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Multiclass queueing networks have been used to model communication and complex manufacturing systems. Recent results have
shown that these networks can be unstable in the sense that the total number of jobs in the network explodes as time tends to
in®nity even if the tra�c intensity at each station is less than unity. Simulation is used to demonstrate these unusual phenomena.
Conjectures based on simulation are presented.

1. Introduction

Multiclass queueing networks have been used to model
communication and complex manufacturing systems. A
distinguishing feature of these networks is that there may
be more than one job class served at a station. When
there are multiple job classes waiting at a station, the
server has to choose a job class each time that a service is
completed. A dispatching rule is used to make such a
choice. Figure 1 is an example of what Kumar [1] calls a
reentrant line, a special type of multiclass open queueing
network distinguished by a single external arrival process
and deterministic routing. We de®ne a di�erent job class
for each stop on the route and we allow each class to have
its own service time distribution. There are three job
classes served at station 1 and two job classes at station 2.
For a general description of multiclass queueing net-
works, readers are referred to Harrison and Nguyen [2].

It has been widely believed that if the nominal load per
unit of time qi (also called tra�c intensity) at each station
i is less than one, the network ought to have enough
capacity to handle the load. For the example in Fig. 1,
q1 � m1 � m3 � m5 and q2 � m2 � m4, assuming
that the mean arrival rate k � 1, where mk is the mean
service time for class k. For future reference,

qi < 1 for each station i

is called the usual tra�c condition. However, recent ex-
amples have shown that there are non-idling dispatching
rules under which the total number of jobs in the network
explodes even if the usual tra�c condition is satis®ed. (A
dispatching rule is non-idling if each server works
whenever there is a job at the station.) Some of these
unstable dispatching rules are mentioned in the literature
and are often used in practice. Lu and Kumar [3] and
Rybko and Stolyar [4] show that some bu�er priority
rules can be unstable. (Envisage the situation in which

each job class has a separate bu�er to queue its jobs.
Under a bu�er priority rule, jobs are assigned priorities
based on the their class designations. Jobs within the
same class are served according to a ®rst-in-®rst-out, or
FIFO, rule.) Bramson [5] and Seidman [6] showed that a
FIFO rule can be unstable. For an updated account of
this fast-growing area, see Dai and VandeVate [7], in
which sharp stability regions have been determined for
two-station multiclass queueing networks.

In this article we use simulation to demonstrate, but
not to prove, that many commonly mentioned dispatch-
ing rules, including FIFO, shortest-mean-processing-
time-®rst, shortest-mean-remaining-time-®rst and bu�er
priority rules, can be unstable. We use simulation to de-
monstrate these surprising phenomena because its results
are statistically convincing. By using simulation we can
also relax some of the assumptions on networks that were
imposed in [7] to achieve some clean theoretical deriva-
tions.

All the simulations in this article, except that in Section
6, are performed by using the program rline developed
by the second author to assist in the research conducted
in [7]. The program was instrumental in redirecting some
of the early stages of a research e�ort, which eventually
led to a complete, explicit characterization of the stability
region for two-station multiclass networks. (See Appen-
dix A for an example of an input ®le and command line
for rline.) The program o�ers a wide variety of dis-
patching rules that can be easily speci®ed, and it runs
quickly. The program runs on virtually any computer
operating under DOS or UNIX. Readers who wish to
obtain this free software can contact the second author.

The next section discusses a two-station ®ve-class net-
work. In Section 3 we demonstrate that a network can be
unstable under a FIFO dispatching rule. In Section 4 we
discuss a three-station network with common services
times at each station that may be unstable under certain
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priority service disciplines. In Sections 5 and 6 we de-
monstrate that two commonly referenced dispatching
rules can be unstable. Some concluding remarks are given
in Section 7.

