Stochastic Networks and Parameter Uncertainty

Assaf Zeevi*

Graduate School of Business
Columbia University

Stochastic Processing Networks Conference, August 2009

* based on joint work with Mike Harrison Achal Bassamboo and Ramandeep

Randhawa

Motivation for this talk

Much of the work on stochastic processing networks:

- assumes model structure is known a priori, is accurate and stationary
- parameters describing system and environment known and static
- no model misspecification errors

Motivation for this talk

Much of the work on stochastic processing networks:

- assumes model structure is known a priori, is accurate and stationary
- parameters describing system and environment known and static
- no model misspecification errors

In practice:

- model structure may be only partially known
- model primitives need to be inferred
- from historical data
- in on-line manner
- model may be misspecified...
- both system model and environment
- environment may be changing over time

Example 1: Design of global delivery centers

Arrival rate patterns in medium sized service center

how to deal with forecasting errors?

Example 2: Price engineering

Example 2: Price engineering

Example 3: Cloud computing

What's in this talk

Impact of parameter uncertainty on:

- static capacity / processing rate decisionsrevisiting the square-root logic...
- model specification and calibration
$\square \quad$ estimation and testing
- dynamic control and resource allocation
$\square \quad$ revisiting the static planning problem...

Parameter uncertainty and capacity planning

Mean call arrivals $8-10 A M$ in medium sized call center

Day of Week	Mean no. of arriving calls	CV [empirical] (\%)	CV [Poisson] (\%)
Mon	943	26.5	3.3
Tue	824	22.3	3.5
Wed	807	26.5	3.5
Thu	778	28.5	3.6
Fri	767	33.5	3.6
Sat	293	61.8	5.8
Sun	139	148.1	8.5
CV [empirical] = coefficient of variation (in \%)			

Parallel server network

- arrival process $=$ doubly stochastic with rate $\boldsymbol{\Lambda}_{1}(t)$

System dynamics

$$
N_{i}(t)=[\text { Arrivals }]-[\text { Completed Services }]-[\text { Abanbonments }]
$$

- N : headcount process

$$
N_{i}(t)=\# \text { of class } i \text { customers present at time } t
$$

- Q : queue length process
$Q_{i}(t)=\#$ of class i customers not being served at time t
- \boldsymbol{X} : dynamic control $\quad\left[(R X)_{i}=\right.$ rate of service in class $\left.i\right]$

$$
\boldsymbol{X}_{j}(t)=\# \text { of servers allocated to activity } j
$$

- b : staffing vector
- (\boldsymbol{X}, N, Q) satisfy

$$
A \boldsymbol{X}(t) \leq b, \quad Q(t)=N(t)-B \boldsymbol{X}(t) \geq 0, \quad N(t) \geq 0, \quad \boldsymbol{X}(t) \geq 0
$$

System dynamics

$$
N_{i}(t)=\left[\begin{array}{c}
\text { Arrivals } \\
\text { rate: } \Lambda_{i}(t)
\end{array}\right]-\left[\begin{array}{c}
\text { Completed Services } \\
\text { rate: }(R \boldsymbol{X})_{i}(t)
\end{array}\right]-\left[\begin{array}{c}
\text { Abanbonments } \\
\text { rate: } \gamma_{i} Q_{i}(t)
\end{array}\right]
$$

- N : headcount process

$$
N_{i}(t)=\# \text { of class } i \text { customers present at time } t
$$

- Q : queue length process
$Q_{i}(t)=\#$ of class i customers not being served at time t
- \boldsymbol{X} : dynamic control $\quad\left[(R X)_{i}=\right.$ rate of service in class $\left.i\right]$

$$
\boldsymbol{X}_{j}(t)=\# \text { of servers allocated to activity } j
$$

- b : staffing vector
- (\boldsymbol{X}, N, Q) satisfy

$$
A \boldsymbol{X}(t) \leq b, \quad Q(t)=N(t)-B \boldsymbol{X}(t) \geq 0, \quad N(t) \geq 0, \quad \boldsymbol{X}(t) \geq 0
$$

