this implies f,(¢) is
constant on [£,,, w].

It follows that Z,(w) < f,(w) = f1(¢4+1)- Since Z,(w) — Z(t},1) = e(w —
t341) also holds, we have

w—tr1 = Zp(w)/e < fr(tre)/e.
Consequently, there exists a regular ¢}, with Z,(#;) < ¢ and
th — the1 € (0, f(tpi1)/e + 1]
Since f,(tp1) < |Z(t1)| < tpy1 + 2, this implies (7.11). O

Step 3. Choose ¢}, as in Step 2. Then, Z,(t) is constant over [}, 00).

PrOOF. We assume the claim is not true. By the monotonicity of Z,(¢) in
Step 1, there exists an interval [a, b] C [t),, 00) such that Z,(¢t) = Z,(¢},) for
t €[t),,a] and Z,(t) > Z,(t),) for t € (a, b]. As in Step 2 of Case (i), we show
that, depending on the value of g, ,(¢) close to a, this results in a contradiction
for either ¢ > a or ¢ < a. In the first case, we use the monotonicity of Z,(¢)
in Step 1, and in the second case, we use Steps 1 and 2. The reasoning is
different, depending on whether a = ¢, or a > ¢),.

We consider first the case where a > ¢),. Choose A as in (7.9). There is an
interval (u, v) C [t},, b], containing @, on which Z,(¢) > 0. On [e,v),t =aisa
strict minimum for g, ,(¢), and on (u, a], it is a minimum. This is because ¢ =
a is a strict minimum (respectively, minimum) for Z,(¢) on [a, v) (respectively,
(u,a]),and Z;(a)=0for h <l < k.

The reasoning now proceeds as in Step 2 in Case (i). First, suppose that
my, < my (.e., my = 1). On (a,v), d,(t) = 1/m; and so by Lemma 7.1,
Enx(t) =1—my/m;, <0 on (a,v). This contradicts the conclusion, in the
previous paragraph, that a is a strict minimum for g, ,(¢) on [a, v). So suppose
instead that m, > m; (.e., m, < 1). On (u,a), d,(t) < 1/m, and so by
Lemma 7.1, g, 1(¢) = 1 —m;/m; > 0. This contradicts the conclusion in the
previous paragraph that a is a minimum for g, ,(¢) on (u, a]. So, a > t}, is
not possible.

We turn now to the case where a = ¢),. The possibility that m, < m, is
excluded by exactly the same reasoning as in the previous paragraph by ana-
lyzing the behavior of g, ,(¢) over (a, v), with v chosen close to a. So, suppose
instead that m, > rm,. By Step 2, D(¢,) and Z(¢,) exist. Since Z,(¢,) = 0 for
h <1 < k, it follows that d,(t,) = d;_,(t},). Consequently,

(7.12) Zy(th) = dp1(8,) — di(t}) = di(ty) — di(t))-

Also, d;(t},) = -+ = d,_1(t}) = di(t},) = --- = dg(¢},), with the inequality
following from Step 1. It therefore follows, as in (7.3), that d,(¢},) > 1/my.
Together with (7.2), this implies that (7.12) is at least

1m, —1=m; (1 —m,) > e
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This contradicts Step 2, where Z,(#,) < ¢ is given. So a = ¢, is also not
possible. Hence, there exists no point a as specified at the beginning of the
proof. This implies that Z,(¢) is constant over [¢}, c0). O

Together, Cases (i) and (ii) imply that Z ,(¢) is constant on [¢,,, c0), for appro-
priate t,, with Z,(¢) = 0 if % is not a lowest priority class. This completes the
proof of Theorem 3.5. O

8. The two-station, five-class priority network. In this section, we
analyze the behavior of the family of two-station, five-class SBP networks
that was introduced in Section 3. We first demonstrate a heavy traffic result,
Theorem 3.6, for these networks. In addition to the standard assumptions (3.4)
and (3.5) on a”, m" and p”, this result requires (3.21), that is, that a;(my +
ms) < 1. At the end of the section, we show that this condition is, in fact,
needed.

