Stochastic Networks and Parameter Uncertainty

Assaf Zeevi*

Graduate School of Business

Columbia University

Stochastic Processing Networks Conference, August 2009

* based on joint work with Mike Harrison Achal Bassamboo and Ramandeep Randhawa Much of the work on stochastic processing networks:

- assumes model structure is known a priori, is accurate and stationary
 - parameters describing *system* and *environment* known and static
 - no model misspecification errors

Much of the work on stochastic processing networks:

- assumes model structure is known a priori, is accurate and stationary
 - parameters describing *system* and *environment* known and static
 - no model misspecification errors

In practice:

- model structure may be only partially known
- model primitives need to be inferred
 - from historical data
 - in on-line manner
- model may be misspecified...
 - both system model and environment
- environment may be changing over time

Example 1: Design of global delivery centers

how to deal with forecasting errors?

Example 2: Price engineering

Example 2: Price engineering

how to deal with changing environment?

Impact of parameter uncertainty on:

- static capacity / processing rate decisions
 - □ revisiting the square-root logic...
- model specification and calibration
 - □ estimation and testing
- dynamic control and resource allocation
 - revisiting the static planning problem...

Mean call arrivals 8 – 10AM in medium sized call center

Day of Week	Mean no. of arriving calls	CV [empirical] (%)	CV [Poisson] (%)
Mon	943	26.5	3.3
Tue	824	22.3	3.5
Wed	807	26.5	3.5
Thu	778	28.5	3.6
Fri	767	33.5	3.6
Sat	293	61.8	5.8
Sun	139	148.1	8.5

- ► CV [empirical] = coefficient of variation (in %)
- CV [Poisson] = calculated assuming arrival process Poisson

• arrival process = doubly stochastic with rate $\Lambda_1(t)$

 \blacktriangleright N : headcount process

 $N_i(t) = \#$ of class *i* customers present at time *t*

 \blacktriangleright Q : queue length process

 $Q_i(t) = \#$ of class *i* customers not being served at time *t*

▶ X : dynamic control [$(RX)_i$ = rate of service in class i]

 $X_j(t) = \#$ of servers allocated to activity j

- \blacktriangleright b : staffing vector
- \blacktriangleright (\boldsymbol{X}, N, Q) satisfy

 $AX(t) \leq b$, $Q(t) = N(t) - BX(t) \geq 0$, $N(t) \geq 0$, $X(t) \geq 0$

$$N_{i}(t) = \begin{bmatrix} \text{Arrivals} \\ \text{rate: } \Lambda_{i}(t) \end{bmatrix} - \begin{bmatrix} \text{Completed Services} \\ \text{rate: } (R\boldsymbol{X})_{i}(t) \end{bmatrix} - \begin{bmatrix} \text{Abanbonments} \\ \text{rate: } \gamma_{i}Q_{i}(t) \end{bmatrix}$$

 \blacktriangleright N : headcount process

 $N_i(t) = \#$ of class *i* customers present at time *t*

 \blacktriangleright Q : queue length process

 $Q_i(t) = \#$ of class *i* customers not being served at time *t*

▶ X : dynamic control [$(RX)_i$ = rate of service in class i]

 $X_j(t) = \#$ of servers allocated to activity j

- \blacktriangleright b : staffing vector
- \blacktriangleright (\boldsymbol{X}, N, Q) satisfy

 $AX(t) \leq b$, $Q(t) = N(t) - BX(t) \geq 0$, $N(t) \geq 0$, $X(t) \geq 0$

Design and control objectives

b = r-dim'l vector of staffing levels in agent pools

- c = personnel cost vector
- p = penalty cost vector

Q(t) = vector of queuelengths at time t in class i [depends on routing...]

 γ = abandonment rate vector

T = planning horizon over which staffing is held fixed

b = r-dim'l vector of staffing levels in agent pools

- c = personnel cost vector
- p = penalty cost vector

Q(t) = vector of queuelengths at time t in class i [depends on routing...]

 γ = abandonment rate vector

T = planning horizon over which staffing is held fixed

Decision "variables": capacity vector \boldsymbol{b} and control \boldsymbol{X}

"Solve the simplest problem you don't know the answer to."

– Mike Harrison

"Solve the simplest problem you don't know the answer to."

– Mike Harrison

- > arrival process doubly stochastic w/ rate $\Lambda(t)$
- exponential services w/ rate μ
- \blacktriangleright exponential reneging w/ rate γ
- ▶ *b* statistically identical servers

"Solve the simplest problem you don't know the answer to."

