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Motivation for this talk

Much of the work on stochastic processing networks:

◮ assumes model structure is known a priori, is accurate and stationary

– parameters describing system and environment known and static

– no model misspecification errors
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Motivation for this talk

Much of the work on stochastic processing networks:

◮ assumes model structure is known a priori, is accurate and stationary

– parameters describing system and environment known and static

– no model misspecification errors

In practice:

◮ model structure may be only partially known

◮ model primitives need to be inferred

– from historical data

– in on-line manner

◮ model may be misspecified...

– both system model and environment

◮ environment may be changing over time
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Example 1: Design of global delivery centers

Arrival rate patterns in medium sized service center
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Example 2: Price engineering
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Example 2: Price engineering
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Example 3: Cloud computing
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What’s in this talk

Impact of parameter uncertainty on:

◮ static capacity / processing rate decisions

� revisiting the square-root logic...

◮ model specification and calibration

� estimation and testing

◮ dynamic control and resource allocation

� revisiting the static planning problem...
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Parameter uncertainty and capacity planning

Mean call arrivals 8 – 10AM in medium sized call center

Day of Week Mean no. of arriving calls CV [empirical] (%) CV [Poisson] (%)

Mon 943 26.5 3.3

Tue 824 22.3 3.5

Wed 807 26.5 3.5

Thu 778 28.5 3.6

Fri 767 33.5 3.6

Sat 293 61.8 5.8

Sun 139 148.1 8.5

◮ CV [empirical] = coefficient of variation (in %)

◮ CV [Poisson] = calculated assuming arrival process Poisson
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Parallel server network
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arriving calls: rates Λ1(t), Λ2(t), Λ3(t)

waiting calls

server pools

completed services

routing control X

abandonments

staffing: b1, b2

◮ arrival process = doubly stochastic with rate Λ1(t)
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System dynamics

Ni(t) =







Arrivals






−







Completed Services






−







Abanbonments







◮ N : headcount process

Ni(t) = # of class i customers present at time t

◮ Q : queue length process

Qi(t) = # of class i customers not being served at time t

◮ X : dynamic control [ (RX)i = rate of service in class i ]

Xj(t) = # of servers allocated to activity j

◮ b : staffing vector

◮ (X, N, Q) satisfy

AX(t) ≤ b, Q(t) = N(t) − BX(t) ≥ 0, N(t) ≥ 0, X(t) ≥ 0
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System dynamics

Ni(t) =







Arrivals

rate: Λi(t)






−







Completed Services

rate: (RX)i(t)






−







Abanbonments

rate: γiQi(t)







◮ N : headcount process

Ni(t) = # of class i customers present at time t

◮ Q : queue length process

Qi(t) = # of class i customers not being served at time t

◮ X : dynamic control [ (RX)i = rate of service in class i ]

Xj(t) = # of servers allocated to activity j

◮ b : staffing vector

◮ (X, N, Q) satisfy

AX(t) ≤ b, Q(t) = N(t) − BX(t) ≥ 0, N(t) ≥ 0, X(t) ≥ 0
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Design and control objectives

minimize: c · b + p · E
[

∫

T

0

γQ(s)ds
]

capacity costs E [# of abandonments across classes]

s.t. admissible routing control X over [0, T ]

b = r-dim’l vector of staffing levels in agent pools

c = personnel cost vector

p = penalty cost vector

Q(t) = vector of queuelengths at time t in class i [depends on routing...]

γ = abandonment rate vector

T = planning horizon over which staffing is held fixed
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Design and control objectives

minimize: c · b + p · E
[

∫

T

0

γQ(s)ds
]

capacity costs E [# of abandonments across classes]

s.t. admissible routing control X over [0, T ]

b = r-dim’l vector of staffing levels in agent pools

c = personnel cost vector

p = penalty cost vector

Q(t) = vector of queuelengths at time t in class i [depends on routing...]

γ = abandonment rate vector

T = planning horizon over which staffing is held fixed

Decision “variables”: capacity vector b and control X
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A simple single-class / single-pool example

”Solve the simplest problem you don’t know the answer to.”

