Reflected Brownian Motions, Dirichlet Processes and Queueing Networks

K. Ramanan (Carnegie Mellon University)

includes joint work with Weining Kang and Martin Reiman

Some Early Influential Papers

M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.

- M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.
- M. Harrison and M. Reiman. Reflected Brownian motion on an orthant. Ann. Probab., 8 (1981), 302–308.

- M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.
- M. Harrison and M. Reiman. Reflected Brownian motion on an orthant. Ann. Probab., 8 (1981), 302–308.
- M. Reiman. Open queueing networks in heavy traffic. *Math. Oper. Res.*, **9** (1984), 441–458.

- M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.
- M. Harrison and M. Reiman. Reflected Brownian motion on an orthant. Ann. Probab., 8 (1981), 302–308.
- M. Reiman. Open queueing networks in heavy traffic. *Math. Oper. Res.*, **9** (1984), 441–458.
- M. Harrison and M. Reiman. On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math., 41 (1981) 345–361.

- M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.
- M. Harrison and M. Reiman. Reflected Brownian motion on an orthant. Ann. Probab., 8 (1981), 302–308.
- M. Reiman. Open queueing networks in heavy traffic. *Math. Oper. Res.*, **9** (1984), 441–458.
- M. Harrison and M. Reiman. On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math., 41 (1981) 345–361.
- M. Harrison and R. Williams Multidimensional reflected Brownian motions having exponential stationary distributions. *Ann. Probab.*, 15 (1987) 115–137.

- M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab., 10 (1978), 886–905.
- M. Harrison and M. Reiman. Reflected Brownian motion on an orthant. Ann. Probab., 8 (1981), 302–308.
- M. Reiman. Open queueing networks in heavy traffic. *Math. Oper. Res.*, **9** (1984), 441–458.
- M. Harrison and M. Reiman. On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math., 41 (1981) 345–361.
- M. Harrison and R. Williams Multidimensional reflected Brownian motions having exponential stationary distributions. *Ann. Probab.*, 15 (1987) 115–137.
- M. Harrison and R. Williams Brownian models of open queueing networks with homogeneous customer populations. *Stochastics*, 22 (1987) 77-115.

Reflected Processes – what are they?

G is the closure of some connected domain in \mathbb{R}^n $d(\cdot)$ is a vector field specified on the boundary ∂G d(x) is a cone for every $x \in \partial G$, graph of $d(\cdot)$ is closed ϕ satisfies some specified interior dynamics Want $\phi(t) \in G$ for all $t \in [0, \infty)$

•
$$\phi(t) = \psi(t) + \eta(t) \in G$$

•
$$\phi(t) = \psi(t) + \eta(t) \in G$$

• $|\eta|(t) < \infty$ for every $t \in [0, \infty)$
• $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$
i.e., total variation $|\eta|$ increases
only when ϕ lies in ∂G
• $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

Given $(G, d(\cdot))$, for any continuous ψ , find a continuous ϕ such that

•
$$\phi(t) = \psi(t) + \eta(t) \in G$$

• $|\eta|(t) < \infty$ for every $t \in [0, \infty)$
• $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$
i.e., total variation $|\eta|$ increases
only when ϕ lies in ∂G
• $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

 Γ denotes the map that takes ψ to ϕ (when well-defined).

Given $(G, d(\cdot))$, for any continuous ψ , find a continuous ϕ such that

(a)
$$\phi(t) = \psi(t) + \eta(t) \in G$$
(a) $|\eta|(t) < \infty$ for every $t \in [0, \infty)$
(a) $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$
i.e., total variation $|\eta|$ increases
only when ϕ lies in ∂G
(a) $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

 Γ denotes the map that takes ψ to ϕ (when well-defined).