– Mike Harrison

- > arrival process doubly stochastic w/ rate $\Lambda(t)$
- exponential services w/ rate μ
- \blacktriangleright exponential reneging w/ rate γ
- \blacktriangleright b statistically identical servers

objective: minimize

$$\Pi(\boldsymbol{b}) := c \cdot \boldsymbol{b} + p \mathbb{E} \left[\int_0^T \gamma Q(s) ds \right]$$

 \blacktriangleright **b^*** = optimal capacity choice

if $\Lambda \gg \mu, \gamma$ and of reasonable magnitude
e.g., 100's of calls/hour, processing/reneging order of minutes
then expect
" "accurate" fluid approximation
" "short" relaxation times

if $\Lambda \gg \mu, \gamma$ and of reasonable magnitude
e.g., 100's of calls/hour, processing/reneging order of minutes
then expect
" "accurate" fluid approximation
"short" relaxation times

► $\gamma Q(t) \approx (\Lambda(t) - b\mu)^+$ pointwise stationary fluid model (PSFM)

if $\Lambda \gg \mu$	μ,γ and of reasonable magnitude
	e.g., 100's of calls/hour, processing/reneging order of minutes
then ex	xpect
	"accurate" fluid approximation
	"short" relaxation times

▶ $\gamma Q(t) \approx (\Lambda(t) - b\mu)^+$ pointwise stationary fluid model (PSFM)

More generally: in each class i = 1, ..., m, and all time t

$$(*) \qquad \gamma_i Q_i(t) \approx \Lambda_i(t) - (RX)_i(t)$$
abandonment rate arrival rate processing rate

Picture proof

for real proof see Bassamboo-Harrison-Z (06a,06b)

Consequence

original objective fn:

$$\Pi(\boldsymbol{b}) = c \cdot \boldsymbol{b} + p \cdot \mathbb{E} \Big[\int_0^T \gamma Q(s) ds \Big]$$

• optimal solution b^*

original objective fn:

$$\Pi(\mathbf{b}) = c \cdot \mathbf{b} + p \cdot \mathbb{E}\left[\int_0^T \gamma Q(s) ds\right]$$

• optimal solution b^*

approximate objective fn:

$$\bar{\Pi}(\mathbf{b}) = c \cdot \mathbf{b} + p \cdot \mathbb{E}\left[\int_0^T (\Lambda(s) - \mathbf{b}\mu)^+ ds\right]$$

• approximate solution \overline{b}

if $\Lambda = \lambda$ (deterministic case)

then optimal solution takes form

$$\boldsymbol{b^*} = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$$

Erlang's square root rule...

if $\Lambda = \lambda$ (deterministic case)

then optimal solution takes form

$$\boldsymbol{b^*} = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$$

Erlang's square root rule...

Arrival rate	Optimal solution		Prescription		Difference	
λ	b *	Π^*	$ar{b}$	$\Pi(\overline{m{b}})$	$b^* - ar{b}$	$\Pi(\overline{\mathbf{b}}) - \Pi^*$
37.5	40	14.75	37	15.02	3	0.27
75	79	28.17	75	28.45	4	0.28
300	307	106.32	300	106.91	7	0.59

In pictures...

Stochastic arrival rate

Deterministic arrival rate

Relation to traditional models (cont'd)

- arrival rate Λ
 - □ time homogenous
 - \Box random drawn from distribution F

Relation to traditional models (cont'd)

- arrival rate Λ
 - □ time homogenous
 - \Box random drawn from distribution F

objective: minimize

$$\Pi(\mathbf{b}) := c \cdot \mathbf{b} + p \mathbf{E}[N - \mathbf{b}]^+$$

> N = number of customers in system in steady-state

Relation to traditional models (cont'd)

- arrival rate Λ
 - □ time homogenous
 - \Box random drawn from distribution F

objective: minimize

$$\Pi(\mathbf{b}) := c \cdot \mathbf{b} + p \mathbf{E}[N - \mathbf{b}]^+$$

 \triangleright N = number of customers in system in steady-state

PSFM approximation: minimize

 $\bar{\Pi}(\mathbf{b}) := c \cdot \mathbf{b} + p \mathbf{E}[\Lambda - \mathbf{b}\mu]^+$

simple newsvendor problem with fractile solution

$$\bar{\boldsymbol{b}} = \frac{1}{\mu} \bar{F}^{-1} \left(\frac{c}{p\mu} \right)$$

arrival rates constant and random (CV = 19.2%)

Arrival rate	Optimal solution		Prescription		Difference	
distribution	<i>b</i> *	Π^*	\overline{b}	$\Pi(ar{b})$	$ b^*-ar{b} $	$\Pi(ar{b}) - \Pi^*$
U[25,50]	42	16.21	41	16.23	1	0.02
U[50,100]	83	31.47	83	31.47	0	0
U[200,400]	332	122.89	333	122.89	1	0

Consider simple case where $\mu = \gamma$ [just for purposes of intuition]

- □ infinite server queue
- □ use normal approximation to Poisson...

$$\Pi(\boldsymbol{b}) = c \cdot \boldsymbol{b} + p \mathbb{E}\left[\int_0^T \gamma Q(s) ds\right]$$

Consider simple case where $\mu = \gamma$ [just for purposes of intuition]

- □ infinite server queue
- □ use normal approximation to Poisson...

