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Abstract. We study a variational problem (VP) that is related to semimartingale reflecting Brownian mo-
tions (SRBMs). Specifically, this VP appears in the large deviations analysis of the stationary distribution
of SRBMs in thed-dimensional orthantRd+. Whend = 2, we provide an explicit analytical solution to the
VP. This solution gives an appealing characterization of the optimal path to a given point in the quadrant
and also provides an explicit expression for the optimal value of the VP. For each boundary of the quadrant,
we construct a “cone of boundary influence”, which determines the nature of optimal paths in different re-
gions of the quadrant. In addition to providing a complete solution in the 2-dimensional case, our analysis
provides several results which may be used in analyzing the VP in higher dimensions and more general
state spaces.
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1. Introduction

Semimartingale reflecting Brownian motions (SRBMs) in the orthant have been pro-
posed as approximate models of open queueing networks (see, e.g, [16]). Such diffusion
processes were first introduced in [17]. Since then, there have been two primary lines of
active research related to SRBMs. One line has concentrated on proving limit theorems
that justify the Brownian model approximations of queueing networks under heavy traf-
fic conditions. (For recent surveys, see [7,37].) The other focus has been to study the
fundamental and analytical properties, including recurrence conditions, of SRBMs. (For
a survey, see [36].) The topic of this paper is related to the latter category.

The focus of our paper is a variational problem (VP) which arises from the study
of SRBMs. The rare event behavior of the stationary distributions of SRBMs can be an-
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alyzed with the help of a large deviations principle (LDP). When such a principle holds,
the optimal value of the VP describes the tail behavior of the stationary distribution and
the corresponding optimal paths characterizehowcertain rare events are most likely to
occur. Below, we provide some motivation both for studying the stationary distributions
of SRBMs and in particular for examining the rare event behavior.

The stationary distribution of SRBMs has been a primary object of study because
it provides estimates of congestion measures in corresponding queueing networks. Un-
fortunately, even these Brownian approximations are not immediately tractable. In fact,
Harrison and Williams [18,19] showed that the stationary density function admits a sep-
arable, exponential density if and only if the covariance and reflection matrices satisfy
a certain skew-symmetry condition. When this condition is not satisfied, one must gen-
erally resort to developing numerical algorithms to estimate the stationary distribution
of the SRBM. One such algorithm has been devised by Dai and Harrison [8]. If one
knows the tail behavior of the stationary distribution for the SRBMs, such algorithms
can be made to be more efficient. Furthermore, in a recent paper of Majewski [28] it
was demonstrated that, roughly speaking, one may switch the heavy traffic and large
deviations limits in feed-forward networks, indicating that the rare event behavior of
an SRBM can give insight into the rare event behavior of an associated heavily loaded
queueing network. This provides ample motivation for studying thelarge deviations
theory of SRBMs.

The study of LDPs can be roughly divided into two primary topics:

(i) proving that an LDP holds for a class of processes, and

(ii) analyzing the variational problem which arises from the LDP.

Our study is concerned only with the second topic, but we provide some discussion of
the first topic, both here and in the body of the paper, since there is a close relationship
between the two. As noted above, the VPs studied in this paper are related to thestation-
ary distributionof an SRBM. Thus, the LDP corresponds to SRBM on the entire time
interval [0,∞). When considering LDPs on a finite time interval, the large deviations
principle is easier to establish. For example, when the reflection matrix is anM-matrix,
as the one used in [17], the SRBM can be defined through a reflection mapping which
is Lipschitz continuous on[0, T ] for eachT > 0. In this case, the LDP for the SRBM
readily follows from the contraction principle of large deviations theory, as demonstrated
in [12]. To investigate large deviations theory for the stationary distribution of an SRBM,
we must consider SRBMs on the interval[0,∞), which complicates matters consider-
ably. However, LDP for SRBMs of this type have been established in special cases.
In particular, Majewski has established such an LDP for a stationary SRBM when the
reflection matrixR is anM-matrix [29] and when the reflection matrix has a special
structure arising from feed-forward queueing networks [26]. For a general stationary
SRBM, establishing an LDP remains an open problem (see conjecture 4.1), even in two
dimensions.

The major thrust of this paper is to investigate the VP which arises for the afore-
mentioned LDPs. Our analysis provides a complete, explicit solution to the VP when the
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state space is the 2-dimensional orthantR2+. In particular, we characterize the optimal
paths to a given pointv ∈ R2+. It turns out that the optimal path tov is influenced by
a boundary ifv is contained within a cone associated with that boundary. We identify
precisely each of these “cones of boundary influence”. Whenv is not in either of the
cones, the optimal path is a direct, linear path. Whenv is contained in one of these
cones, however, the optimal path first travels along a boundary, and then travels directly
to v. Furthermore, such a path leaves the boundary and enters the interior at aunique
entrance angle which can be determined directly from the problem data. For VPs which
arise from a large deviations analysis of random walks in the quadrant, Ignatyuk et al.
[21] demonstrated that similar behavior is manifested in the optimal paths. Specifically,
they are able to identify analogous regions of boundary influence in the solutions to such
VPs.

Another work closely related to our study is [29]. In this paper, Majewski exam-
ines a general class VPs in high dimensions and among other things, provides a general
purpose numerical algorithm to solve these VPs. Our work complements his numerical
work for the 2-dimensional case. Also, a crucial assumption in implementing such nu-
merical algorithms is that the optimal path consists of a finite number of linear pieces.
An intermediate result in our paper shows that an optimal path, in two dimensions, con-
sists of at most two linear pieces.

It seems clear from the literature (see, e.g., [1]) that explicitly characterizing the
solution to VPs which arise from queueing networks or other systems is significantly
harder in three dimensions or higher versus the 2-dimensional case. Although this paper
primarily focuses on the 2-dimensional problem inR2+, it should be noted that several
of our results indeed hold in higher dimensions and for general polygonal state spaces.
In addition to this more direct connection to higher dimensional problems, we hope that
the problem framework which we establish in the SRBM setting will provide motiva-
tion for further research into the interesting and challenging open problems beyond the
2-dimensional case.

There is a large body of literature on LDPs for random walks and queueing net-
works. The book [33] by Shwartz and Weiss contains an excellent list of references. We
can only provide a short survey of the latest works which are most closely related to our
study. Recent work on LDPs for queueing networks include [13,30,31] on multi-buffer
single-server systems, [4] on acyclic networks, [22] on 2-station networks with feed-
back, and [1,10] on general queueing networks with feedback. The works by Ignatyuk
et al. [21] and by Borovkov and Mogulskii [5] investigate random walks that are con-
strained to an orthant. Knessl and Tier [23–25] used a perturbation approach to study
rate functions for some queueing systems.

We now provide a brief outline of the paper. In section 2, we introduce the Skoro-
hod problem and the VP. The main result of this paper (theorem 3.1) is stated in section 3.
In section 4 we introduce semimartingale reflecting Brownian motions and the large de-
viations principle that connects the VP with the SRBM. We examine the VP in depth
in section 5 and characterize the optimal escape paths in section 6. Finally, we provide
some examples in section 7.
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2. The Skorohod and variational problems

Let d > 1 be an integer. Throughout this paper,θ is a constant vector inRd , 0 is ad×d
symmetric and strictly positive definite matrix, andR is ad × d matrix. In this section,
we first define the Skorohod problem associated with the matrixR, and then define the
variational problem (VP) associated with(θ, 0,R).

2.1. The Skorohod problem

Let C([0,∞),Rd) be the set of continuous functionsx : t ∈ [0,∞) → x(t) ∈ Rd .
A function x ∈ C([0,∞),Rd) is called a path and is sometimes denoted byx(·). The
spaceC([0,∞),Rd) is endowed with a topology in which convergence means uniform
convergence in each finite interval.

We now define the Skorohod problem associated withR and state spaceRd+ (some-
times called anR-regulation). Note that all vector inequalities should be interpreted
componentwise and all vectors are assumed to be column vectors.

Definition 2.1 (The Skorohod problem). Letx be a path. AnR-regulation ofx is a pair
of paths(z, y) ∈ C([0,∞),Rd )× C([0,∞),Rd) such that

z(t) = x(t) + R y(t), t > 0, (2.1)

z(t) > 0, t > 0, (2.2)

y(·) is nondecreasing, y(0) = 0, (2.3)∫ ∞
0
zi(s)dyi(s) = 0, i = 1, . . . , d. (2.4)

When theR-regulation(y, z) of x is unique for eachx ∈ C([0,∞),Rd), the map-
ping

ψ : x → ψ(x) = z
is called the reflection mapping fromC([0,∞),Rd) to C([0,∞),Rd+). When the
R-regulation ofx is not unique, we useψ(x) to denote the set of allz which are com-
ponents of anR-regulation(y, z) of x. When the triple(x, y, z) is used, it is implicitly
assumed that(y, z) is anR-regulation ofx.