This example shows that it is sometimes possible to apply standard heavy
traffic limit results, such as Theorem 5.3, in unconventional situations. One
can also show analogous results for the more elementary Lu—Kumar net-
work [41]. [There, a heavy traffic limit holds exactly when a;(mq+m,) < 1.] We
prefer to investigate the networks given in Theorem 3.6 since they are without
immediate feedback; the somewhat more sophisticated arguments used here
also give a better idea of the type of reasoning that is often needed to verify
the conditions of Theorem 5.3. A very interesting family of three-station net-
works with related properties is studied by Chen and Ye [9]. That family also
includes cases where the completely . condition holds, but where the net-
works are not uniformly convergent. (The networks in Theorem 3.6 and those
in [9] were first examined in Dai and Vande Vate [20] and Dai, Hasenbein and
Vande Vate [17], in the context of stability analysis.)

Throughout the section, we assume that «; = 1, except when specified oth-
erwise. Also, as in the previous section, we set d,(t) = D,(t) for the departure
rate from a class k.

PrOOF OF THEOREM 3.6. Since the discipline is SBP, we can use Theorem
5.3 to demonstrate the theorem. We first show that (a) the matrix R in (3.10)
is well defined and is completely .. We then show that (b) the corresponding
fluid model is uniformly convergent with the lifting matrix A in (3.20). Check-
ing (a) is quite straightforward. We use a piecewise linear Lyapunov function
to check (b).

To show (a), recall the definition of the matrix G in (3.9). One can check
that for this network,

_(my+mg+ms mgy . -1
TG ("rT S ) (diag(ng,m)]

It follows from (3.6) that

(81) m1+m3+m5=1, m2+m4=1.



84 M. BRAMSON AND J. G. DAI

Thus,

1 . _
I+G= (1 22) [diag(my, my)] L

By (8.1) and (3.21), mys < my4. The determinant of I + G is therefore positive;
the inverse R is given by

R = (m, — mg) diag(my, mo) (7377,

To check that R is completely ., note that its diagonal elements are positive.
Also, choose @ > 1 so that ams < my, and u = (1, a); then, Ru > 0. This
shows that R is completely ./, and completes the proof of (a).

To prove (b), we show that there exists a § > 0 such that for any fluid model
solution X with |Z(0)| = 1, Z,(t) is constant on [§, o), for £ =1,...,5, and
is zero, for £ = 2, 3 and 5. We separate the proof into two steps. Let

f(8) = Zo(t) + Z3(8) + Zs(2).

In Step 1, we show that there exists a § > 0, depending only on m, such that
f(t) = 0 for ¢t = 6. In Step 2, we show that Z,(¢) is constant on [§, co) for
k=1 and 4.

Step 1. There exists a 6 > 0, such that for each fluid model solution X with
|Z(0)| =1, f(¢)=0for ¢ > 6.

PROOF. We claim that there exists an & > 0 such that f(¢) < —e whenever
f(¢) > 0. It then follows that f(¢) = 0 for ¢t > f(0)/e. Since f(0) < |Z(0)| =1,
setting 6 = 1/¢ implies that f(¢) = 0 for ¢ > &.

To prove the claim, we consider different cases, depending on whether or not
the individual components Z,(t) are positive. For this, we recall the priority
structure of the reentrant line, which, in descending order, is given by (5, 3, 1)
at station 1 and (2, 4) at station 2. We also repeatedly use the observation that
Z,(t) = 0 implies Z,(¢) = 0 at regular points, and so d;,_; () = d,(t) there.

We first assume that Z;(¢) > 0. This implies d{(¢) = ds(¢) = 0. If, in
addition, either Z,(¢) > 0 or Z,(t) = 0, then d () = 0. It follows that f(t) =
—us5. If, on the other hand, Z,(¢) = 0 and Z,(¢) > 0, then d,(¢) = 4 and so
f(¢) = g — 5, which is also negative, since us > py.