Note: If X is a martingale, then $Z = \Gamma(X)$ is a semimartingale.

semimartingale = local martingale + bounded variation

General Framework

- $\bigcirc \phi(t) = \psi(t) + \eta(t) \in G$
- 2 $|\eta|(t) < \infty$ for every $t \in [0,\infty)$
- $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$ i.e., total variation $|\eta|$ increases only when ϕ lies in ∂G
- $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

General Framework

$$\bigcirc \hspace{0.1cm} \phi(t) = \psi(t) + \eta(t) \in G$$

2
$$|\eta|(t) < \infty$$
 for every $t \in [0,\infty)$

- $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$ i.e., total variation $|\eta|$ increases only when ϕ lies in ∂G
- $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

N-dimensional Nonnegative Orthant Framework

$${igle 0} \hspace{0.2cm} \phi(t) = \psi(t) + R heta(t) \in {f G};$$
 where R is an $N imes N$ matrix

General Framework

$$\bigcirc \hspace{0.1cm} \phi(t) = \psi(t) + \eta(t) \in {\sf G}$$

2
$$|\eta|(t) < \infty$$
 for every $t \in [0,\infty)$

- $|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$ i.e., total variation $|\eta|$ increases only when ϕ lies in ∂G
- $\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

N-dimensional Nonnegative Orthant Framework

- $\phi(t) = \psi(t) + R\theta(t) \in G$; where R is an $N \times N$ matrix
- 2 θ_i non-decreasing function, $i = 1, \ldots, N$

General Framework

$$\bigcirc \hspace{0.1cm} \phi(t) = \psi(t) + \eta(t) \in {\sf G}$$

2
$$|\eta|(t) < \infty$$
 for every $t \in [0,\infty)$

3
$$|\eta|(t) = \int_0^\infty \mathbb{I}_{\{\phi(s) \in \partial G\}} d|\eta|(s)$$

i.e., total variation $|\eta|$ increases
only when ϕ lies in ∂G

•
$$\eta(t) = \int_0^t \gamma(s) d|\eta|(s)$$
, with $\gamma(s) \in d(\phi(s)) d|\eta|$ a.e.

N-dimensional Nonnegative Orthant Framework

()
$$\phi(t) = \psi(t) + R\theta(t) \in G$$
; where *R* is an *N* × *N* matrix

2
$$\theta_i$$
 non-decreasing function, $i = 1, \ldots, N$

A (1) > A (2) > A

 Observation: Open single-class networks are modelled by reflection matrices *R* that are Minkowski

4 A b 4

- Observation: Open single-class networks are modelled by reflection matrices *R* that are Minkowski
- Theorem (Harrison-Reiman, '81)
 R Minkowski matrix ⇒ Γ well-defined and continuous

- Observation: Open single-class networks are modelled by reflection matrices *R* that are Minkowski
- Theorem (Harrison-Reiman, '81) *R* Minkowski matrix $\Rightarrow \Gamma$ well-defined and continuous
- Theorems (Reiman '84, Chen-Mandelbaum '91)
 Rigorously shown that diffusion limits of open single-class
 networks are RBMs in R^N₊ with Minkowski reflection matrices R

- Observation: Open single-class networks are modelled by reflection matrices *R* that are Minkowski
- Theorem (Harrison-Reiman, '81) *R* Minkowski matrix $\Rightarrow \Gamma$ well-defined and continuous
- Theorems (Reiman '84, Chen-Mandelbaum '91)
 Rigorously shown that diffusion limits of open single-class
 networks are RBMs in R^N₊ with Minkowski reflection matrices R

What about multi-class networks?

 Peterson ('91) established diffusion approximations of multiclass feedforward networks; associated Γ is continuous

- Observation: Open single-class networks are modelled by reflection matrices *R* that are Minkowski
- Theorem (Harrison-Reiman, '81) *R* Minkowski matrix $\Rightarrow \Gamma$ well-defined and continuous
- Theorems (Reiman '84, Chen-Mandelbaum '91)
 Rigorously shown that diffusion limits of open single-class
 networks are RBMs in R^N₊ with Minkowski reflection matrices R

What about multi-class networks?