Bernard and El Kharroubi [3] proved that there exists anR-regulation foreveryx
with x(0) > 0 if and only ifR is completely-S as defined in definition 2.2 below. For a
d × d matrixR and a subsetD ⊂ {1, . . . , d}, the principal submatrix associated withD
is the|D| × |D| matrix obtained fromR by deleting the rows and columns that are not
in D, where|D| is the cardinality ofD.

Definition 2.2. A d × d matrix R is said to be anS-matrix if there exists au > 0
such thatRu > 0. The matrixR is completely-S if each principal submatrix ofR is an
S-matrix.
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2.2. The variational problem

In this section we introduce the variational problem (VP) of interest to us. This problem
arises in the study of large deviations for semimartingale reflecting Brownian motions
(SRBMs) to be defined in section 4, and we will make this connection in section 4.2.

Recall thatψ(x) mapsx to oneunique path, if the corresponding Skorohod prob-
lem has a unique solution. If the Skorohod problem is non-unique, thenψ(x) represents
a set of paths corresponding tox. Now, in order to establish a general framework for
posing VPs, we wish to include cases for which the Skorohod problem is not unique.
ForT > 0 andv ∈ Rd+, we will adopt the following convention. We will take

ψ(x)(T ) = v
to signify that there exists az ∈ ψ(x) such thatz(T ) = v. Next, for vectorsv ∈ Rd and
w ∈ Rd we define the inner product

〈v,w〉 = v′0−1w

with the associated norm‖v‖ = √〈v, v〉.
We are now prepared to present the VP that will be the main focus of this paper.

Definition 2.3 (The Variational Problem – VP).

I (v) ≡ inf
T>0

inf
x∈Hd ,ψ(x)(T )=v

1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt, (2.5)

whereHd is the space of all absolutely continuous functionsx(·) : [0,∞) → Rd which
have square integrable derivatives on bounded intervals and havex(0) = 0.

Definition 2.4. Let v ∈ Rd+. If a given triple of paths(x, y, z) is such that the triple
satisfies the Skorohod problem,z(T ) = v for someT > 0, and

1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt = I (v),

then we will call(x, y, z) anoptimal triple, for VP (2.5), with optimal valueI (v). The
functionx is called anoptimal pathif it is the first member of an optimal triple andz is
called anoptimal reflected pathif it is the last member of an optimal triple. Such a triple
(x, y, z) is also sometimes referred to as asolutionto the VP (2.5).

3. 2-dimensional results

In this section, we state our main theorem, which gives an explicit solution to the VP in
terms of the problem data,(θ, 0,R), for the 2-dimensional case. We introduce much of
the notation in this section, but defer the proof until section 6. The proof relies on three
components:
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1. A reduction of the search for optimal paths to the space of piecewise linear functions
with at most two segments.

2. An analysis of “locally” optimal paths with a given structure.

3. A quantitative comparison of the VP value for the various types of locally optimal
paths to determine the globally optimal path.

It turns out that the solution to the VP in two dimensions can be stated in an ap-
pealing way by defining “cones of boundary influence”. Both this solution and the proof
method yield insights into higher dimensional VPs.

For the majority of this section, we restrict ourselves to the cased = 2. We will
use the termfaceFi, to denote one of the axes inR2+:

Fi =
{
v ∈ R2

+: vi = 0
}
.

We retain the term face because in later sections we will consider faces of the orthant in
higher dimensions. To state our main theorem, we need to define the coneCi associated
with a faceFi , i = 1,2. For a faceFi , each coneCi defines a region of boundary
influence on the solutions to the VP. It turns out that the boundary influence depends on
two quantities which we will term the “exit velocity” and the “entrance velocity”, which
will lead to the concept of “reflectivity” of a face. We define and discuss the relationship
between these terms presently.

Let pi be a vector that is orthogonal (under the usual Euclidean inner product)
to the ith column of the reflection matrixR, and is normalized with‖0pi‖ = 1. For
example, if

R =
(

1 r2
r1 1

)
, (3.1)

thenp1 will be a multiple of(−r1,1)′ andp2 will be a multiple of(1,−r2)′.

Definition 3.1. Theexit velocityai associated with faceFi is defined to be

ai = θ − 2
(
θ ′pi

)
0pi. (3.2)

We defer the explanation of this term until later in the section.

Definition 3.2. FaceFi is said to bereflectiveif the ith component ofai is negative, i.e.,
aii < 0.

WhenFi is not reflective,Ci is defined to be empty. In this case, the faceFi has no
boundary influence on solutions to the VP for anyv ∈ R2+.

WhenFi is reflective, the characterization of the coneCi is more involved. We
need to define a key notion, the “entrance velocity” associated with faceFi . It is defined
to be the “symmetry” ofai around faceFi . To make this concept precise, letei be a
directional vector on faceFi , andni be a vector that is normal toFi , pointing to the
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interior of the state space. We assume thatei andni are normalized so that‖ei‖ = 1 and
‖0ni‖ = 1. For example, when0 = I , we havee1 = (0,1)′ andn1 = (1,0)′. One can
check that〈ei, 0ni〉 = (ei)′ni = 0. Thus,ei and0ni form an orthonormal basis inR2

under the inner product〈· , ·〉. Therefore, any vectorv ∈ R2 has the following (unique)
representation:

v = 〈v, ei 〉ei + 〈v, 0ni 〉0ni. (3.3)

Thus,

ai = 〈ai, ei 〉ei + 〈ai, 0ni 〉0ni.
One can then define a symmetryãi of ai around faceFi to be

ãi = 〈ai, ei 〉ei − 〈ai, 0ni 〉0ni. (3.4)

Definition 3.3. We call the symmetrỹai theentrance velocityassociated with a faceFi .

One can easily check from the definition that

ãii = −aii , i = 1,2, (3.5)

thusFi is reflective if and only ifãii > 0.
WhenFi is reflective,Ci is defined to be the cone generated byei andãi , namely,

Ci =
{
αei + βãi : for α > 0, β > 0

}
.

It is possible that̃ai points to the outside ofR2+, even ifFi is reflective. In this case,
Ci ⊃ R2+.

The coneCi identifies precisely the region in which the faceFi has boundary influ-
ence. With two cones,C1 andC2, defined, we can partition the state spaceR2+ into three
regions:(R2+ ∩ C1) \ C2, (R2+ ∩ C2) \ C1, and one of the two regions,R2+ ∩ C1 ∩ C2 or
R2+ \ (C1 ∪ C2). Note that one of the latter two regions is always empty, namely, either
R2+ ∩ C1 ∩ C2 = ∅ orR2+ \ (C1 ∪ C2) = ∅.

Before we state the main theorem of this paper, we introduce some additional nota-
tion and terminology. For av ∈ R2+, let ã0(v) = (‖θ‖/‖v‖)v. The next two expressions
will appear in the locally optimal value of the VP for various cases. Forv ∈ R2+, let

I 0(v)= 〈ã0(v)− θ, v〉, (3.6)

I i(v)= 〈ãi − θ, v〉, i = 1,2. (3.7)

Now we wish to define three triples,(xi, yi, zi) for i = 0,1,2, which start at the
origin and terminate atv. In will turn out that one or more of these triples will be a
solution to the VP. The first triple,(x0, y0, z0), is adirect triple to v, with x0(t) = ã0(v)t

for t > 0. Sincex0 always stays inR2+, the corresponding reflected pathz0 = x0

and y0(t) = 0 for t > 0 comprise anR-regulation ofx for any R. One can more
generally define a direct triple fromw to v. The next two triples,(xi, yi , zi), i = 1,2,
arebroken triplesthrough the corresponding face. For a faceF1, we introduce a broken
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Figure 1. An optimal broken path tov ∈ C1 throughF1.

triple (x1, y1, z1) from the origin tov through faceF1, which consists of two segments.
Each segment ofx1 is linear, and hence we can chose lineary1 and z1, within each
segment. In the first segment,x1 has a velocitya1 such thatz1 stays on the boundaryF1.
The segment ends whenz1 reachesv1 ∈ F1, wherev1 is uniquely determined by the
condition thatv − v1 is parallel toã1. The second segment is simply the direct triple
traveling in the interior of the state space fromv1 to v, with velocity ofx1 andz1 being
equal toã1. A broken triple throughF2 is defined similarly.

Note that in order for such a broken triple to be well-defined, we must have (i) that
F1 is reflective and (ii) thatv ∈ C1 (see figure 1). In such a case,a1 is the velocity at
which x exits the state space, andã1 is the velocity ofx whenz enters the interior of
the state space. The terms exit velocity and entrance velocity are introduced primarily to
define these broken triples, although the interpretations above are not always meaningful
when a face is nonreflective.

Now we are prepared to state our main theorem, which completely characterizes
the solutions to the VP presented in the previous section, for the 2-dimensional case.

Theorem 3.1. Consider the VP as defined in (2.5) with associated data(θ, 0,R), with
R taking the form (3.1). Letv ∈ R2+ and suppose thatR is completely-S and that the
data satisfies the conditions

θ1+ r2θ−2 < 0, (3.8)

θ2+ r1θ−1 < 0, (3.9)

where, for ana ∈ R, a− = max{−a,0}. Then

(a) If v 6∈ C1 ∪ C2, the optimal value is given byI 0(v) and the direct triple(x0, y0, z0)

is optimal.