For the other cases, we assume that Z;(¢) = 0. If, in addition, both Z4(¢) > 0
and Z3(t) > 0, then d(¢) = dy(¢) = ds(¢t) = 0. It follows that () = —pus.
Assume instead, then, that Z,(¢) > 0 but Z5(¢) = 0. Then,

f(t) = Zy(t) = dy(t) - dy(t) = di(t) — s

Two subcases arise, depending on whether or not Z(¢) = 0. Under Z,(¢) =0,
we have d{(¢) = 1 and so f(t) = 1 — ug < 0. Under Z(t) > 0 we have
mydq(t) + mgds(t) = 1. Since Z3(¢) = 0 implies that ds(¢t) = dy(t) = uo,
solving the preceding equation produces d;(¢) = u;(1 — ugms). Consequently,
f(t) = pi(1 — pgms) — py, which we wish to show is less than 0. This is
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equivalent to my < my + mg, which is implied by (3.21) and the first equation
in (8.1).

We still need to consider the case where Z,(t) = Z5(t) = 0 and Z4(¢) > 0.
Then,

f(8) = Zy(t) = da(t) — dy(t) = —ds(2),

with the last equality holding since there is no service at class 1 when class 3
is occupied. There are two subcases, depending on whether or not Z,(¢) = 0.
Under Z4(t) = 0, we have d3(¢) = d5(t). Together with msds(¢)+msds(¢) = 1,
this implies that ds(¢) = 1/(mg + my), and so f(t) = —1/(m5 + ms). Suppose,
instead, that Z,(¢) > 0. Since Z,(¢) = 0 and Z3(¢) > 0, there is no service
at class 2 and so d(¢) = py. Since dy(t) = dx(t), it follows from this and
mads(t) + mgds(t) = 1, that dy(t) = pg(l — pams). Consequently, £(¢) =
—us(1l — uyms), which is also negative since my < my.

Together, the previously computed values of f(t) show that, for appropri-
ate ¢ > 0, f(t) < —e whenever f(t) > 0. This completes the argument for
Step 1. O

Step 2. Let 6 be chosen as in Step 1. Then, Z(¢) and Z,(¢) are constant
on [§, o).

ProoOF. By Step 1, Z,(¢) is constant on [8, 00), for £ =2, 3 and 5, and so

(8.2) dy(t) = do(t) =ds(t),  dy(t) = ds(0):

To show Z(t) and Z,(¢) are constant on [§, 00), it therefore suffices to show
(8.3) do(t) =dy(t) =1

for such ¢.

There are four cases to show, depending on whether or not Z(¢) and Z,(t)
are positive. Assume, first, that Z,(¢) > 0 and Z,(¢) > 0. Then, } ;..
m,di(t) = 1 for j = 1,2. Employing (8.2) at the first station, this can be
rewritten as

(my+ mg)dy(t) + msdy(t) = 1,

(8.4)
mgdz(t) -+ m4d4(t) =1.

By (8.1), do(t) = d4(t) = 1 solves (8.4). Using (8.1) and (3.21), it is easy to
check that the system is nonsingular, and so this solution is unique.

Assume next that Z(¢) =0 and Z,(¢) > 0. Then, d,(¢) =1 and mqdy(¢) +
myd4(t) = 1. Together with (8.1) and (8.2), this implies (8.3). The reasoning for
Z(t) > 0 and Z,(t) = 0 is similar. Here, we instead employ ds(¢) = d(¢) and
mq1d(t) + msds(t) + msds(t) = 1, together with (8.1) and (8.2). For Z(¢) =
Z4(t) = 0, we have d(¢) = 1 and d3(¢) = dy(t). Together with (8.2), this
implies (8.3).

This completes the proof of Theorem 3.6. O
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We conclude this section by providing a partial converse to Theorem 3.6,
where the assumption (3.21) is replaced by (8.5). Some motivation for this is
provided by Lemma 8.1 and the following discussion.

THEOREM 8.1. Consider a sequence of two-station, five-class SBP networks
in Figure 1, with priority ranking given by (3.19). Assume (3.4), (3.5) and that
Z"(0) =0 for each r > 0. If

(8.5) al(m2 + m5) > 1,

then, with probability 1, |Z"(t)| — oo for each t > 0 as r — oo.

