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The two most influential unknown papers of the Twentieth
Century

I J. M. Harrison & S. R. Pliska (1981) Martingales and
stochastic integrals in the theory of continuous trading,
Stochastic Processes and Applications 11, 215–260.

I J. M. Harrison & S. R. Pliska (1983) A stochastic
calculus model of continuous trading: complete markets,
Stochastic Processes and Applications 15, 313–316.
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Fundamental Theorems of Asset Pricing

Definition
A martingale measure is a probability measure, equivalent to the
actual measure, under which all discounted (at the possibly
random interest rate) asset price processes are martingales.

Theorem (First Fundamental Theorem)

There exists a martingale measure if and only if a model admits no
arbitrage.

Theorem (Second Fundamental Theorem)

Consider a model that admits no arbitrage. The martingale
measure is unique if and only if every derivative security can be
replicated by trading in the primary assets.
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Context

I Discrete-time trading and continuous-time trading.

I Admissible trading strategies must be self-financing and lead
to almost surely nonnegative portfolio values at the final time.
Must also satisfy some technical conditions.

I Semi-martingale asset price processes.

“We are working dangerously close to the boundaries of our
knowledge....” — J. M. Harrison and S. Pliska
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Consequences

I Derivative security pricing no longer restricted to geometric
Brownian motion.

I No longer tied to Markov assumption.

I No longer must asset price processes be continuous.
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Further consequences

I Heath-Jarrow-Morton model for interest rate derivatives.

I Optimal investment and consumption in a general stochastic
process setting.

I Equilibrium analysis in a general setting.

I Theory of market incompleteness, the case of multiple
martingale measures.

“DNA is not all good. Criminals use it to get out of jail.”
—Stephen Colbert

I Risk-neutral pricing, a consequence of the existence of the
martingale measure, can be applied blindly without thinking
whether the measure is unique.
See “Did faulty mathematical models cause the financial
fiasco?,” Analytics Magazine, Spring 2009, available at
www.math.cmu.edu/users/shreve.
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Outline of the Rest of the Talk

Skorohod Map

Real-Time Queues

Real-Time Queues with Reneging
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1. Skorohod Map

ψ

φ

φ(t) , ψ(t)− inf0≤s≤t

[
ψ(s) ∧ 0

]
. (Skorokhod, 1961)

a

(Tanaka, 1979)

(Anulova and Liptser, 1990)

(Whitt, 2002)
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Formula for Double Skorohod Map

φ

a

λ(φ)(t) , φ(t)− sups∈[0,t]

[(
φ(s)− a

)+ ∧ infu∈[s,t] φ(u)
]
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Related formulas

Toomey (1998).
Let ψ be piecewise constant. The double reflection in [0, a] of ψ is

inf
s∈(0,t]

sup
u∈(s,t]

[(
a + ψ(t)− ψ(s)

)
∨

(
ψ(t)− ψ(u)

)]
∨ sup

u∈(0,t]

[(
ψ(t) ∨

(
ψ(t)− ψ(u)

)]
.
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Related formulas

Cooper, Schmidt and Serfozo (2001).
H is a signed measure on [0,∞) and

X (t) = sup
s∈[0,t]

inf
u∈[s,t]

[
xlI{s=u=o} + H(u, t]− alI{s=u>0}

]
,

Then X is the double reflection in [−a, 0] of the bounded-variation
function t 7→ (x + H(0, t]).
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Related formulas

Ganesh, O’Connell and Wischik (2004).
Let ψ be a bounded-variation function. The double reflection in
[0, a] of ψ is(

ψ(t) ∨ inf
s∈[0,t]

[
N(s, t) ∧

(
M(s, t) + a

)] )
∧ inf

s∈[0,t]

[
N(s, t) ∨

(
M(s, t) + a

)]
,

where

M(s, t) = ψ(t)− sup
u∈[s,t]

ψ(u),

N(s, t) = ψ(t)− inf
u∈[s,t]

ψ(u).

33 / 56



2. Real-Time Queues

Single station, renewal arrival process.

Heavy traffic assumption: For some γ 6= 0, ρ(n) = 1− γ√
n

.

Workload process: W (n)(t)

Scaled workload process: Ŵ (n)(t) , 1√
n
W (n)(nt)

Theorem (Kingman (1961), Iglehart/Whitt (1970))

Ŵ (n) ⇒W ∗,

where W ∗ is a Brownian motion with drift −γ, reflected at the
origin so as to always be nonnegative.
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Lead Times
I L

(n)
1 , L

(n)
2 , . . . – IID positive random variables. The lead times.

I G (y) – Cumulative distribution function.

P

L
(n)
j√
n
≤ y

 = G (y)

Customers are assigned lead times upon arrival, and lead times
decrease at rate 1 per unit time thereafter. Delay grows like

√
n,

so we must let lead times also grow like
√

n.