(b) If v ∈ C1 \ C2, the optimal value is given byI 1(v) and the broken triple(x1, y1, z1)

throughF1 is optimal.

(c) If v ∈ C2 \ C1, the optimal value is given byI 2(v) and the broken triple(x2, y2, z2)

throughF2 is optimal.
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(d) If v ∈ C1 ∩ C2, the optimal value is given by min{I 1(v), I 2(v)}. WhenI 1(v) 6
I 2(v), the broken triple(x1, y1, z1) throughF1 is optimal. Otherwise, the broken
triple (x2, y2, z2) throughF2 is optimal.

Conditions (3.8) and (3.9) are the so-called “recurrence conditions” for the cor-
responding SRBM (see section 4.1 for more discussion). The proof of theorem 3.1 is
deferred until section 6. Several preliminary results needed in the proof, but which are
also applicable in higher dimensional problems, are given in section 5.

For i = 1,2, I i(v) is a linear function ofv, whereasI 0(v) is not sinceã0(v)

depends onv. In fact, in lemma 6.1 we will check thatI 0(v) = ‖θ‖ · ‖v‖ − 〈θ, v〉. Also
it will be verified in theorems 6.1 and 6.3 that, forv ∈ Ci,

I i(v) = 1

2

∫ T

0

∥∥ẋi (t)− θ∥∥2
dt, i = 0,1,2,

whereT is the first time forzi to reachv, and we letC0 = R2+. More interestingly, we
observe that the optimal valueI i(v), i = 0,1,2, depends on the velocity of the “last
segment” ofzi, which is always given bỹai .

In Rd with d > 3, it is possible to have more complicated types of optimal paths.
We would now like to outline three principles which are valid for locally optimal paths
in higher dimensions. We do not demonstrate the validity of these propositions in this
tract, rather leaving this for a subsequent paper.

(i) Orthogonality law. If a locally optimal triple(x, y, z) is such thatz traverses a
faceF , x must have a velocity of the form:a = θ + 0p while z is onF . In the
general setting,p is a vector orthogonal (under the Euclidean inner product) to all
the reflection vectors of the face.

(ii) Norm preservation law.For a broken triple(x, y, z), which in general may travel
along several faces, the norm of the intermediate velocity ofx must be equal to the
norm of the driftθ .

(iii) Symmetry law.For a broken triple(x, y, z) alongF , the difference of the velocity
of x before and after leavingF must be orthogonal toF with respect to the inner
product induced by the covariance matrix.

With these general principles in hand, it is possible to compute locally optimal
broken paths of any chosen type (i.e., any prescribed order of traversing the faces). One
can then compare the values of each such “locally optimal” path to discover the globally
optimal path for a given point. This essentially reduces the resolution of the VP to a
numerical task. Unfortunately, to be sure that this numerical task will indeed yield the
optimal value for the general VP, one must establish a principle as outlined in step 1 at the
beginning of section 3. Such a principle has been established forR2+ (see theorem 5.1),
but is lacking for more general state spaces.



268 F. AVRAM, J.G. DAI, J.J. HASENBEIN

4. Semimartingale reflecting Brownian motions and large deviations

In this section, we define semimartingale reflecting Brownian motions (SRBMs). Such
processes arise in the study of heavy traffic approximations to multiclass queueing net-
works (see, e.g., [16]). We also discuss conditions under which an SRBM is positive
recurrence. Finally, we introduce large deviations principles (LDPs) for an SRBM. The
LDPs connect the VP introduced in (2.5) with a corresponding set of SRBMs and pro-
vide the motivation for our study of such VPs.

4.1. SRBM

Throughout this section,B denotes theσ -algebra of Borel subsets ofRd+. Recall thatθ is
a constant vector inRd , 0 is ad × d symmetric and strictly positive definite matrix, and
R is ad × d matrix. We shall define an SRBM associated with the data(Rd+, θ, 0,R).
For this note, a triple(�,F, {Ft}) will be called afiltered spaceif � is a set,F is a
σ -field of subsets of�, and {Ft} ≡ {Ft , t > 0} is an increasing family of sub-σ -
fields ofF , i.e., a filtration. If, in addition,P is a probability measure on(�,F), then
(�,F, {Ft },P) will be called a filtered probability space.

Definition 4.1 (SRBM). Given a probability measureν on (Rd+,B), a semimartin-
gale reflecting Brownian motion(abbreviated as SRBM) associated with the data
(Rd+, θ, 0,R, ν) is an{Ft }-adapted,d-dimensional processZ defined on some filtered
probability space(�,F, {Ft},Pν) such that

(i) Pν-a.s.,Z has continuous paths andZ(t) ∈ Rd+ for all t > 0,

(ii) Z = X + RY , Pν-a.s.,

(iii) underPν,

(a) X is ad-dimensional Brownian motion with drift vectorθ , covariance matrix0
andX(0) has distributionν,

(b) {X(t)−X(0)− θt,Ft , t > 0} is a martingale,

(iv) Y is an{Ft}-adapted,d-dimensional process such thatPν-a.s. for eachj = 1, . . . , d,

(a) Yj(0) = 0,

(b) Yj is continuous and nondecreasing,

(c) Yj can increase only whenZ is on the faceFj ≡ {x ∈ Rd+: xj = 0}, i.e.,∫∞
0 Zj (s)dYj (s) = 0.

An SRBM associated with the data(Rd+, θ, 0,R) is an {Ft }-adapted,d-dimensional
processZ together with a family of probability measures{Px, x ∈ Rd+} defined on some
filtered space(�,F, {Ft }) such that, for eachx ∈ Rd+, (i)–(iv) hold with Pν = Px and
ν being the point distribution atx.
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A (Rd+, θ, 0,R, ν)-SRBM Z has a fixed initial distributionν, whereas a(Rd+, θ,
0,R)-SRBM has no fixed start point. The latter fits naturally within a Markovian
process framework. Condition (iv(c)) is equivalent to the condition that, for eacht > 0,
Zj (t) > 0 impliesYj(t − δ) = Yj(t + δ) for someδ > 0. Loosely speaking, an SRBM
behaves like a Brownian motion with drift vectorθ and covariance matrix0 in the in-
terior of the orthantRd+, and it is confined to the orthant by instantaneous “reflection”
(or “pushing”) at the boundary, where the direction of “reflection” on thej th faceFj is
given by thej th column ofR. The parametersθ , 0 andR are called thedrift vector,
covariance matrixandreflection matrixof the SRBM, respectively.

Reiman and Williams [32] showed that a necessary condition for a(Rd+, θ, 0,R)-
SRBM to exist is that the reflection matrixR is completely-S, as defined in defini-
tion 2.2. Taylor and Williams [34] showed that whenR is completely-S, for any proba-
bility measureν on (Rd+,B), a (Rd+, θ, 0,R, ν)-SRBMZ exists and is unique in distri-
bution.

Let ν be a probability measure on(Rd+,B). The measureν is a stationary distribu-
tion for an SRBMZ if for eachA ∈ B,

ν(A) =
∫
Rd+
Px
{
Z(t) ∈ A}ν(dx) for eacht > 0. (4.1)

When ν is a stationary distribution, the processZ is stationary under the probability
measurePν . Harrison and Williams [18] showed that a stationary distribution, when it
exists, is unique and is absolutely continuous with respect to the Lebesgue measure on
(Rd+,B). We useπ to denote the unique stationary distribution when it exists. Whenπ

exists, the SRBMZ is said to be positive recurrent. For a(Rd+, θ, 0,R)-SRBMZ, when
R is anM-matrix as defined in [2], it was proved in [18] thatZ is positive recurrent if
and only if

R−1θ < 0. (4.2)

In the 2-dimensional case, we have a characterization of positive recurrence given
by Hobson and Rogers [20] and Williams [35], who have shown that a(R2+, θ, 0,R)-
SRBM in the quadrant is positive recurrent if and only if (3.8) and (3.9) hold.

The following theorem by Dupuis and Williams [14] provides a sufficient condition
to check the positive recurrence of an SRBM. LetR andθ be given. Fora ∈ Rd+, set
xa(t) = a + θt for t > 0.

Theorem 4.2 (Dupuis and Williams). Suppose that for eacha ∈ Rd+ and eachz ∈
ψ(xa), limt→∞ z(t) = 0. Then the(Rd+, θ, 0,R)-SRBM is positive recurrent for each
positive definite matrix0.

Using theorem 4.2, Budhiraja and Dupuis [6] provided a slight generalization of
the result of Harrison and Williams. For SRBMs in the orthant, no general recurrence
condition has yet been established.
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4.2. Large deviations

In this section, we provide some motivation for our study of the VPs introduced in (2.5).
The primary impetus for our study comes from the theory of large deviations. An excel-
lent reference for this material is Dembo and Zeitouni [9].