– Mike Harrison

13



A simple single-class / single-pool example

”Solve the simplest problem you don’t know the answer to.”

– Mike Harrison

◮ arrival process doubly stochastic w/ rate Λ(t)

◮ exponential services w/ rate µ

◮ exponential reneging w/ rate γ

◮ b statistically identical servers

13-a



A simple single-class / single-pool example

”Solve the simplest problem you don’t know the answer to.”

– Mike Harrison

◮ arrival process doubly stochastic w/ rate Λ(t)

◮ exponential services w/ rate µ

◮ exponential reneging w/ rate γ

◮ b statistically identical servers

objective: minimize

Π(b) := c · b + p E
[

∫

T

0

γQ(s)ds
]

◮ b∗ = optimal capacity choice
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Mike’s key observation

if Λ ≫ µ, γ and of reasonable magnitude

� e.g., 100’s of calls/hour, processing/reneging order of minutes

then expect

� “accurate” fluid approximation

� “short” relaxation times
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if Λ ≫ µ, γ and of reasonable magnitude

� e.g., 100’s of calls/hour, processing/reneging order of minutes

then expect

� “accurate” fluid approximation

� “short” relaxation times

◮ γQ(t) ≈ (Λ(t) − bµ)+ pointwise stationary fluid model (PSFM)
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Mike’s key observation

if Λ ≫ µ, γ and of reasonable magnitude

� e.g., 100’s of calls/hour, processing/reneging order of minutes

then expect

� “accurate” fluid approximation

� “short” relaxation times

◮ γQ(t) ≈ (Λ(t) − bµ)+ pointwise stationary fluid model (PSFM)

More generally: in each class i = 1, . . . , m, and all time t

(∗) γiQi(t) ≈ Λi(t) − (RX)i(t)

abandonment rate arrival rate processing rate
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Picture proof
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Consequence

original objective fn:

Π(b) = c · b + p · E
[

∫

T

0

γQ(s)ds
]

◮ optimal solution b∗

16



Consequence

original objective fn:

Π(b) = c · b + p · E
[

∫

T

0

γQ(s)ds
]

◮ optimal solution b∗

approximate objective fn:

Π̄(b) = c · b + p · E
[

∫

T

0

(Λ(s) − bµ)+ds
]

◮ approximate solution b̄
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Relation to traditional models

if Λ = λ (deterministic case)

then optimal solution takes form

b∗ =
λ

µ
+ β

√

λ

µ

◮ Erlang’s square root rule...
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Relation to traditional models

if Λ = λ (deterministic case)

then optimal solution takes form

b∗ =
λ

µ
+ β

√

λ

µ

◮ Erlang’s square root rule...

Arrival rate Optimal solution Prescription Difference

λ b∗ Π∗ b̄ Π(b̄) b∗ − b̄ Π(b̄) − Π∗

37.5 40 14.75 37 15.02 3 0.27

75 79 28.17 75 28.45 4 0.28

300 307 106.32 300 106.91 7 0.59
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In pictures...
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Relation to traditional models (cont’d)

◮ arrival rate Λ

� time homogenous

� random drawn from distribution F
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Relation to traditional models (cont’d)

◮ arrival rate Λ

� time homogenous

� random drawn from distribution F

objective: minimize

Π(b) := c · b + p E[N − b]+

◮ N = number of customers in system in steady-state
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Relation to traditional models (cont’d)

◮ arrival rate Λ

� time homogenous

� random drawn from distribution F

objective: minimize

Π(b) := c · b + p E[N − b]+

◮ N = number of customers in system in steady-state

PSFM approximation: minimize

Π̄(b) := c · b + p E[Λ − bµ]+

◮ simple newsvendor problem with fractile solution

b̄ =
1

µ
F̄−1

(

c

pµ

)
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Accuracy of the newsvendor-based logic

arrival rates constant and random (CV = 19.2%)

Arrival rate Optimal solution Prescription Difference

distribution b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗

U[25,50] 42 16.21 41 16.23 1 0.02

U[50,100] 83 31.47 83 31.47 0 0

U[200,400] 332 122.89 333 122.89 1 0
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Why is the prescription so accurate under uncertainty?