Peterson ('91) established diffusion approximations of multiclass feedforward networks; associated Γ is continuous
 All multi-class queueing networks need not be modelled by Γ that are continuous

Semimartingale Reflected Brownian Motions (SRBM)

• When Γ well-defined, RBM can be defined pathwise;

4 A A

- When **r** well-defined, RBM can be defined pathwise;
- Otherwise, can define RBMs in the weak sense (using the submartingale formulation)

- When Γ well-defined, RBM can be defined pathwise;
- Otherwise, can define RBMs in the weak sense (using the submartingale formulation)
- In the orthant framework, *R* completely-*S* is necessary and sufficient for existence of solutions to the SP; (Bernard-El Kharroubi, '91)

- When Γ well-defined, RBM can be defined pathwise;
- Otherwise, can define RBMs in the weak sense (using the submartingale formulation)
- In the orthant framework, *R* completely-*S* is necessary and sufficient for existence of solutions to the SP; (Bernard-El Kharroubi, '91)
- But *R* completely-*S* does not guarantee uniqueness;

- When Γ well-defined, RBM can be defined pathwise;
- Otherwise, can define RBMs in the weak sense (using the submartingale formulation)
- In the orthant framework, *R* completely-*S* is necessary and sufficient for existence of solutions to the SP; (Bernard-El Kharroubi, '91)
- But *R* completely-*S* does not guarantee uniqueness;
- Completely-S condition is necessary and sufficient for existence and uniqueness (in distribution) of SRBM (Reiman-Williams '88, Taylor-Williams)

The Bramson-Williams Framework ('98) State Space Collapse + Completely-S \downarrow Heavy traffic limit theorem for the multi-class queueing network

Example 1: Generalized Processor Sharing

ESP describing mapping from inputs to the queue content

4 A N

Example 1: Generalized Processor Sharing The 3-dimensional GPS Model

Solutions to the SP do not exist for all (right) continuous paths

Example 1: Generalized Processor Sharing The 3-dimensional GPS Model

Solutions to the SP do not exist for all (right) continuous paths Does not satisfy Completely-S condition

Example 2: FIFO Tandem Queue with Deadlines (Reed)

A >

Example 2: FIFO Tandem Queue with Deadlines (Reed)

Submartingale Formulation vs. Skorokhod Problem Approach

	Skorokhod Problem	Submartingale Problem
Pros	Constructs strong solutions; yields pathwise uniqueness	Can be used to analyze arbitrary processes
Cons	Can only be used to analyze semimartingales	Provides only weak existence and uniqueness

큰

Definition of the ESP on $(G, d(\cdot))$ (R '06)

For any continuous ψ find a continuous ϕ such that

4 A A

Definition of the ESP on $(G, d(\cdot))$ (R '06)

For any continuous ψ find a continuous ϕ such that

 $\overline{\Gamma}$: $\psi \mapsto \phi$ called the Extended Skorokhod Map (ESM)

Definition of the ESP on $(G, d(\cdot))$ (R '06)

For any continuous ψ find a continuous ϕ such that

 $\overline{\Gamma}$: $\psi \mapsto \phi$ called the Extended Skorokhod Map (ESM)

Note: If X is a martingale, then $Z = \overline{\Gamma}(X)$ is not necessarily a semimartingale

< 同 > < ∃ >

Theorem (R. '00, '06)

- If (ϕ, η) solve the SP for ψ , then (ϕ, η) solve the ESP for ψ
- If (ϕ, η) solve the ESP for ψ and $|\eta|(t) < \infty \ \forall t$, then (ϕ, η) solve the SP
- The graph of the ESM $\overline{\Gamma}$ is closed.

Theorem ('R '06 and Kang-'R '08) The reflected diffusion *Z* associated with the GPS ESP is a

semimartingale on the interval $[0, \tau_0]$, where

$$\tau_0 = \inf\{t \ge 0 : Z(t) = 0\}$$

but Z is not a semimartingale on $[0,\infty)$

Theorem ('R '06 and Kang-'R '08) The reflected diffusion Z associated with the GPS ESP is a semimartingale on the interval $[0, \tau_0]$, where

$$\tau_0 = \inf\{t \ge 0 : Z(t) = 0\}$$

but Z is not a semimartingale on $[0,\infty)$

2-d + BM case: follows from Williams ('85)

Definition

A process Z is a Dirichlet process if it admits the decomposition

Z = M + A

M local martingale and *A* a continuous process with A(0) = 0 that has zero quadratic variation,

i.e., for any sequence of partitions $\{\Pi^n\}$ of [0, t],

$$\lim_{n o\infty}|\Pi^n| o 0 \quad \Rightarrow \quad \sum_{t_i\in\Pi^n}|{\sf A}(t_{i+1})-{\sf A}(t_i)|^2\stackrel{(\mathbb{P})}{ o} 0.$$