Most large deviations analyses can be divided into two principal parts: proving an
LDP, and solving the associated VP. For SRBMs in the orthant, considerable progress
has been made in the first area by Majewski [29] and we quote his result shortly. The
following conjecture, for SRBMs in thed-dimensional orthant, provides motivation for
our VP.

Conjecture 4.1 (General Large Deviations Principle). Consider a(Rd+, θ, 0,R)-
SRBM Z. Suppose thatR is a completely-S matrix and that there exists a probabil-
ity measurePπ under whichZ is stationary. Then for every measurableA ⊂ Rd+

lim sup
u→∞

1

u
logPπ

(
Z(0)/u ∈ A) 6 − inf

v∈Ac
I (v) (4.3)

and

lim inf
u→∞

1

u
logPπ

(
Z(0)/u ∈ A) > − inf

v∈Ao
I (v) (4.4)

whereAc andAo are respectively the closure and interior ofA.

Our goal in the next section is to provide some results which simplify the analysis
and solution of the VPs which appear in conjecture 4.1. In section 6, we narrow our
focus to the 2-dimensional case. For this class of VPs, we are able to provide a complete
analytical solution.

Special cases of conjecture 4.1 above have indeed already been established. The
most general result of which we are aware was given by Majewski [29]:

Theorem 4.3 (Large Deviations Principle). Consider a(Rd+, θ, 0,R)-SRBMZ, where
R is anM-matrix and suppose the recurrence condition (4.2) holds. LetPπ be the
probability measure under whichZ is stationary. For every measurableA ⊂ Rd+, (4.3)
and (4.4) hold.

For clarification, it should be noted that Majewski states his result for reflection
matricesR which he termsK-matrices. This class of matrices is equivalent in our con-
text to what we have chosen to callM-matrices, following Bermon and Plemmons [2].
In this case, the Skorohod problem has a unique solution and the reflection mapping is
Lipschitz continuous.
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5. Optimal path properties

The variational problem in (2.5) requires a search over a large class of absolutely con-
tinuous functions. In this section, we argue that, inR2, the optimal reflected path can
be chosen such that it consists of at most two linear pieces, the first of which travels
along one of the boundaries of the positive orthant and another which then traverses the
interior. The main result of this section is the following theorem, which will be used to
prove theorem 3.1.

Theorem 5.1. Consider the VP as given in (2.5) and letv ∈ R2+. An optimal triple
(x, y, z) from 0 tov can always be chosen so that(x, y, z) is a two-segment, piecewise
linear path; during the first segment,z stays on one of boundaries ofR2+, terminating at
a pointw on the boundary; during the other segment,z is a direct, linear path fromw
to v. The first segment can be void, that is we may havew = 0. In this case,x, and
hencez, is a direct, linear path from 0 tov.

When the reflection matrix is anM-matrix, this result can also be inferred from
[27], using [29, lemma 14], and lemma 5.2 below. We provide a direct proof in this
section, which is based on a series of lemmas that are of independent interest inRd+ with
arbitraryd > 1.

Our first lemma follows directly from Jensen’s inequality. Recall thatHd is the
space of all absolutely continuous functionsx(·) : [0,∞) → Rd which have square
integrable derivatives on bounded intervals and havex(0) = 0.

Lemma 5.1. Let g be a convex function onRd , and letx ∈ Hd . Then fort1 < t2∫ t2

t1

g
(
ẋ(t)

)
dt >

∫ t2

t1

g

(
x(t1)− x(t2)
t2 − t1

)
dt. (5.1)

In other words, a linear path minimizes this unconstrained variational problem. For our
VP, theg(v) we contend with is of the form:

‖v − θ‖2, v ∈ Rd.

We now consider the boundary ofRd+. Note that each face of the boundary can be
defined by partitioning the coordinates ofRd into zero and nonzero components. For
a partition (K1,K2) of {1, . . . , d}, we then define a face associated with the partition
by letting the coordinates inK1 be zero and the coordinates ofK2 be nonzero. Note
that, for our purposes, the interior ofRd+ is also considered a face, corresponding to
K1 = ∅.

Below, for a partition(K1,K2) we also letxKj be the vector(xi, i ∈ Kj )′. For the
reflection matrixR, we define two submatrices:R1 is the principal submatrix ofR with
the rows and columns inK2 deleted,R21 is the submatrix ofR with row indices inK2

and column indices inK1.
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Definition 5.1. We say that a reflected pathz is anchoredto a face corresponding to the
partition (K1,K2) in the interval[t1, t2] if

(i) zi(t1) = zi(t2) = 0 for i ∈ K1,

(ii) zi(t1) > 0, zi(t2) > 0 for i ∈ K2,

(iii) zi(t) > 0 for i ∈ K2 and for all except finitely manyt ∈ (t1, t2).
Lemma 5.2. Consider the VP as given in (2.5) and let(x, y, z) be an optimal triple
for this VP. If z is anchored to a face of the boundary ofRd+ in the interval[t1, t2] (for
06 t1 < t2), then there exists an optimal triple(x̃, ỹ, z̃) such thaṫ̃x(t) = a for t ∈ (t1, t2)
for some constanta ∈ Rd ; z̃i(t) = 0 for i ∈ K1, t ∈ [t1, t2]; and z̃i(t) > 0 for i ∈ K2,
t ∈ [t1, t2].
Proof. For completeness, we now explicitly write out the variational problem under
consideration. For a givenv1 ∈ Rd+, v2 ∈ Rd+, 0 6 t1 < t2, consider the minimization
problem:

min
x

∫ t2

t1

∥∥ẋ(s)− θ∥∥2
ds (5.2)

subject to

z(t) = x(t) + Ry(t), t1 6 t 6 t2,
z(t) > 0, t1 6 t 6 t2,
y(·) is nondecreasing,∫ t2

t1

zi(s)dyi(s) = 0, i = 1, . . . , d,

z(t1) = v1,

z(t2) = v2.

We consider an optimal triple(x, y, z), with z anchored to a face corresponding to some
partition(K1,K2). Without loss of generality, we assume thaty(t1) = 0 for each optimal
triple (x, y, z). Thus,z(t1) = x(t1) = v1.

By the complementarity condition,̇yi(t) = 0 for i ∈ K2 on (t1, t2). Hence, with
our convention thaty(t1) = 0, we haveyi(t) = 0 for i ∈ K2 andt ∈ [t1, t2]. Therefore,
we have

0= xK1(t2)+ R1yK1(t2),

and it follows that

0= xK1(t2)

(
t − t1
t2− t1

)
+ R1yK1(t2)

(
t − t1
t2− t1

)
for t1 6 t 6 t2. (5.3)

By condition (iii) of definition 5.1,

0< xK2(t2)+ R21yK1(t2),
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and we then have

0< xK2(t2)

(
t − t1
t2− t1

)
+ R21yK1(t2)

(
t − t1
t2− t1

)
for t1 < t < t2,

which implies

0< xK2(t1)

(
t2− t
t2 − t1

)
+ xK2(t2)

(
t − t1
t2− t1

)
+ R21yK1(t2)

(
t − t1
t2− t1

)
for t1 < t < t2. (5.4)

In other words, we can “linearize” the pathsx andy as follows:

x̃i (t) = xi(t1)+
[
xi(t2)− xi(t1)

]( t − t1
t2− t1

)
and

ỹi (t) = yi(t2)
(
t − t1
t2− t1

)
for i = 1, . . . , d andt ∈ [t1, t2]. Now, if we let

z̃(t) = x̃(t)+ Rỹ(t) for t ∈ [t1, t2],
then (5.3) and (5.4) show that the new reflected pathz̃ is anchored to the same face asz
on the interval(t1, t2). In fact, z̃ is now on the face for the entire interval. Furthermore,
it can be checked thatz̃(t1) = x̃(t1) = x(t1) = z(t1) andz̃(t2) = z(t2) and hence the new
reflected path also has the same endpoints. By lemma 5.1∫ t2

t1

∥∥ẋ(t)− θ∥∥2
dt >

∫ t2

t1

∥∥∥∥x(t1)− x(t2)t2− t1 − θ
∥∥∥∥2

dt.

Thus, x̃ has equal or lower energy than the original path and hence any optimal path
can be reduced to an equivalent optimal path which has a constant derivative while its
reflection is on a fixed face of the boundary. �

The reduction of the VP to a class of piecewise linear functions is not particularly
surprising. Other authors, including O’Connell [31] and Dupuis and Ishii [11] have
achieved similar reductions, but only for special cases, i.e., inR2 or for a limited class
of reflection matrices. Since lemma 5.1 holds for any convex function and in large
deviations applications, the kernel which appears in the VP is always convex (for LDPs
associated with random vectors), our proof is valid for VPs arising from a wide range of
LDPs. We have not specifically addressed the nature of the piecewise linear functions
which may solve the VP. In particular, we have not ruled out a piecewise linear function
with an infinite number of discontinuities iṅx. With the help of the next several lemmas,
we can rule out such paths, at least inR2.
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Lemma 5.3 (Scaling lemma). Consider the VP inRd as given in (2.5), with target
point v in the positive orthant.