2. The ®ve-class network

In this section we study the two-station ®ve-class network
pictured in Fig. 1. This network was ®rst presented in [7].
Recall that the mean arrival rate is assumed to be k � 1.
We ®x the mean service times to be m1 � m3 � m4 � 0:1
and m2 � m5 � 0:6. The tra�c intensities are given by

q1 � 0:8 and q2 � 0:7:

Therefore the usual tra�c condition is satis®ed for the
parameter set. Consider the following bu�er priority
dispatching rule: last-bu�er-®rst-served (LBFS) at station
1 and ®rst-bu�er-®rst-served (FBFS) at station 2. (In our
network, LBFS at station 1 is equivalent to the priority
list f5; 3; 1g, where class 5 has the highest priority and
class 1 has the lowest priority. With the list notation, the
bu�er priority rule is denoted as �f5; 3; 1g; f2; 4g�.) We
use rline to simulate the network starting empty. Al-
though the stability region seems not to depend on dis-
tributions, we used independent exponential distributions
for interarrival and service times in our simulation. As
shown in Table 1, the average time in system grows as the
number of jobs departed increases. This is consistent with
the result in [7] that, with probability one, the average
time in system explodes as the number of jobs departed
tends to in®nity. Notice that the fraction of time that
server 1 is busy (utilization at station 1) is less than 0.65,
which is 0.15 less than the tra�c intensity at station 1.
This 15% forced idle time for server 1, caused by mutual
blocking between station 1 and station 2, e�ectively re-
duces the capacity of station 1. Figure 2 shows that in
many time intervals, one server has no job to process
whereas the other station has numerous jobs waiting.

It is proved in [7] that as long as class 2 has higher
priority than class 4, and class 5 has higher priority than
class 1, and high priority jobs preempt low priority jobs,

then the total number of jobs in the network explodes as
time t!1 when

m2 � m5 > 1:

That is, when the bu�er priority dispatching rules are as
follows: �f5; 3; 1g, f2; 4g�, �f5; 1; 3g, f2; 4g� and �f3; 5; 1g,
f2; 4g�, then the network is unstable (because
m2 � m5 � 1:2 > 1 in our example). The preemption as-
sumption in [7] is needed to argue that when the network
starts empty, class 2 jobs and class 5 jobs can never be
served simultaneously under the speci®ed bu�er priority
rule. In our simulation, no preemption assumption is
used. Yet our simulation still shows that the network is

Fig. 1. An example of reentrant lines.

Table 1. A simulation study of a two-station ®ve-class reen-
trant line that is unstable under a bu�er priority dispatching
rule

Number of jobs departed 100 1000 10 000 100 000

Average time in system 15.8 183.7 1740.2 17 043.7
Utilization at station 1 0.65 0.60 0.61 0.65
Utilization at station 2 0.59 0.68 0.67 0.61

Fig. 2. Job size plots at stations 1 and 2.
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unstable. Furthermore, our simulation indicates that
classes 2 and 5 can never be served together even if no
preemption is allowed. We conjecture that when the
network starts empty, as long as class 2 has higher
priority than class 4 and class 5 has higher priority than
class 1, classes 2 and 5 can never be served simultaneously
regardless of whether preemption is used or not.

It is proved in [7] that if

m2 � m5 < 1;

in addition to the usual tra�c condition, the network is
stable under any non-idling dispatching rule. Therefore,
for the bu�er priority rules in cases 8, 10 and 11 of Ta-
ble 2, the stability region is given by

m1 � m3 � m5 < 1; m2 � m4 < 1; m2 � m5 < 1:

It is also proved in [7] that if class 1 receives the highest
priority and the usual tra�c condition is satis®ed, then
the network is stable. Dai and Weiss [8] proved that if all
stations use the LBFS bu�er priority rule, any reentrant
line is stable under the usual tra�c condition.

When the usual tra�c condition holds and class 5 re-
ceives the lowest priority, the subnetwork containing the
®rst four classes is stable, as proved in [7]. Hence the ®ve-
class network is stable as a generalization of an argument
in Proposition 7.2 of Dai et al. [9]. Therefore the stability
region for cases 5 and 6 is as given in Table 2.

This leaves the stability region undetermined for the
following two bu�er priority rules: �f3; 5; 1g, f4; 2g� and
�f5; 1; 3g, f4; 2g�. We conducted an extensive simulation
study for these dispatching rules. On the basis of the si-
mulation, we conjectured that under any one of these
rules the network is stable if the usual tra�c condition is
satis®ed. (During the review process, Chen and
Zhang [10] indeed proved these conjectures.) A summary
of stability regions for the ®ve-class network under all
bu�er priority rules is given in Table 2, where fu; vg re-
presents any permutation of f1; 5g and fx; yg represents
any permutation of f2; 4g.