Design and control objectives

s.t. admissible routing control \boldsymbol{X} over $[0, T]$
$b=r$-dim'l vector of staffing levels in agent pools
$c=$ personnel cost vector
$p=$ penalty cost vector
$Q(t)=$ vector of queuelengths at time t in class i [depends on routing...]
$\gamma=$ abandonment rate vector
$T=$ planning horizon over which staffing is held fixed

Design and control objectives

s.t. admissible routing control \boldsymbol{X} over $[0, T]$
$b=r$-dim'l vector of staffing levels in agent pools
$c=$ personnel cost vector
$p=$ penalty cost vector
$Q(t)=$ vector of queuelengths at time t in class i [depends on routing...]
$\gamma=$ abandonment rate vector
$T=$ planning horizon over which staffing is held fixed
Decision "variables": capacity vector b and control \boldsymbol{X}

A simple single-class / single-pool example

"Solve the simplest problem you don't know the answer to."

- Mike Harrison

A simple single-class / single-pool example

"Solve the simplest problem you don't know the answer to."

- Mike Harrison
- arrival process doubly stochastic w/ rate $\Lambda(t)$
- exponential services $w /$ rate μ
- exponential reneging $w /$ rate γ
- $\quad b$ statistically identical servers

A simple single-class / single-pool example

"Solve the simplest problem you don't know the answer to."

- Mike Harrison
- arrival process doubly stochastic w/ rate $\Lambda(t)$
- exponential services $w /$ rate μ
- exponential reneging $w /$ rate γ
- $\quad b$ statistically identical servers
objective: minimize

$$
\Pi(b):=c \cdot b+p \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right]
$$

- $b^{*}=$ optimal capacity choice

Mike's key observation

if $\Lambda \gg \mu, \gamma$ and of reasonable magnitude
\square e.g., 100's of calls/hour, processing/reneging order of minutes
then expect
\square "accurate" fluid approximation
\square "short" relaxation times

Mike's key observation

if $\Lambda \gg \mu, \gamma$ and of reasonable magnitude
\square e.g., 100's of calls/hour, processing/reneging order of minutes
then expect
\square "accurate" fluid approximation
\square "short" relaxation times

- $\quad \gamma Q(t) \approx(\Lambda(t)-b \mu)^{+}$pointwise stationary fluid model (PSFM)

Mike's key observation

if $\Lambda \gg \mu, \gamma$ and of reasonable magnitude
\square e.g., 100's of calls/hour, processing/reneging order of minutes
then expect
\square "accurate" fluid approximation
$\square \quad$ "short" relaxation times

- $\quad \gamma Q(t) \approx(\Lambda(t)-b \mu)^{+}$pointwise stationary fluid model (PSFM)

More generally: in each class $i=1, \ldots, m$, and all time t

Picture proof

for real proof see Bassamboo-Harrison-Z (06a,06b)

Consequence

original objective fn:

$$
\Pi(b)=c \cdot b+p \cdot \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right]
$$

- optimal solution b^{*}

Consequence

original objective fn:

$$
\Pi(b)=c \cdot b+p \cdot \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right]
$$

- optimal solution b^{*}
approximate objective fn:

$$
\bar{\Pi}(b)=c \cdot b+p \cdot \mathbb{E}\left[\int_{0}^{T}(\Lambda(s)-b \mu)^{+} d s\right]
$$

- approximate solution \bar{b}

Relation to traditional models

if $\Lambda=\lambda$ (deterministic case)
then optimal solution takes form

$$
b^{*}=\frac{\lambda}{\mu}+\beta \sqrt{\frac{\lambda}{\mu}}
$$

- Erlang's square root rule...

Relation to traditional models

if $\Lambda=\lambda$ (deterministic case)
then optimal solution takes form

$$
b^{*}=\frac{\lambda}{\mu}+\beta \sqrt{\frac{\lambda}{\mu}}
$$

- Erlang's square root rule...