(a) For any positivek, I (kv) = kI (v).
(b) If (x, y, z) is an optimal triple forv, then(x̄, ȳ, z̄) is an optimal triple forkv, where

x̄(t) = kx(t/k), ȳ(t) = ky(t/k) andz̄(t) = kz(t/k) for t > 0.

Proof. Let (x, y, z) be an optimal triple which solves the Skorohod problem with
z(T ) = v and

1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt = I (v).

It is clear that(x̄, ȳ, z̄) also solves the Skorohod problem withz̄(kT ) = kv. Furthermore,
we have

1

2

∫ kT

0

∥∥∥∥kd(x(t/k))

dt
− θ

∥∥∥∥2

dt = 1

2

∫ kT

0

∥∥ẋ(t/k)− θ∥∥2
dt

= 1

2
k

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt = kI (v).

HenceI (kv) 6 kI (v). Now since,k > 0 is arbitrary, we haveI (v) = I (k−1kv) 6
k−1I (kv), or kI (v) 6 I (kv). Thus, we havekI (v) = I (kv). This proves (a) and the
above calculation proves (b). �

A similar scaling lemma for variational problems arising from random walks in an
orthant is stated in [21].

Lemma 5.4 (Merge lemma). Let(x1, y1, z1) be anR-regulation triple on[0, t1] with
z1(0) = 0 andz1(t1) = w. Let (x2, y2, z2) be anR-regulation triple on[s2, t2] with
z2(s2) = w andz2(t2) = v. Suppose that bothx1 andx2 are absolutely continuous.
Define

z(t) =
{
z1(t) for 06 t 6 t1,
z2(t − t1+ s2) for t1 6 t 6 t1+ t2− s2,

x(t) =
{
x1(t) for 06 t 6 t1,
x2(t − t1+ s2)− x2(s2)+ x1(t1) for t1 6 t 6 t1+ t2− s2,

y(t) =
{
y1(t) for 06 t 6 t1,
y2(t − t1+ s2)− y2(s2)+ y1(t1) for t1 6 t 6 t1+ t2− s2,

ands = t1+ t2− s2. Then(x, y, z) is anR-regulation triple on[0, s] with z(0) = 0 and
z(s) = v such thatx is absolutely continuous on[0, s] and

1

2

∫ s

0

∥∥ẋ(t)− θ∥∥2
dt = 1

2

∫ t1

0

∥∥ẋ1(t)− θ∥∥2
dt + 1

2

∫ t2

s2

∥∥ẋ2(t)− θ∥∥2
dt. (5.5)
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Proof. Since bothx1 andx2 are absolutely continuous,x is absolutely continuous on
[0, s]. Also one can check thaty is nondecreasing,z(0) = 0 andz(s) = v. We now
check that

z(t) = x(t) + Ry(t) for 06 t 6 s. (5.6)

Clearly, (5.6) is satisfied for 06 t 6 t1. Since(x1, y1, z1) is anR-regulation with
z1(t1) = w, we havew = z1(t1) = x1(t1)+ Ry1(t1). For t1 6 t 6 t1+ t2− s2,

z(t)= z2(t − t1 + s2)
= x2(t − t1+ s2)+ Ry2(t − t1 + s2)
= z2(s2)+ x2(t − t1+ s2)− x2(s2)+ R

(
y2(t − t1+ s2)− y2(s2)

)
= z1(t1)+ x2(t − t1+ s2)− x2(s2)+ R

(
y2(t − t1+ s2)− y2(s2)

)
= x2(t − t1+ s2)− x2(s2)+ x1(t1)+ R

(
y2(t − t1+ s2)− y2(s2)+ y1(t1)

)
= x(t)+ Ry(t).

Thus, (5.6) holds for 06 t 6 s, from which one can readily show that(x, y, z) is an
R-regulation on[0, s]. Finally, (5.5) follows from the definition ofx. �

In the following, we useEi to denote the one-dimensional edge{v ∈ Rd+: vj = 0
for j 6= i}.

Lemma 5.5 (Reduction lemma). Consider the VP inRd as given in (2.5). Letv ∈ Ei .
Suppose that(x1, y1, z1) is an optimal triple from 0 tov such thatz(t) ∈ Ei for t ∈
[s1, t1] with s1 < t1 andz1(s1) 6= z1(t1). Then there exists an optimal triple(x, y, z) on
[0, T ] from 0 tov such thatz(t) ∈ Ei for 06 t 6 T with z(T ) = v.

Proof. We start by assuming thatz1(t1) = v. Let (x1, y1, z1) be an optimal triple with
z1(s1) = w andz1(t1) = v such thatz1(t) ∈ Ei for t ∈ [s1, t1]. Let k = |z1(s1)|/|z1(t1)|.
Next, by the scaling lemma 5.3 we havek 6 1 and by assumptionk 6= 1, thusk < 1.
Sincew = kv, it follows from lemma 5.3 that the triple(x̄, ȳ, z̄) is an optimal triple
from 0 tow, wherex̄(t) = kx1(t/k), ȳ(t) = ky1(t/k) and z̄(t) = kz1(t/k). Note
that z̄(t) ∈ Ei for t ∈ [ks1, kt1]. By lemma 5.4, piecing together the triple(x̄, ȳ, z̄) on
[0, kt1] with the triple (x1, y1, z1) on [s1, t1], we have the triple(x2, y2, z2) on [0, t2]
with t2 = kt1 + t1 − s1. Furthermore, by (5.5), the triple is optimal, andz2(t) ∈ Ei for
t ∈ [s2, t2] with s2 = ks1. We now iterate our argument, with a new scaling parameter
in each iteration,kn = |zn(sn)|/|zn(tn)| = kn. Then we have for each integern > 1,
there exists an optimal triple(xn, yn, zn) on [sn, tn] with zn(t) ∈ Ei for t ∈ [sn, tn] and
zn(tn) = v, wheresn = knsn−1 andtn = kntn−1+ (tn−1− sn−1). Since we hadk < 1, we
have thatkn→ 0 and hencesn and|zn(sn)| both converge to zero.

By construction, it can be seen that(
ẋn(t), ẏn(t), żn(t)

) = (c1, c2, c3) (5.7)
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on (sn, tn) for all n, where eachci ∈ Rd is a constant independent ofn. Thus

tn − sn = |v − z
n(sn)|
|c3| .

Sincesn, |zn(sn)| → 0, this yieldstn→ |v|/c3 ≡ T .
Now we are prepared to construct an optimal triple with the stated properties. We

set(x, y, z) = (c1t, c2t, c3t) on [0, T ]. By (5.7) we have that(x, y, z) − (x, y, z)(s1)
is anR-regulation on[s1, t1] and then by lemma 5.4,(x, y, z) is anR-regulation on[0,
t1 − s1]. From the linearity of the Skorohod problem it is therefore also anR-regulation
on [0, T ]. Note that, by construction, we also havez(T ) = v. It remains only to show
that(x, y, z) is optimal. Note that each triple(xn, yn, zn)must have optimal cost. Hence,
if we show that

lim
n→∞

1

2

∫ tn

0

∥∥ẋn(t)− θ∥∥2
dt = 1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt

then we are done. By repeated application of the scaling lemma 5.3, (5.5), and (5.7), we
have

1

2

∫ tn

0

∥∥ẋn(t)− θ∥∥2
dt = 1

2

∫ sn

0

∥∥ẋn(t)− θ∥∥2
dt + 1

2

∫ tn

sn

∥∥ẋn(t)− θ∥∥2
dt

= 1

2

(
n−1∏
i=1

ki

)∫ s1

0

∥∥ẋ1 − θ∥∥2
dt + 1

2
(tn − sn)‖c1 − θ‖2.

Sinceki → 0, the first part converges to zero. Sincetn → T andsn → 0, the second
part, and thus the entire cost, converges to(T /2)‖c1 − θ‖2, which is just the cost of the
constructed triple(x, y, z). Hence(x, y, z) is an optimal triple.

If z1(t1) 6= v, we setk0 = v/|z1(t1)| and apply the scaling lemma 5.3 with thisk0.
We are then back in the casez1(t1) = v and can proceed as before. �

Now, using the a reduction lemma 5.5, we can prove the main theorem of this
section, which states that inR2, an optimal reflected path can be chosen such that it
consists of at most two linear pieces.

Proof of theorem 5.1. Throughout the proof we assume thatv ∈ R2+ and that all paths
are piecewise linear as per lemma 5.2. We divide our argument into three cases.