As before, we can without loss of generality assume that a; = 1. We also
note that |VT’”(t)| — 00 as r — oo follows from the preceding assumptions,
with the argument being the same as that for |Z "(t)| - oo.

A key ingredient in the proof of the theorem is the following elementary
lemma.

LEMMA 8.1. Consider a sequence of two-station, five-class SBP networks
as in Figure 1, with priority ranking given by (3.19) and with Z"(0) = 0 for
each r > 0. Then,

(8.6) Zy()ZE(t) =0, t>0.
Consequently,
(8.7) Ty(t) + Ti(t) < ¢, t>0.

The first part of Lemma 8.1 states that at any given time, either class 2
or class 5 must be empty. This condition holds at ¢ = 0; it persists at later
times because a job cannot move from class 1 to class 2 as long as class 5 is
occupied, and cannot move from class 4 to class 5 as long as class 2 is occupied.
The second part of the lemma is an immediate consequence of the inability
of classes 2 and 5 to simultaneously receive service. Because of this behavior,
classes 2 and 5 are said to form a virtual station; (3.21) is thus a virtual station
condition. This type of behavior was first observed in Harrison and Nguyen
[29] and in Dumas [25] for certain networks; it was systematically employed
in Dai and Vande Vate [20, 21].

We provide an abbreviated argument for Theorem 8.1. This is the only
proof in the paper where we need to work with random quantities; because
of Theorems 5.1-5.3, it sufficed to work with fluid models for the proofs in
Sections 6 and 7. We therefore provide only a quick account of the machinery,
referring the reader elsewhere for more detail.

PROOF OF THEOREM 8.1. By the strong law of large numbers,

k
88  lim 2D 1 oy Ve, B

t—00 t n—o00 n n—oo n

=Pkl
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with probability 1. Choose a sample path @ such that (8.8) holds and consider
the sequence X"(-, w), r > 0, where

X"(t, ) = r 2X"(r’t, o).

Since |T7(¢, w) — T"(s,w)| <t — s for any 0 < s < ¢ and r > 0, by the Azela—
Ascoli lemma, {T7(-, w), r > 0} is precompact in the topology of uniform
convergence on compact intervals. It follows from queueing network equa-
tions (4.1)—(4.5) and (4.8), and the strong law of large numbers in (8.8) that
{X"(-, w)} is precompact, as » — oo, in D*£+27[0, co) under the topology of uni-
form convergence on compact intervals. One can show that each limit point X,
of {X"(-, w)}, is a fluid model solution to (4.16)—(4.21). (The reasoning is now
quite standard; see, e.g., Dai [15] for an analogous argument.)

We claim that the queue length |Z(t)| grows linearly in ¢. For this, we
observe that

mo(Z1(t) + Zy(8)) + ms(Z1(8) + - - - + Z5(t))
(8.9) = my(t — Dy(t)) + ms(t — Ds(t))
= (mg + my)t — (To(t) + T5(2)).

The equalities follow from (4.16)—(4.21); they rephrase the total workload at
the virtual station, at a given time, in terms of the arrival and departure of
fluid. Because of (8.7), To(t) + T5(¢) < t for t > 0. Together with (8.5), this
implies that (8.9) is at least ¢t for some ¢ > 0. So, for appropriate ¢’ > 0,
|Z(t)| = ¢t for ¢ > 0. It follows that

liminf | Z7(¢, w)| = ct.
r—o0
Since Z'(t, w) = rZ"(t, ), this implies that
lim | Z" (¢, )| = o0
r—o0
for each t > 0, as desired. O

Theorems 3.6 and 8.1 analyze the behavior of sequences of queueing net-
works, as in Figure 1, where my + m5 < 1 and my + mg > 1, respectively. One
can, naturally, ask what happens in the borderline case, where mqy + ms = 1.
It is not difficult to check that, in this case, I + G is not invertible and so R
in (3.10) is not defined. One can also construct a fluid model solution X, with
Z(0)=(1,0,0,0,0), that is periodic (see Dai and Vande Vate [21], Section 8).
Therefore, the fluid model is not uniformly convergent. Moreover, Z is not
tight as r — oo; we omit the rather long argument.
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