Definition

A process Z is a Dirichlet process if it admits the decomposition

Z = M + A

M local martingale and *A* a continuous process with A(0) = 0 that has zero quadratic variation,

i.e., for any sequence of partitions $\{\Pi^n\}$ of [0, t],

$$\lim_{n o\infty}|\Pi^n| o 0 \quad \Rightarrow \quad \sum_{t_i\in\Pi^n}|A(t_{i+1})-A(t_i)|^2\stackrel{(\mathbb{P})}{ o} 0.$$

Note:

If *A* is a process of a.s. finite variation on bounded intervals, *Z* is a continuous semimartingales.

Given $(G, d(\cdot))$, b, σ Lip. cont and σ uniformly elliptic. Suppose there exists a Markov, weak solution (Z, B), \mathcal{F}_t to the associated SDER and let Y = Z - X:

$$X(t) = z + \int_0^t b(Z(s)) \, ds + \int_0^t \sigma(Z(s)) \, dB(s).$$

Given $(G, d(\cdot))$, b, σ Lip. cont and σ uniformly elliptic. Suppose there exists a Markov, weak solution (Z, B), \mathcal{F}_t to the associated SDER and let Y = Z - X:

$$X(t) = z + \int_0^t b(Z(s)) \, ds + \int_0^t \sigma(Z(s)) \, dB(s).$$

Theorem W. Kang and 'R, ('08)

If there exist $p \ge 2$ and $q \ge 2$ such that for every $0 \le s, t \le T$,

$$\mathbb{E}\left[|Y(t) - Y(s)|^{p}|\mathcal{F}_{s}
ight] \leq \mathbb{E}\left[\sup_{u \in s,t]}|X(u) - X(s)|^{q}\mathcal{F}_{s}
ight],$$

Given $(G, d(\cdot))$, b, σ Lip. cont and σ uniformly elliptic. Suppose there exists a Markov, weak solution (Z, B), \mathcal{F}_t to the associated SDER and let Y = Z - X:

$$X(t) = z + \int_0^t b(Z(s)) \, ds + \int_0^t \sigma(Z(s)) \, dB(s).$$

Theorem W. Kang and 'R, ('08)

If there exist $p \ge 2$ and $q \ge 2$ such that for every $0 \le s, t \le T$,

$$\mathbb{E}\left[|\mathsf{Y}(t)-\mathsf{Y}(s)|^p|\mathcal{F}_s
ight] \leq \mathbb{E}\left[\sup_{u\in s,t]}|\mathsf{X}(u)-\mathsf{X}(s)|^q\mathcal{F}_s
ight],$$

then Z is a Dirichlet process.

Given $(G, d(\cdot))$, b, σ Lip. cont and σ uniformly elliptic. Suppose there exists a Markov, weak solution (Z, B), \mathcal{F}_t to the associated SDER and let Y = Z - X:

$$X(t) = z + \int_0^t b(Z(s)) \, ds + \int_0^t \sigma(Z(s)) \, dB(s).$$

Theorem W. Kang and 'R, ('08)

If there exist $p \ge 2$ and $q \ge 2$ such that for every $0 \le s, t \le T$,

$$\mathbb{E}\left[|\mathsf{Y}(t)-\mathsf{Y}(s)|^p|\mathcal{F}_s
ight] \leq \mathbb{E}\left[\sup_{u\in s,t]}|\mathsf{X}(u)-\mathsf{X}(s)|^q\mathcal{F}_s
ight],$$

then Z is a Dirichlet process.

In particular, this holds when the ESM is Hölder continuous or if the directions satisfy the so-called generalized completely-S condition.

$$Z(t)=Z(0)+B(t)+Y(t).$$

B standard Brownian motion, *Y* is the regulating process Need to show

$$\sum_{t_i\in\Pi^n}|Y(t_i)-Y(t_{i-1})|^p\stackrel{\mathbb{P}}{
ightarrow}0,\qquad as||\Pi^n||
ightarrow 0.$$

Define

$$\zeta^m = \inf\{t > 0 : |Z(t)| \ge m\}.$$

By localization suffices to show that

$$\sum_{t_i\in\Pi^n}|\, \mathsf{Y}(t_i\wedge\zeta^m)-\,\mathsf{Y}(t_{i-1}\wedge\zeta^m)|^{oldsymbol{
ho}}\stackrel{\mathbb{P}}{
ightarrow}0,\qquad as||\Pi^n||
ightarrow 0.$$

▲ 同 ▶ → 三 ▶

Sketch of the Proof (contd.)