(1) Let v be in the interior ofR2+ and let(x, y, z) be an optimal triple tov. Thenz
either goes directly from the origin tov or elsez reaches some pointw ∈ Ei \ {0}
at timet2 > 0. Let us assume thatt2 is the last such time. By lemma 5.2,z must
touch another point onEi \ {0} at timet1 < t2, and hence the triple can be chosen so
thatz(t) ∈ Ei for t ∈ [t1, t2]. But then by lemma 5.5 there exists an optimal triple
(x̄, ȳ, z̄) from 0 tow with z̄(t) ∈ Ei for 0 6 t 6 t̄2 andz̄(t̄2) = w. By lemma 5.4, a
two-segment triple, formed by merging(x̄, ȳ, z̄) and(x, y, z), is optimal.
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(2) Supposev is on a faceE1 of R2+. Let (x, y, z) be an optimal triple withz(T ) = v.
If z touches another point onE1 \ {0}, then by lemma 5.5 the triple can be chosen
such that it is linear. Otherwise, by lemma 5.2,z has to touch a (last) pointw ∈ E2

and stay onE2 in some time interval. Again by lemma 5.2, the triple must be linear
from w to v. Furthermore, by lemma 5.5, the triple can be chosen to be linear
from 0 tow. Hence, in this case, we can again chose an optimal triple with two
linear segments.

(3) If v ∈ E2, then we interchange the roles ofE1 andE2 in the case 2 argument.

We have thus shown that for any optimal triple, we can choose an equivalent opti-
mal triple that falls into one of the cases in the statement of theorem 5.1. �

A major open problem is to determine whether or not theorem 5.1 can be extended
to the cased > 2. The problem in higher dimensions is to eliminate consideration
of paths which “spiral” around the boundary. InR2, spiraling cannot occur (without
retracing part of a path) and hence the reduction to a piecewise linear path with just two
pieces is relatively straightforward. One hopes that inRd that one need only consider
piecewise linear paths withd pieces, thus reducing the general VP to a finite dimensional
optimization problem.

In the cased = 2, we have reduced our possible solutions to paths which either go
directly from the origin tov through the interior or first travel along one axis and then
travel through the interior tov. In particular, we need only search over threetypesof
piecewise paths. In the next section, we will argue that this search can be restricted to
just three paths.

6. Further constrained variational problems

In this section we provide the analysis of the VP inR2 which justifies theorem 3.1. We
first consider the VP defined in (2.5), adding additional constraints on the allowed path
x(·). Recall that the definitions of the direct triple(x0, y0, z0) and the broken triples
(x1, y1, z1) and (x2, y2, z2) were given in section 3. When we restrictx(·) such that
it only takes values inR2+, the corresponding VP has the direct triple(x0, y0, z0) as
an optimal triple. We next consider “broken” triples in which the reflected path first
moves along a faceFi and then traverses the interior. WhenFi is reflective, andv ∈ Ci,
the broken triple(xi , yi, zi) is an optimal triple among all two segment broken triples
throughFi. Once these principles have been established, the proof of theorem 3.1 will
then follow directly.

Before studying these further constrained VPs, we present the following lemma.

Lemma 6.1. Let I 0(v), I 1(v), andI 2(v) be given in (3.6) and (3.7). Then,

(a) I 0(v) = ‖θ‖ · ‖v‖ − 〈θ, v〉.
(b) I i(v) 6 I 0(v) for v ∈ R2+ andi = 1,2. Furthermore,I i(v) = I 0(v) if and only if v

is in the same direction as̃ai .
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Proof. Part (a). From the definition ofI 0(v) in section 3, we have

I 0(v) =
〈
v‖θ‖
‖v‖ − θ, v

〉
= ‖θ‖‖v‖ · 〈v, v〉 − 〈θ, v〉 = ‖θ‖ · ‖v‖ − 〈θ, v〉.

Part (b). First, note that it follows from (3.2) that〈
ai, ai

〉 = 〈θ, θ〉 + 4
(
θ ′pi

)2− 4
(
θ ′pi

)〈
θ, 0pi

〉 = 〈θ, θ〉.
Hence,‖ai‖ = ‖θ‖. Furthermore, from the definition ofãi , we can immediately observe
that‖ãi‖ = ‖ai‖, and thus we have∥∥ai∥∥ = ∥∥ãi∥∥ = ‖θ‖. (6.1)

Using then (3.6) and (3.7), we conclude

I i(v) = 〈ãi , v〉− 〈θ, v〉 6 ∥∥ãi∥∥v‖ − 〈θ, v〉 = I 0(v). �

6.1. Interior escape paths

Now let us consider a pointv ∈ R2+ and the VP as defined in (2.5). In this section, we
add the additional constraint thatx(·) may only take values inR2+. We will useĨ 0(v) to
denote the resulting optimal value, namely,

Ĩ 0(v) = inf
T>0

inf
x∈Hd ,x(T )=v

1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt, (6.2)

wherex(t) ∈ R2+ for 06 t 6 T .
For the VP (2.5), if we only consider paths which travel in the interior of the or-

thant, then by theorem 5.2 the optimal path is linear and has constant velocity propor-
tional to the pointv that we wish to reach. Hence, we need only determine the optimal
speed to minimize the value of the VP. So we setx(t) = ct v and the VP in (6.2) reduces
to the following:

Ĩ 0(v) = inf
c>0

1

2c
‖cv − θ‖2. (6.3)

This is a one-dimensional minimization problem which has a unique minimum atc =
‖θ‖/‖v‖, leading us to the following result.

Theorem 6.1. Among the possible direct triples from the origin to a fixed pointv, the
direct triple(x0, y0, z0) is optimal. The corresponding minimal costĨ 0(v) is I 0(v).

6.2. Single segment boundary escapes

We now consider optimal reflected paths which travel along faceFi to reach a point
along this face. Forv ∈ Fi , we useĨ i(v) to denote the resulting optimal value, namely,

Ĩ i(v) = inf
T>0

inf
x∈Hd ,z(T )=v

1

2

∫ T

0

∥∥ẋ(t)− θ∥∥2
dt, (6.4)

wherez(·) is a reflected path associated withx(·), andz(t) ∈ Fi for 06 t 6 T .
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Theorem 6.2. Let v ∈ Fi .
(a) If boundaryFi is reflective, then the broken triple(xi, yi, zi) to v alongFi is optimal

for (6.4) with Ĩ i(v) = I i(v).
(b) If boundaryFi is not reflective, then the direct triple(x0, y0, z0) to v is optimal for

(6.4) with Ĩ i(v) = I 0(v).

To prove the theorem we will need the following elementary lemma from calculus.

Lemma 6.2. Let f (v) and g(v) be two differentiable functions onRd . Let h(v) =
f (v)/g(v) be defined forv ∈ Rd with g(v) 6= 0. Then, for anyv satisfying∇h(v) = 0,
there exists a constantk such that

∇f (v)= k∇g(v), (6.5)

f (v)= kg(v). (6.6)

Proof of theorem 6.2. We prove the theorem forv = (0,1)′ ∈ F1. In this proof, we
let p1 = (−r1,1)′, without the normalization of section 3. In light of theorem 5.2, the
search of an optimal boundary path can be confined to linear pathsx(t) = b t , t > 0, for
someb ∈ R2. Let (z, y) be anR-regulation associated withx(·) that satisfiesz(t) ∈ F1

for t > 0. Then we have,

z1(t)= b1t + y1(t)+ r2y2(t),

z2(t)= b2t + r1y1(t)+ y2(t).

Since it is always cheaper to take az(·) such thatz2(t) > 0 for 0 6 t 6 T , we have
y2(t) = 0 for 06 t 6 T . Next, becausez1(t) = 0 for 06 t 6 T , we havey1(t) = −b1t

andb1 6 0. Therefore,z2(t) = (b2 − r1b1)t = (b′p1)t . Sincez2(T ) = 1, b′p1 must be
positive and we also must haveT = 1/(b′p1). It follows that

Ĩ 1(v) = inf
b160, b′p1>0

1

2b′p1
‖b − θ‖2. (6.7)

Using lemma 6.2, it can be checked that each critical pointb of the unconstrained form
of (6.7) must satisfy

20−1(b − θ) = 2kp1, (6.8)

‖b − θ‖2 = 2kbp1. (6.9)

From (6.8),b − θ = k0p1, and substitutingk0p1 into the left side of (6.9), we have∥∥k0p1
∥∥2 = 2kbp1 = k(θ + k0p1)′p1.

Thus, the unconstrained form of (6.7) has two critical points

b = θ + k0p1,
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with k = 0 or k = −2θ ′p1/‖0p1‖2. Next, we show that the first critical pointb = θ

corresponding tok = 0 is not feasible. This is true because, in this case the regulated
speed,̇z2(t), alongF1 would then be given byθ2−r1 θ1, which, by a detailed calculation,
is negative under our stability condition (3.9). The second critical point corresponds to
our expression fora1 given in (3.2). One can check that(a1)′p1 = −θ ′p1 which, by
(3.9), is positive.

Note that when|b| → ∞, away from the boundary, the function in (6.7) goes to
infinity; when b approaches the boundaryb′p1 = 0, from the interior of the feasible
region, the function in (6.7) goes to infinity. Therefore, the infimum in (6.7) takes place
either at a critical point in the interior or atb1 = 0.