3. First-in-®rst-out dispatching rule

In this section we demonstrate that a network whose
stations satisfy the usual tra�c condition can be unstable
under the FIFO dispatching rule. This surprising phe-
nomenon is presented by Bramson [5] for a stochastic
network and by Seidman [6] for a deterministic network.
Consider the reentrant line in Fig. 3. Notice that each job
makes three consecutive stops at station 2. The mean
service times are given by

m1 � 0:01; m2 � 0:88;

m3 � 0:01; m4 � 0:01; m5 � 0:89:

Therefore the last visit to station 1 and the ®rst visit to
station 2 have long service times, whereas all other service
times are short. The tra�c intensities at stations 1 and 2
are 0.90. The performance measures in Table 3 are ob-
tained from one replication because the interest is in the
growth in the average time in system as the number of
jobs departed increases. The utilization rate at each sta-
tion is signi®cantly less than the tra�c intensity. As
shown in Table 3, the average time in system grows as the
number of jobs departed increases. We conjecture that
the average time in system explodes as the number of jobs
departed tends to in®nity. In Bramson's original work, to
carry out the necessary mathematical analysis, thousands
of short visits to station 2 are allowed after the ®rst long
service at station 2. Kelly [11] showed that under the
FIFO rule, if the mean service times within a station are
the same, although not necessarily the same between all
stations, then the network has a product-form stationary
distribution, and therefore is stable. This suggests that in
order for the instability phenomenon to occur under the
FIFO rule, it is essential that the mean service times for
di�erent classes at a station be of a di�erent order of
magnitude.

The network in Fig. 3 contains immediate feedback at
station 2. Immediate feedback may not be realistic in
practice. We slightly alter the two-station network into
the three-station network in Fig. 4. In this three-station
network there is no immediate feedback. We can still
demonstrate Bramson's instability result. Notice that if

Table 2. Summary of stability regions under all bu�er priority
rules

Rule

Case Station 1 Station 2 Stability region Source of
reference

1±4 f1; u; vg fx; yg q1 < 1; q2 < 1 [7]
5±6 f3; 1; 5g fx; yg q1 < 1; q2 < 1 This paper

7 f3; 5; 1g f4; 2g q1 < 1; q2 < 1 [10]
8 f3; 5; 1g f2; 4g q1 < 1; q2 < 1; m2 � m5 < 1 [7]
9 f5; 1; 3g f4; 2g q1 < 1; q2 < 1 [10]

10 f5; 3; 1g f2; 4g q1 < 1; q2 < 1; m2 � m5 < 1 [7]
11 f5; 1; 3g f2; 4g q1 < 1; q2 < 1; m2 � m5 < 1 [7]
12 f5; 3; 1g f4; 2g q1 < 1; q2 < 1 [8] Fig. 3. A Bramson type network that can be unstable under

FIFO.
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we set the service times at station 3 to be zero, the net-
work is reduced to the two-station network shown in
Fig. 3.

Now we assume that there is only one repeat stop at
station 2 in Fig. 3. That is, the routing of each job is to
stations 1, 2, 2, 1 and then exit. This is, in fact, the net-
work considered in Lu and Kumar [3]. They proved that
the network can be unstable if class 2 has higher priority
than class 3 and class 4 has higher priority than class 1.
However, it is an open question whether the network is
stable under the FIFO rule. On the basis of our extensive
simulations, we conjecture that the network is stable
under FIFO as long as the usual tra�c condition is sa-
tis®ed.

4. Kelly-type networks

For our purposes we call a network Kelly-type if jobs at a
station have a common service time distribution. In other
words, in a Kelly-type network the service time dis-
tributions are not class dependent. When all distributions
are exponential, Kelly [11] proved that the network has a
product form stationary distribution if the dispatching
rule is FIFO and the usual tra�c conditions are satis®ed.
From Sections 2 and 3, readers might conclude that the
instability phenomenon was mainly attributed to the
unevenness of mean service times at a station. In this
section, we show that Kelly-type networks can be un-
stable under some non-idling dispatching rules. For the
network shown in Fig. 5, jobs in classes 1, 7 and 9 visit
station 1; jobs in classes 2, 4 and 6 visit station 2; and jobs
in classes 3, 5 and 8 visit station 3. Assume that the mean
arrival rate to class 1 is 1, and the mean service time for

each visit to stations 1 and 2 is 0.3 and for each visit to
station 3 is 0.1. Therefore

q1 � 0:90 < 1; q2 � 0:90 < 1 and q3 � 0:30 < 1:

Assuming that the dispatching rules are LBFS at sta-
tion 1 and FBFS at stations 2 and 3, we simulated this
network under two distributional assumptions. In the
®rst case (case (M)), all distributions are assumed to be
exponential. In the second case (case (D)), all interarrival
and service times are deterministic. For (M), the network
is initially empty. For the deterministic case (D), two
subcases, (D1) and (D2), are considered. For (D1) there
are two jobs initially in front of bu�er 1. For (D2) the
network is initially empty. It seems from Table 4 that the
average times in system in the simulations related to cases
(M) and (D1) are growing without bound, whereas in the
simulation related to case (D2) the total customer po-
pulation seems bounded. The reason for the vast di�er-
ence in the performance between measures in cases (D1)
and (D2) is yet to be explained. Obviously, the network is
extremely sensitive to the initial starting conditions. The
network shown in Fig. 5 was simulated in Dai and
Meyn [12] under a slightly di�erent dispatching rule.

Fig. 4. A three-station network without immediate feedback.

Fig. 5. A three-station Kelly-type network that can be unstable
under certain priority service disciplines.

Table 4. Simulation study of the Kelly-type network

Case Number of jobs
departed

Utilization rate at each
station

Average
time
in system

1 2 3

(M) 1 000 0.70 0.80 0.27 181.5
10 000 0.73 0.81 0.26 1 771.9

100 000 0.71 0.81 0.25 17 199.6
(D1) 1 000 0.70 0.80 0.27 161.2

10 000 0.72 0.81 0.26 1 698.5
100 000 0.72 0.81 0.26 17 486

(D2) 1 000 0.90 0.90 0.30 2.85
10 000 0.90 0.90 0.30 2.85

100 000 0.90 0.90 0.30 2.85

Table 3. A simulation study of the Bramson-type network

Number of jobs departed 100 1000 10 000 100 000

Average time in system 23.7 150.8 1155 11 210
Utilization at station 1 0.56 0.69 0.76 0.76
Utilization at station 2 0.68 0.85 0.81 0.86
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They found the same phenomenon as that displayed in
Table 4. Readers are referred to Dai and Weiss ([8], Re-
mark 3 in Section 6) for insight into the instability re-
vealed in these simulations; see also Chen ([13],
Theorem 4.5) and Gu [14].

5. Shortest-mean-processing-time-®rst

In this section we demonstrate that the shortest-mean-
processing-time-®rst dispatching rule can be unstable. Let
us perturb the mean service times for the network con-
sidered in Section 4. We take

m1 � 0:35; m2 � 0:25; m3 � 0:10; m4 � 0:30; m5 � 0:20;

m6 � 0:35; m7 � 0:30; m8 � 0:30; m9 � 0:25:

Under the same bu�er priority rule used in Section 4, we
simulated the network by using exponential distributions.
Because the mean service times at station 1 are m1 � 0:35,
m7 � 0:3 and m9 � 0:25, the LBFS rule at station 1 is
equivalent to the shortest-mean-processing-time-®rst dis-
patching rule. At station 2 the mean processing times are
m2 � 0:25, m4 � 0:30 and m6 � 0:35. The FBFS rule at
station 2 is equivalent to the shortest-mean-processing-
time-®rst dispatching rule. Similarly, at station 3 the
mean processing times are m3 � 0:1, m5 � 0:2, m8 � 0:3,
and the FBFS rule is equivalent to the shortest-mean-
processing-time-®rst dispatching rule. Table 5 shows that
the average time in system is growing as the number of
jobs departed increases. Hence it is conjectured that the
shortest-mean-processing-time-®rst dispatching rule is
unstable.

6. Shortest-mean-remaining-processing-time-®rst

In this section we demonstrate that the shortest-mean-
remaining-processing-time-®rst dispatching rule can be
unstable. The network in Fig. 6 was ®rst considered by
Kumar and Seidman [15] and later by Rybko and Sto-
lyar [4]. Rybko and Stolyar showed that if classes 2 and 4
have high priorities, the network can be unstable. Botvich
and Zamyatin [16] further proved that if

m2 � m4 < 1;

in addition to the usual tra�c conditions, the network is
stable under any non-idling dispatching rules. If

m2 � m4 > 1;

the network is unstable under the priority rule considered
in Rybko and Stolyar [4].