$$\Pi(\mathbf{b}) = c \cdot \mathbf{b} + p \mathbb{E}\left[\int_0^T \gamma Q(s) ds\right]$$

$$\approx c \cdot \mathbf{b} + p \mu \mathbb{E}[\Lambda/\mu - \mathbf{b}]^+ + K \mathbb{E}\left[\sqrt{\Lambda/\mu} \exp\left(-\frac{(\Lambda/\mu - \mathbf{b})^2}{2(\Lambda/\mu)}\right)\right]$$

Consider simple case where $\mu = \gamma$ [just for purposes of intuition]

- □ infinite server queue
- □ use normal approximation to Poisson...

$$\begin{split} \Pi(\boldsymbol{b}) &= c \cdot \boldsymbol{b} + p \mathbb{E} \left[\int_0^T \gamma Q(s) ds \right] \\ &\approx c \cdot \boldsymbol{b} + p \mu \mathbb{E} [\Lambda/\mu - \boldsymbol{b}]^+ + K \mathbb{E} \left[\sqrt{\Lambda/\mu} \exp \left(-\frac{(\Lambda/\mu - \boldsymbol{b})^2}{2(\Lambda/\mu)} \right) \right] \\ &= \text{approximate objective fn} + \text{approximation error} \end{split}$$

Consider simple case where $\mu = \gamma$ [just for purposes of intuition]

- □ infinite server queue
- □ use normal approximation to Poisson...

$$\begin{split} \Pi(\boldsymbol{b}) &= c \cdot \boldsymbol{b} + p \mathbb{E} \left[\int_0^T \gamma Q(s) ds \right] \\ &\approx c \cdot \boldsymbol{b} + p \mu \mathbb{E} [\Lambda/\mu - \boldsymbol{b}]^+ + K \mathbb{E} \left[\sqrt{\Lambda/\mu} \exp \left(-\frac{(\Lambda/\mu - \boldsymbol{b})^2}{2(\Lambda/\mu)} \right) \right] \\ &= \text{approximate objective fn} + \text{approximation error} \end{split}$$

This suggests that *performance gap is bounded...*

▶ performance gap $\Delta = \Pi(\overline{b}) - \Pi^*$ is independent of scale of system...

Put $\mathbb{E}\Lambda = n$ and CV^n = coefficient of variation

Thm. [Bassamboo-Randhawa-Z (09)] • Uncertainty-driven regime: if $CV^n \gg 1/\sqrt{n}$, then $\Pi(\bar{\mathbf{b}}^n) = \Pi_* + \mathcal{O}(1/CV^n).$ • Variability-driven regime: if $CV^n \ll 1/\sqrt{n}$, then $\Pi(\bar{\mathbf{b}}^n) = \Pi_* + \mathcal{O}(\sqrt{n}).$ Put $\mathbb{E}\Lambda = n$ and CV^n = coefficient of variation

Cor 1. If CV bounded away from 0 then prescription is $\mathcal{O}(1)$ -optimal

Put $\mathbb{E}\Lambda = n$ and CV^n = coefficient of variation

Cor 1. If CV bounded away from 0 then prescription is $\mathcal{O}(1)$ -optimal **Cor 2.** Performance of \overline{b}^n is not sensitive to $\mathcal{O}(\sqrt{n})$ perturbations **problem:** previous slides assume distribution of arrival rate is known...

problem: previous slides assume distribution of arrival rate is known...

possible approach: [Bassamboo- Z (2009)]

- estimate arrival rate distribution F_n [n = "sample size"]
- form empirical (approximate) objective fn $\bar{\Pi}_n(\cdot)$
- compute \overline{b}_n [estimator of \overline{b}]
- evaluate performance of estimator $\mathbb{E}\Pi(\overline{b}_n)$

problem: previous slides assume distribution of arrival rate is known...

```
possible approach: [Bassamboo- Z (2009)]
```

- ▶ estimate arrival rate distribution F_n [n = "sample size"]
- form empirical (approximate) objective fn $\bar{\Pi}_n(\cdot)$
- compute \overline{b}_n [estimator of \overline{b}]
- evaluate performance of estimator $\mathbb{E}\Pi(\overline{b}_n)$

key ideas in analysis:

- need $\overline{\Pi}_n(\cdot)$ to be amenable to *M*-estimation theory...
 - e.g., Lipschitz fn guarantees finite bracketing entropy
- use Talagrand's bounds to establish $1/\sqrt{n}$ accuracy
 - \square $\mathbb{E}\Pi(\overline{\boldsymbol{b}}_n) \Pi^* = C/\sqrt{n} + \text{approximation error}$
 - □ interaction between approximation bound and estimation bound...

Parameter uncertainty:

- creates insensitivity in the objective fn
- makes it easier to achieve near optimal performance
 - □ simple capacity planning fluid problem
 - □ very simple control rules
- estimate/calibrate model
 - □ off line estimation [capacity planning]
 - □ real-time estimation [control]