Arrival rate λ	Optimal solution		Prescription		Difference	
	b^{*}	Π^{*}	\bar{b}	$\Pi(\bar{b})$	$b^{*}-\bar{b}$	$\Pi(\bar{b})-\Pi^{*}$
37.5	40	14.75	37	15.02	3	0.27
75	79	28.17	75	28.45	4	0.28
300	307	106.32	300	106.91	7	0.59

In pictures...

Stochastic arrival rate

Deterministic arrival rate

Relation to traditional models (cont'd)

- arrival rate Λ
$\square \quad$ time homogenous
$\square \quad$ random drawn from distribution F

Relation to traditional models (cont'd)

- arrival rate Λ
$\square \quad$ time homogenous
$\square \quad$ random drawn from distribution F
objective: minimize

$$
\Pi(b):=c \cdot b+p \mathbf{E}[N-b]^{+}
$$

- $\quad N=$ number of customers in system in steady-state

Relation to traditional models (cont'd)

- arrival rate Λ
$\square \quad$ time homogenous
$\square \quad$ random drawn from distribution F
objective: minimize

$$
\Pi(b):=c \cdot b+p \mathbf{E}[N-b]^{+}
$$

- $\quad N=$ number of customers in system in steady-state

PSFM approximation: minimize

$$
\bar{\Pi}(\boldsymbol{b}):=c \cdot \boldsymbol{b}+p \mathbf{E}[\Lambda-\boldsymbol{b} \mu]^{+}
$$

- simple newsvendor problem with fractile solution

$$
\bar{b}=\frac{1}{\mu} \bar{F}^{-1}\left(\frac{c}{p \mu}\right)
$$

Accuracy of the newsvendor-based logic

arrival rates constant and random (CV $=19.2 \%$)

Arrival rate	Optimal solution		Prescription		Difference	
distribution	b^{*}	Π^{*}	\bar{b}	$\Pi(\bar{b})$	$\left\|b^{*}-\bar{b}\right\|$	$\Pi(\bar{b})-\Pi^{*}$
$U[25,50]$	42	16.21	41	16.23	1	0.02
$U[50,100]$	83	31.47	83	31.47	0	0
$U[200,400]$	332	122.89	333	122.89	1	0

Why is the prescription so accurate under uncertainty?

Consider simple case where $\mu=\gamma \quad$ [just for purposes of intuition]
$\square \quad$ infinite server queue
\square use normal approximation to Poisson...

$$
\begin{aligned}
\Pi(b) & =c \cdot b+p \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right] \\
& \approx
\end{aligned}
$$

Why is the prescription so accurate under uncertainty?

Consider simple case where $\mu=\gamma \quad$ [just for purposes of intuition]
$\square \quad$ infinite server queue
\square use normal approximation to Poisson...

$$
\begin{aligned}
\Pi(b) & =c \cdot b+p \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right] \\
& \approx c \cdot b+p \mu \mathbb{E}[\Lambda / \mu-b]^{+} \quad+K \mathbb{E}\left[\sqrt{\Lambda / \mu} \exp \left(-\frac{(\Lambda / \mu-b)^{2}}{2(\Lambda / \mu)}\right)\right]
\end{aligned}
$$

Why is the prescription so accurate under uncertainty?

Consider simple case where $\mu=\gamma \quad$ [just for purposes of intuition]
$\square \quad$ infinite server queue
\square use normal approximation to Poisson...

$$
\begin{aligned}
\Pi(b) & =c \cdot b+p \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right] \\
& \approx c \cdot b+p \mu \mathbb{E}[\Lambda / \mu-b]^{+}+K \mathbb{E}\left[\sqrt{\Lambda / \mu} \exp \left(-\frac{(\Lambda / \mu-b)^{2}}{2(\Lambda / \mu)}\right)\right] \\
& =\text { approximate objective fn }+\quad \text { approximation error }
\end{aligned}
$$

Why is the prescription so accurate under uncertainty?