Consider the choice m2 � m4 � 0:6 and m1 � m3 � 0:1.
For class 1 the remaining mean processing time is
m1 � m2 � 0:7. For class 2, the remaining mean proces-
sing time is m2 � 0:6. Similarly, for class 3, the remaining
mean processing time is 0.7, and for class 4 the remaining
mean processing time is 0.6. Therefore the shortest-re-
maining-mean-processing-time-®rst rule is the same as the
Rybko±Stolyar bu�er priority rule. Since

m2 � m4 � 1:2 > 1;

the network is unstable under the shortest-remaining-
mean-processing-time-®rst rule.

Table 6 shows the simulation results for this network.
Because the network is not a reentrant line, rline cannot
be used for simulation. Instead, the simulation is per-
formed with a commercial package. In all runs, distribu-
tions are assumed to be exponential and the network starts
empty. It can be seen that the average queue lengths are
growing explosively, and further that the utilization rates
at both stations are less than their nominal values of 0.70.

7. Concluding remarks

Researchers have been rather surprised to learn that there
are open queueing networks that are unstable even
though their tra�c intensity at each station is less than
unity. This article described some of the networks that

Table 5. Simulation study of the nine-class reentrant line that is
unstable under the shortest-mean-processing-time-®rst dis-
patching rule

Number of jobs departed 100 1000 10 000 100 000

Average time in system 23.2 110.4 882.7 8183
Utilization at station 1 0.80 0.79 0.80 0.81
Utilization at station 2 0.77 0.80 0.84 0.84
Utilization at station 3 0.58 0.54 0.54 0.55

Fig. 6. A network with two types of job.

Table 6. Simulation study of the Rybko±Stolyar network that is
unstable under the shortest-mean-remaining-processing-time-
®rst dispatching rule

Simulation ending time 100 1000 10 000 50 000

Average queue size at station 1 2.6 80 966 4905
Average queue size at station 2 1.9 50 628 3346
Utilization at station 1 0.61 0.62 0.65 0.65
Utilization at station 2 0.51 0.54 0.54 0.54
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have exhibited this surprising behavior and further illu-
strated how simulation has been used to understand the
instability or to conjecture about both stability and in-
stability. In particular, we demonstrated that some bu�er
priority dispatching rules, as well as FIFO, shortest-
mean-processing-time-®rst, and shortest-remaining-pro-
cessing-time-®rst dispatching rules, can be unstable. Si-
mulation has also been used in the calculation of the
feasible region for stability. Researchers are continuing
their investigations in this area, which has both theore-
tical and applied interests.
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Appendix A

In this appendix we present an input data ®le for rline.
rline was used for most of the simulations in this ar-
ticle. The data ®le is used to produce all of the results in
Table 1. Notice that the run length is not speci®ed in the
data ®le. It is controlled with the options provided by
rline.

# "5class.rln": input data ®le for the net-

work in Fig. 1.
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# The pound sign # is a comment character.

#
5 # number of classes

1 # mean interarrival times

1 # squared coef®cient of

# variation (scv) for

# interarrival times

1 # class 1 visits station 1

0.1 # mean service time for class 1

1 # scv for service time

2 # class 2 visits station 2

0.6

1

1 # class 3 visits station 1

0.1

1

2 # class 4 visits station 2

0.1

1

1 # class 5 visits station 1

0.6

1

Prio # station 1 uses a priority

# dispatching rule

5 3 1 # class 5 has the highest priority

# and class 1 has the lowest priority

prio # station 2 uses a priority

# dispatching rule

2 4 # class 2 has the highest

# priority and class 4 has

# the lowest priority

There are many runtime options built into {\tt rline}. For
example, the command line

rline .q .r 10 .t 1000 5class.rln

will accomplish the following:

rline causes the execution of the program;
-q generates average queue length and

utilization at each station;
-r 10 runs ten replications;
-t 1000 discards the ®rst 1000 jobs departed

before doing statistical calculations;
5class.rln speci®es the data ®lename.

Simulation studies of multiclass queueing networks 219


	Abstract
	1. Introduction
	2. The ®ve-class network
	3. First-in-®rst-out dispatching rule
	4. Kelly-type networks
	5. Shortest-mean-processing-time-®rst
	6. Shortest-mean-remaining-processing-time-®rst
	7. Concluding remarks
	Acknowledgements
	References
	Appendix A