Earliest Deadline First (EDF) – Always serve customer with
smallest lead time. Ties do not matter. Use pre-emption.

Problem: Determine the heavy traffic limit of the distribution of
lead times of customers in queue.
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Dynamics of lead times under EDF

F (n)(t) – Largest lead time of any customer who has ever been in
service by time t, the frontier.
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Workload and arrived-work measures
Let B be a Borel subset of R. Define

W(n)(t)(B) ,

{
Work associated with customers in
queue at time t with lead times in B.

}

V(n)(t)(B) ,


Work associated with customers arrived
by time t with lead times in B, whether
or not customer is still present at time t.



Scaled processes

Ŵ(n)(t)(B) ,
1√
n
W(n)(nt)(

√
n B),

V̂(n)(t)(B) ,
1√
n
V(n)(nt)(

√
n B),

F̂ (n)(t) ,
1√
n
F (n)(nt).
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Limiting lead-time distribution

Lemma (Crushing)

Ŵ(n)
(
−∞, F̂ (n)

]
⇒ 0.

Corollary

For every y ∈ R,

Ŵ(n)(t)(y ,∞)− V̂(n)(t)
(
y ∨ F̂ (n)(t),∞

)
⇒ 0.

Theorem
For all y ∈ R,

V̂(n)(t)(y ,∞) ⇒ H(y) ,
∫ ∞

y

(
1− G (x)

)
dx .
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Evolution of limiting workload measure

F ∗(t) x

W ∗(t)

1− G (x)

W ∗(t) is a reflected Brownian motion with drift −γ. The limiting
scaled frontier is

F ∗(t) = H−1
(
W ∗(t)

)
.

The limit of the measure-valued workload process Ŵ(n)(t) has
density

(
1− G (x)

)
lI{x≥F∗(t)}. We call this limiting measure-valued

process
W∗(t).

(Doytchinov, Lehoczky, Shreve (2000))
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3. Real-Time Queues with Reneging

Customers are late in the limiting system when F ∗(t) is negative.

F ∗(t) x

W ∗(t)

1− G (x)

F ∗(t) < 0 ⇐⇒W ∗(t) > H(0) =

∫ ∞

0

(
1− G (x)

)
dx .
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Theorem
If customers renege when their lead times reach zero, then the
limiting scaled workload process is a

doubly reflected Brownian motion on [0,H(0)] with drift −γ.

The limiting scaled workload measure is as before.
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Ingredients of the proof

I M – The set of finite measures on (R,B(R)).
I DM[0,∞) – The set of cádlág functions taking values in M.

A sample path of the workload process, either scaled or
unscaled, is an element of DM[0,∞).

I Λ: DM[0,∞) → DM[0,∞)

Λ(µ)(t)(−∞, y ]

,

[
µ(t)(−∞, y ]− sup

0≤s≤t

(
µ(s)(−∞, 0] ∧ inf

s≤u≤t
µ(u)(R)

)]+

.

Set
U (n)(t) , Λ(W(n))(t).

Define

U(n)(t) , U (n)(R)(t)

= W (n)(t)− sup
0≤s≤t

[
W(n)(s)(−∞, 0] ∧ inf

s≤u≤t
W (n)(u)

]
.
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The doubly-reflected Brownian motion U∗

Scale and pass to the limit:

U∗(t) = W ∗(t)− sup
0≤s≤t

[
W∗(s)(−∞, 0] ∧ inf

s≤u≤t
W ∗(u)

]
.

But in the limit, we have

W∗(s)(−∞, 0] =
(
W ∗(s)− H(0)

)+
.

Therefore,

U∗(t) = W ∗(t)− sup
0≤s≤t

[(
W ∗(s)− H(0)

)+ ∧ inf
s≤u≤t

W ∗(u)

]
.

Recall the double-reflection map for a scalar-valued process

λ(φ)(t) , φ(t)− sup
s∈[0,t]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
.
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The measures W (n)
R and U (n) = Λ(W (n))

Let D(n) be the work that arrives to the reneging system ahead of
the frontier and later reneges.

Lemma (Comparison)

For the unscaled processes, we have

0 ≤ U(n)(t)−W
(n)
R (t) ≤ D(n)(t).

For the scaled processes

Û(n)(t) ,
U(n)(nt)√

n
, Ŵ

(n)
R (t) ,

W
(n)
R (nt)√

n
, D̂(n)(t) ,

D(n)(nt)√
n

,

we have the comparison

0 ≤ Û(n)(t)− Ŵ
(n)
R (t) ≤ D̂(n)(t).
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The measures W (n)
R and U (n) = Λ(W (n))

Lemma (Crushing)

D̂(n) ⇒ 0.

Theorem (Limit of reneging system)

Ŵ(n)
R − Û (n) ⇒ 0, or equivalently, Ŵ(n)

R ⇒ Λ(Ŵ∗).
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