- control *p*-variation on $[\tau_i, \sigma_i)$ using semimartingale property away from origin; show summable;
- obtain estimates on *p*-variation on $[\sigma_i, \tau_{i+1})$ in terms of time spent in $\varepsilon/2$ -nbhd of 0; show it disappears, on sending $\varepsilon \to 0$, by instantaneous reflection property

Properties of the GPS ESP

Theorem (R '06, Dupuis-'R '98) The GPS ESM is Lipschitz continuous

Proof Involves Constructing an Associated Norm;

Combines convex duality and algebra; vertices of *B* form the root system for the Lie albegra A_{n-1} of the Lie group $s\ell_n$

Revisiting the GPS Model

Order sources so that

$$\frac{\lambda_1}{\alpha_1} \geq \frac{\lambda_2}{\alpha_2} \geq \ldots \geq \frac{\lambda_N}{\alpha_N},$$

and define

$$J \doteq \max\left\{j \le N : \frac{\lambda_j}{\alpha_j} = \frac{\lambda_1}{\alpha_1}\right\}$$

.

æ

A Heavy Traffic Limit Theorem for the GPS Model

Theorem

(R.-Reiman '03, R.-Reiman '06) Suppose the heavy traffic condition holds:

$$\sum_{j=1}^J \lambda_j = \sum_{j=1}^J \alpha_j = 1.$$

The appropriately scaled workload process in the GPS model converges weakly to the pathwise unique solution of a reflected diffusion in \mathbb{R}^J_+ associated with the GPS ESP with weights

$$\tilde{\alpha}_i = \frac{\alpha_i}{\sum_{i \le J} \alpha_i}.$$

and modified covariance (identified explicitly).

A Heavy Traffic Limit Theorem for the GPS Model

Theorem

(R.-Reiman '03, R.-Reiman '06) Suppose the heavy traffic condition holds:

$$\sum_{j=1}^J \lambda_j = \sum_{j=1}^J \alpha_j = 1.$$

The appropriately scaled workload process in the GPS model converges weakly to the pathwise unique solution of a reflected diffusion in \mathbb{R}^J_+ associated with the GPS ESP with weights

$$\tilde{\alpha}_i = \frac{\alpha_i}{\sum_{i \le J} \alpha_i}.$$

and modified covariance (identified explicitly). The reflected diffusion is a Dirichlet process.

A Heavy Traffic Limit Theorem for the GPS Model

Theorem

(R.-Reiman '03, R.-Reiman '06) Suppose the heavy traffic condition holds:

$$\sum_{j=1}^J \lambda_j = \sum_{j=1}^J \alpha_j = 1.$$

The appropriately scaled workload process in the GPS model converges weakly to the pathwise unique solution of a reflected diffusion in \mathbb{R}^J_+ associated with the GPS ESP with weights

$$\tilde{\alpha}_i = \frac{\alpha_i}{\sum_{i \le J} \alpha_i}.$$

and modified covariance (identified explicitly). The reflected diffusion is a Dirichlet process.

Lies outside the Bramson+Williams and cont. mapping frameworks

References

- Kang and 'R. A Dirichlet process characterization of a class of multidimensional reflected diffusions, 2008, to appear in Ann. Probab.
- ?R. Reflected diffusions defined via the extended Skorokhod problem. *EJP*, 2006.
- I'R and Reiman. The heavy traffic limit of an unbalanced generalized processor sharing model, Ann. Appl. Probab., 2008.
- (a) 'R and Reiman. Fluid and heavy traffic limits for a generalized processor sharing model Ann. Appl. Probab., 2003.
- Burdzy, Kang and 'R. The Skorokhod problem in a time-dependent interval, Stoch. Proc. Appl., 2009.
- Kang and 'R. Stationary distributions for Dirichlet reflected processes (in preparation), 2010.

A (10) < A (10) < A (10) </p>