Consider simple case where µ = γ [ just for purposes of intuition ]

� infinite server queue

� use normal approximation to Poisson...

Π(b) = c · b + p E
[

∫

T

0

γQ(s)ds
]

≈
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Why is the prescription so accurate under uncertainty?

Consider simple case where µ = γ [ just for purposes of intuition ]

� infinite server queue

� use normal approximation to Poisson...

Π(b) = c · b + p E
[

∫

T

0

γQ(s)ds
]

≈ c · b + pµ E[Λ/µ − b]+ + K E

[

√

Λ/µ exp

(

− (Λ/µ − b)2

2(Λ/µ)

)]

21-a
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� infinite server queue
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Why is the prescription so accurate under uncertainty?

Consider simple case where µ = γ [ just for purposes of intuition ]

� infinite server queue

� use normal approximation to Poisson...

Π(b) = c · b + p E
[

∫

T

0

γQ(s)ds
]

≈ c · b + pµ E[Λ/µ − b]+ + K E

[

√

Λ/µ exp

(

− (Λ/µ − b)2

2(Λ/µ)

)]

= approximate objective fn + approximation error

This suggests that performance gap is bounded...

◮ performance gap ∆ = Π(b̄) − Π∗ is independent of scale of system...
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Rigorous foundations

Put EΛ = n and CV n = coefficient of variation

Thm. [ Bassamboo-Randhawa-Z (09) ]

◮ Uncertainty-driven regime: if CV n ≫ 1/
√

n, then

Π(b̄n) = Π∗ + O(1/CV n).

◮ Variability-driven regime: if CV n ≪ 1/
√

n, then

Π(b̄n) = Π∗ + O(
√

n).
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Rigorous foundations

Put EΛ = n and CV n = coefficient of variation

Thm. [ Bassamboo-Randhawa-Z (09) ]

◮ Uncertainty-driven regime: if CV n ≫ 1/
√

n, then

Π(b̄n) = Π∗ + O(1/CV n).

◮ Variability-driven regime: if CV n ≪ 1/
√

n, then

Π(b̄n) = Π∗ + O(
√

n).

Cor 1. If CV bounded away from 0 then prescription is O(1)-optimal
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Rigorous foundations

Put EΛ = n and CV n = coefficient of variation

Thm. [ Bassamboo-Randhawa-Z (09) ]

◮ Uncertainty-driven regime: if CV n ≫ 1/
√

n, then

Π(b̄n) = Π∗ + O(1/CV n).

◮ Variability-driven regime: if CV n ≪ 1/
√

n, then

Π(b̄n) = Π∗ + O(
√

n).

Cor 1. If CV bounded away from 0 then prescription is O(1)-optimal

Cor 2. Performance of b̄n is not sensitive to O(
√

n) perturbations
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Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...
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Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...

possible approach: [ Bassamboo- Z (2009) ]

◮ estimate arrival rate distribution Fn [ n = “sample size” ]

◮ form empirical (approximate) objective fn Π̄n(·)

◮ compute b̄n [ estimator of b̄ ]

◮ evaluate performance of estimator EΠ(b̄n)
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Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...

possible approach: [ Bassamboo- Z (2009) ]

◮ estimate arrival rate distribution Fn [ n = “sample size” ]

◮ form empirical (approximate) objective fn Π̄n(·)

◮ compute b̄n [ estimator of b̄ ]

◮ evaluate performance of estimator EΠ(b̄n)

key ideas in analysis:

◮ need Π̄n(·) to be amenable to M-estimation theory...

� e.g., Lipschitz fn guarantees finite bracketing entropy

◮ use Talagrand’s bounds to establish 1/
√

n accuracy

� EΠ(b̄n) − Π∗ = C/
√

n + approximation error

� interaction between approximation bound and estimation bound...
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Picture proof...
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Takeaway messages

Parameter uncertainty:

◮ creates insensitivity in the objective fn

◮ makes it easier to achieve near optimal performance

� simple capacity planning fluid problem

� very simple control rules

◮ estimate/calibrate model

� off line estimation [ capacity planning ]

� real-time estimation [ control ]
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