If F1 is not reflective, then by definition, we havea1
1 > 0. In this case, then there

are no critical points in the interior of the feasible region and the minimum must occur
at the constraintb1 = 0, which indicates that the direct path alongF1 is optimal and we
haveĨ 1(v) = I 0(v).

If F1 is reflective, thena1
1 < 0, and this quantity is a critical point which is in the

interior of the feasible region. The value of the VP (6.4) at the critical pointa1 is

1

2(a1)′p1

∥∥a1− θ∥∥2 = 1

2(a1)′p1
(k)2

∥∥0p1
∥∥2 = k > 0

and we have

k = 〈a1− θ, v〉 = 〈ã1− θ, v〉 = I 1(v),

where the first equality follows from (6.8) and the second from the definition ofã1.
SinceI 1(v) 6 I 0(v), as demonstrated in lemma 6.1, we then haveĨ 1(v) = I 1(v) and
the theorem is proved. �

The theorem demonstrates that if a face is reflective, then a regulated boundary
path may be part of an optimal path to a point in the face. In the stochastic setting, we
envision such paths as “bouncing paths” which repeatedly bounce against a face and are
heavily regulated to keep them within the quadrant.

Furthermore, it should be noted that the stability conditions (3.8) and (3.9) for
SRBM inR2+ are required for our solution to be valid. In particular the conditions are
used in the proof to eliminate a critical point. If one of the stability conditions does
not hold, then the VP will have optimal value zero for any pointsv along some ray
in R2. This means that the VPs given in (4.3)–(4.4), will have value zero for many
sets of interest. This result should be expected, since a stationary distribution for the
SRBM will not exist in cases where the stability conditions do not hold, hence the LDP
of section 4.2 does not hold.

It is a subject of ongoing research to determine explicit stability conditions in
higher dimensions and analyze their relation to the corresponding VP. It is possible that
heretofore unknown stability conditions will manifest themselves in solving the VP in
higher dimensions.
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6.3. Two-segment boundary escapes

Recall that, for a pointv ∈ R2+, a broken triple(x, y, z) to v through faceFi consists of
two segments: during the first segment,z travels from the origin alongFi up to a point
w ∈ Fi, and during the second segment,z is a non-regulated path traveling fromw to v.
Whenw = 0, the broken triple is actually a direct triple.

In this section, we consider the VP (2.5) when constrained to all broken triples
through a face. For a pointv ∈ R2+, our goal is to determine an optimal broken triple
among all such triples. The corresponding optimal value is denoted byĨ i(v). The opti-
mal broken triple is an extension of the optimal single segment triple previously consid-
ered for a pointv on a boundary face. Thus we employ the same symbolĨ i(·) to denote
the optimal value.

Theorem 6.3. Let v ∈ R2+.

(a) If v ∈ Ci, then (xi , yi, zi) is an optimal broken triple tov throughFi . The op-
timal broken pathzi has unique breakpointw ∈ Fi with v − w = cãi and
c = −〈v, 0ni〉/〈ai, 0ni〉. Furthermore, the optimal costĨ i(v) is given byI i(v).

(b) If v /∈ Ci, then the direct triple(x0, y0, z0) is optimal among all broken triples tov
throughFi with Ĩ i(v) = I 0(v).

Proof. WhenFi is not reflective, by part (b) of theorem 6.2, lemma 5.2 and theorem 6.1,
the direct triple(x0, y0, z0) is optimal among all broken triples.

Now we assume thatFi is reflective. The optimal total cost for a broken path
throughFi to v with a breakpoint atw = tei , t > 0, is

Ĩ (t, v)= Ĩ i(w)+ Ĩ 0(v − w).
It follows from theorems 6.1 and 6.2 that

Ĩ (t, v) = 〈ãi − θ, tei 〉+ ‖θ‖ · ‖v − tei‖ − 〈θ, v − tei〉. (6.10)

Note thatĨ (t, v) > tI i(ei), which goes to infinity ast → ∞. Hence, the minimum
of the functionĨ (·, v) must either occur at a critical point in(0,∞) or at the boundary
t = 0. So, to minimize this function with respect tot , for t > 0, we take derivatives to
obtain:

∂

∂t
Ĩ (t, v)= ∂

∂t

[
t
〈
ãi − θ, ei

〉+ ‖θ‖ · ‖v − tei‖ + t〈θ, ei〉 − 〈θ, v〉]
= 〈ãi − θ, ei 〉− ‖θ‖〈v − tei , ei〉‖v − tei‖ + 〈θ, ei〉 =

〈
ãi , ei

〉− ‖θ‖〈v − tei , ei〉‖v − tei‖ .

Setting this equal to zero and rearranging yields:

〈ãi , ei〉
‖θ‖ =

〈v − tei , ei〉
‖v − tei‖ . (6.11)
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Since‖ã‖ = ‖θ‖ by (6.1), the breakpointw = tei then must satisfy

〈ãi , ei〉
‖ãi‖ =

〈v − w, ei〉
‖v − w‖ .

Thus,v − w must be in the same direction ofai or ãi . The first case is not possible for
a reflective faceFi . Thus,

v − w = cãi ,
for somec > 0.

To prove part (a), we note that whenCi is nonempty,Fi is reflective. In this case,
one can check that the critical pointw = t∗ei ∈ Fi exists and is unique. To findc, we
use the expansion (3.3) onv, (3.4), and the fact thatv = t∗ei + cãi , to obtain〈

v, 0ni
〉 = −c〈ai, 0ni 〉

or c = −〈v, 0ni〉/〈ai, 0ni〉. With breakpointw, by (6.10) the total cost is

Ĩ
(
t∗, v

)= 〈ãi − θ, v − cãi 〉+ c(‖θ‖ ∥∥ãi∥∥− 〈θ, ãi 〉)
= 〈ãi − θ, v〉+ c(‖θ‖ ∥∥ãi∥∥− 〈ãi , ãi 〉).

Note that, again using (6.1)

‖θ‖ ∥∥ãi∥∥− 〈ãi , ãi 〉 = ∥∥ãi∥∥2− 〈ãi , ãi 〉 = 0.

Therefore, we have

Ĩ
(
t∗, v

) = 〈ãi − θ, v〉 = I i(v).
SinceI i(v) 6 I 0(v) = Ĩ (0, v), as demonstrated in section 3, we haveĨ i(v) = I i(v)

and part (a) is proved.
Whenv /∈ Ci andFi is reflective, then no such critical pointw = tei , with t > 0,

exists. Hence, in this case, the optimum occurs at the boundary pointt = 0, i.e., the
optimal triple tov throughFi is simply a direct triple, with corresponding costĨ i(v) =
Ĩ (0, v) = I 0(v). If faceFi is not reflective, then the optimal triple tov throughFi is
also a direct triple, as discussed at the beginning of the proof. This establishes part (b),
and hence theorem 6.3. �

6.4. Proof of theorem 3.1

Now we prove the main theorem of the paper. By theorem 5.1 we may conclude that any
optimal triple can be reduced to an equivalent direct triple or broken triple through one
of the faces. Now, letv ∈ R2+. The remainder of the theorem follows directly from the
results we have established in this section. We briefly outline the connection for each
case of theorem 3.1:

(a) The fact that the optimal value isI 0(v) follows directly from part (b) of theorem 6.3.

(b) The result follows from theorem 6.3, parts (a) and (b), and lemma 6.1, part (b).
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(c) Analogous to (b) above.

(d) In this case the result follows from part (a) of theorem 6.3 and lemma 6.1, part (b).

In each case, there is a broken or direct triple which attains the corresponding
minimum value.

7. Examples

In this section we apply the main theorem of the paper in some illustrative examples. In
addition to illuminating the results, we expect that this section will provide a connection
to previous results obtained for the stationary distribution of SRBMs.

7.1. An SRBM from a tandem network

We next provide an example of the solution to the VP for SRBM data arising from
diffusion approximations of 2-station tandem queueing networks [15]. We consider a
(R2+, θ, 0,R)-SRBM with the following data. We let0 = I , θ = (θ1, θ2)

′, and

R =
(

1 0
−1 1

)
.

It is easy to verify thatR is anM-matrix, which implies that the corresponding
reflection mapping, and hence the associated SRBM, is well defined. In this case, the
recurrence conditions are given by (4.2), which reduce toθ1 < 0 andθ1+ θ2 < 0. From
(3.2) and (3.4), some simple calculations yield:

a1 =
(−θ2

−θ1

)
, ã1 =

(
θ2

−θ1

)
,

a2 =
(−θ1

θ2

)
, ã2 =

(−θ1

−θ2

)
.

Furthermore, we will have

I 0(v)=
√(
θ2

1 + θ2
2

)(
v2

1 + v2
2

)− (θ1v1 + θ2v2),

I 1(v)=−θ1(v1+ v2)+ θ2(v1− v2),

I 2(v)=−2(θ1v1+ θ2v2).

Sinceθ1 has a fixed sign by the recurrence conditions, let us examine more closely the
casesθ2 > 0, θ2 < 0, andθ2 = 0.