Consider simple case where $\mu=\gamma \quad$ [just for purposes of intuition]
\square infinite server queue
\square use normal approximation to Poisson...

$$
\begin{aligned}
\Pi(b) & =c \cdot b+p \mathbb{E}\left[\int_{0}^{T} \gamma Q(s) d s\right] \\
& \approx c \cdot b+p \mu \mathbb{E}[\Lambda / \mu-b]^{+}+K \mathbb{E}\left[\sqrt{\Lambda / \mu} \exp \left(-\frac{(\Lambda / \mu-b)^{2}}{2(\Lambda / \mu)}\right)\right] \\
& =\text { approximate objective fn }+\quad \text { approximation error }
\end{aligned}
$$

This suggests that performance gap is bounded...

- performance gap $\Delta=\Pi(\bar{b})-\Pi^{*}$ is independent of scale of system...

Rigorous foundations

Put $\mathbb{E} \Lambda=n$ and $C V^{n}=$ coefficient of variation

Thm. [Bassamboo-Randhawa-Z (09)]

- Uncertainty-driven regime: if $C V^{n} \gg 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}\left(1 / C V^{n}\right) .
$$

- Variability-driven regime: if $C V^{n} \ll 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}(\sqrt{n}) .
$$

Rigorous foundations

Put $\mathbb{E} \Lambda=n$ and $C V^{n}=$ coefficient of variation

Thm. [Bassamboo-Randhawa-Z (09)]

- Uncertainty-driven regime: if $C V^{n} \gg 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}\left(1 / C V^{n}\right) .
$$

- Variability-driven regime: if $C V^{n} \ll 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}(\sqrt{n}) .
$$

Cor 1. If $C V$ bounded away from 0 then prescription is $\mathcal{O}(1)$-optimal

Rigorous foundations

Put $\mathbb{E} \Lambda=n$ and $C V^{n}=$ coefficient of variation

Thm. [Bassamboo-Randhawa-Z (09)]

- Uncertainty-driven regime: if $C V^{n} \gg 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}\left(1 / C V^{n}\right) .
$$

- Variability-driven regime: if $C V^{n} \ll 1 / \sqrt{n}$, then

$$
\Pi\left(\bar{b}^{n}\right)=\Pi_{*}+\mathcal{O}(\sqrt{n}) .
$$

Cor 1. If $C V$ bounded away from 0 then prescription is $\mathcal{O}(1)$-optimal
Cor 2. Performance of \bar{b}^{n} is not sensitive to $\mathcal{O}(\sqrt{n})$ perturbations

Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...

Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...
possible approach: [Bassamboo- Z (2009)]

- estimate arrival rate distribution $\quad F_{n} \quad[n=$ "sample size" $]$
- form empirical (approximate) objective fn $\bar{\Pi}_{n}(\cdot)$
- compute $\bar{b}_{n} \quad[$ estimator of $\bar{b}]$
- evaluate performance of estimator $\mathbb{E} \Pi\left(\bar{b}_{n}\right)$

Inference and model calibration

problem: previous slides assume distribution of arrival rate is known...
possible approach: [Bassamboo- Z (2009)]

- estimate arrival rate distribution $\quad F_{n} \quad[n=$ "sample size" $]$
- form empirical (approximate) objective fn $\bar{\Pi}_{n}(\cdot)$
- compute $\bar{b}_{n} \quad[$ estimator of $\bar{b}]$
- evaluate performance of estimator $\mathbb{E} \Pi\left(\bar{b}_{n}\right)$
key ideas in analysis:
- need $\bar{\Pi}_{n}(\cdot)$ to be amenable to M-estimation theory...
\square e.g., Lipschitz fn guarantees finite bracketing entropy
- use Talagrand's bounds to establish $1 / \sqrt{n}$ accuracy
$\square \quad \mathbb{E} \Pi\left(\bar{b}_{n}\right)-\Pi^{*}=C / \sqrt{n}+$ approximation error
\square interaction between approximation bound and estimation bound...

Picture proof...

Takeaway messages

Parameter uncertainty:

- creates insensitivity in the objective fn
- makes it easier to achieve near optimal performance
$\square \quad$ simple capacity planning fluid problem
$\square \quad$ very simple control rules
- estimate/calibrate model
\square off line estimation [capacity planning]
$\square \quad$ real-time estimation [control]