In the case thatθ2 > 0, we note that̃a1
1 > 0 andã2

2 < 0. Hence, faceF1 is reflective
and faceF2 is nonreflective, withC2 = ∅. Within C1, the broken triple throughF1 is
optimal and the optimal value is given byI 1(v) above. WithinR2+ \ C1 (which is non-
empty) the direct triple is optimal and the value of the VP is given byI 0(v). Figure 2
illustrates this case.
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Figure 2. An optimal broken path tov ∈ C1 and an optimal direct path tow ∈ R2+ \ C1 for θ2 > 0.

If θ2 < 0, thenã1
1 < 0 andã2

2 > 0. Thus,F2 is now reflective andF1 nonreflective,
and we have that bothC2 andR2+ \ C2 are non-empty.

In the final case,θ2 = 0, we see that̃a1 is a multiple of(0,1)′ and ã2 a multiple
of (1,0)′. So both faces of the quadrant are nonreflective and thusC1 = C2 = ∅.
Furthermore, the direct triple is optimal for allv ∈ R2+ and the optimal valueI 0(v)

simplifies to

I 0(v) = −θ1

(√
v2

1 + v2
2 + v1

)
.

For this case, Harrison [15] explicitly obtained the density function for the stationary
distribution of the SRBM, which is given bycr−1/2 cos(φ/2)exp(−|θ1|(v1 + r)) with
v = (r cos(φ), r sin(φ))′ and some constantc > 0. It is reassuring to note that, as
expected, the exponent obtained by Harrison exactly matches the VP value above.

7.2. Skew-symmetric case

In [18,19] it was demonstrated that the stationary density function for a(Rd+, θ, 0,R)-
SRBM admits a separable, exponential form if and only if the data satisfies the following
skew-symmetry condition:

20 = RD−13+3D−1R′, (7.1)

whereD = diag(R) and3 = diag(0). Let us then assume that the skew-symmetry
condition holds. In this case, a(Rd+, θ, 0,R)-SRBM has a stationary distribution if and
only if (4.2) holds. Furthermore, the stationary density is given byc exp(−η′v), wherec
is a normalizing constant and

η = −23−1DR−1θ. (7.2)

In this subsection, we discuss the solution to the VP in two dimensions in the case that
the data satisfies (7.1) and (4.2). This provides a check of the large deviations analysis
versus an explicit calculation of the stationary density.
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Consider a(R2+, θ, 0,R)-SRBM. Without loss of we assume the following:

R =
(

1 r2

r1 1

)
, 0 =

(
γ1 γ3

γ3 γ2

)
,

whereγ1 > 0 andγ2 > 0. Note thatD = D−1 is just the identity matrix and the
skew-symmetry condition (7.1) in fact reduces to just one equation:

2γ3 = r1γ1+ r2γ2. (7.3)

With the skew-symmetry condition, we have a number of interesting simplifica-
tions to the expressions derived for the VP, which are summarized in our next theorem.

Theorem 7.1. Consider a(R2+, θ, 0,R)-SRBM whose data satisfies (7.1) and (4.2). For
this SRBM the following hold:

(a) ã1 = ã2.

(b) At least one of the two faces is reflective.

(c) If F1 is reflective, andF2 is not,C2 = ∅ and the coneC1 covers the entire state
space, namely,C1 ⊃ R2+.

(d) If F2 is reflective, andF1 is not,C1 = ∅ and the coneC2 covers the entire state
space.

(e) If both faces are reflective, the conesC1 andC2 partition the state spaceR2+ and
possess a common boundary which has directionã1 = ã2.

(f) For anyv ∈ R+2 , the optimal valueI (v) = η′v, with η given in (7.2).

Figure 3 illustrates the three general possibilities that can occur for VP solutions in
the skew-symmetry case, as outlined in (c)–(e).

Now, let ã = ã1 = ã2. A consequence of our theorem is that, for anyv ∈ R2+, an
optimal triple is always a broken triple, except when both faces are reflective andv is in
the direction ofã. In this exceptional case, the direct path tov is optimal. The theorem
also verifies that the optimal valueI (v) is given by the exponent in [18], as expected.

(a) (b) (c)

Figure 3. Optimal paths for the skew-symmetric case: (a)F2 is nonreflective, (b)F1 is nonreflective,
(c) bothF1 andF2 are reflective.
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Proof of theorem 7.1. We first prove (a). Using (3.2), we have

a1= θ − 2
(−r1θ1+ θ2)

(r2
1γ1− 2r1γ3+ γ2)

(γ3− γ1r1, γ2− γ3r1)
′,

a2= θ − 2
(θ1− r2θ2)

(γ1− 2r2γ3+ r2
2γ2)

(γ1− γ3r2, γ3− γ2r2)
′.

By (7.3), we have

a1
1 =−

γ2(−θ1+ r2θ2)+ r1γ1(r1θ1− θ2)

(1− r1r2)γ2
, (7.4)

a2
2 =−

r2γ2(−θ1+ r2θ2)+ γ1(r1θ1− θ2)

(1− r1r2)γ1
. (7.5)

To proveã1 = ã2, it is sufficient to show that

0−1
(
ã1− θ) = 0−1

(
ã2 − θ). (7.6)

By the definition ofãi , we have

ãi = ai − 2
〈
ai, 0ni

〉
0ni = θ − 2

(
θ ′pi

)
0pi − 2

〈
ai, 0ni

〉
0ni.

Thus, (7.6) reduces to

−2
(
θ ′p1)p1− 2

〈
a1, 0n1〉n1 = −2

(
θ ′p2)p2− 2

〈
a2, 0n2〉n2,

or

−2
(θ2− r1θ1)

(1− r1r2)γ2

(−r1
1

)
− 2a1

1

γ1

(
1
0

)
= −2

(θ1− r2θ2)

(1− r1r2)γ1

(
1
−r2

)
− 2a2

2

γ2

(
0
1

)
. (7.7)

Using the expressions fora1
1 anda2

2 in (7.4)–(7.5), one can easily check that (7.7) indeed
holds, thus proving̃a1 = ã2.

To prove (b), we first note from (7.1) thatv′Rv > 0 for any v ∈ R2. Thus,
1 − r1r2 = (r1,−1)R(r1,−1)′ > 0. Therefore, with (3.5) and part (a), we have that
ã = ã1 = ã2 = (−a1

1,−a2
2)
′. Furthermore, from (4.2) we also have thatr2θ2 − θ1 > 0

andr1θ1 − θ2 > 0. Collecting all of these facts we have the following conclusions. If
r1 > 0, then (7.4) implies̃a1 > 0; if r2 > 0, then (7.5) implies̃a2 > 0. If both r1 6 0
andr2 6 0, thenR−1 has nonnegative entries. This fact, along with the linear equalities
(7.4)–(7.5), imply that at least one of the−aii is positive. Since at least one component
of ã is positive in every case, we have now established (b).

Parts (c)–(e) follow directly from parts (a), (b) and the definitions ofCi and reflec-
tivity.

It remains to prove (f). From (c)–(e), we know that, for anyv ∈ R2+, I (v) is
equal to either〈ã1 − θ, v〉 or 〈ã2 − θ, v〉. Sinceã = ã1 = ã2, it is sufficient to prove
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〈ã − θ, v〉 = η′v for anyv ∈ R2+, or equivalently,0−1(ã − θ) = η. Since0−1(ã − θ) is
equal to either side of (7.7), we have

0−1(ã − θ) =
(
−2

(θ1− r2θ2)

(1− r1r2)γ1
,−2

(θ2− r1θ1)

(1− r1r2)γ2

)′
which is equal toη as desired. This concludes the proof of the theorem. �

8. Extensions and further research

We now comment on extending these ideas to more general polyhedral state spaces. It
is our hope that our study will provide a framework and road map especially for further
research on higher dimensional problems.

It is clear that much of the analysis in section 5 will hold in higher dimensions
and for general polyhedral state spaces. However, even for more general regions in
two dimensions, we may have to choose an optimal escape path from more than three
possible types. In other words, the VP can still be reduced to finite choice problem, but
it may be more difficult to easily characterize the solutions as we did for the orthant in
section 6.

We encounter more serious difficulties when passing to the VP in three or more
dimensions. A primary challenge to extending the results is to investigate if an analog to
theorem 5.1 holds in higher dimensions. From a computational standpoint, it would be
most desirable if we could eliminate paths which “spiral” around the boundary before
traversing the interior of the orthant. An example of such a principle is a conjecture
of Majewski [29] which states that at mostd pieces are needed to solve the VP inRd+.
This would limit our search in three dimensions to 10 types of paths, significantly re-
ducing computational effort, even if it is no longer practical to completely characterize
the solutions to the VP, as we have for the quadrant. It is an interesting open problem to
characterize under what conditions, the VP may be so reduced to finite choice problem.
Further work is also needed in proving LDPs like conjecture 4.1 for SRBMs and even
more general regulated processes.
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