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Outline

• Rate control in communication networks 
(relatively well understood)

• Philosophy: optimization vs fairness

• Ramp metering (very preliminary)



Network structure
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Rate allocation
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- rate of each flow on route  r

Given the vector 
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Optimization formulation
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Suppose                    is chosen to

(weighted    -fair allocations,  Mo and Walrand 2000)α
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)(npj - shadow price (Lagrange multiplier) for the 
resource j capacity constraint 

Solution
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- maximum flow  
- proportionally fair
- TCP fair 
- max-min fair)1(

)/1(2

)1(1
)1(0

2

=∞→
==

=→
=→

w
Tw

w
w

rr

α
α

α
α

Examples of    -fair allocations  α
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Example
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Source: CAIDA,
Young Hyun

http://mappa.mundi.net/maps/maps_020/index.html#walrus


Source: CAIDA -
Young Hyun,
Bradley Huffaker
(displayed at MOMA)



Flow level model

Define a Markov process
with transition rates
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- Poisson arrivals, exponentially distributed file sizes     

Roberts and Massoulié 1998  
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Stability

De Veciana, Lee & Konstantopoulos 1999;  
Bonald & Massoulié 2001

then the Markov chain
is positive recurrent
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Heavy traffic: balanced fluid model

The following are equivalent:
• n is an invariant state 
• there exists a non-negative vector p with 
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Thus the set of invariant states forms a  J 
dimensional subspace, parameterized by  p. 
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Example
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Each bounding face corresponds 
to a resource not working at full 
capacity
Entrainment: congestion at some 
resources may prevent other 
resources from working at their 
full capacity. 1W
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Stationary distribution?

1W

2W

02 =p

01 =p

1p
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Williams (1987) determined sufficient conditions, in 
terms of the reflection angles and covariance matrix, for 
a SRBM in a polyhedral domain to have a product form 
invariant distribution – a skew symmetry condition 



Local traffic condition
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Assume the matrix  A contains the columns of the 
unit matrix amongst its columns:

i.e. each resource has 
some local traffic -



Product form under 
proportional fairness

Rrwr ∈== ,1,1α
Under the stationary distribution for the reflected 
Brownian motion, the (scaled) components of  p
are independent and exponentially distributed.
The corresponding approximation for  n is

where 
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Dual random variables are independent and exponential

Kang, K, Lee and 
Williams 2009  



What we've learned about highway congestion
P. Varaiya,  Access 27, Fall 2005, 2-9. 

http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/accessF05v2.pdf


Data, modelling and 
inference in road traffic 
networks
R.J. Gibbens and Y. Saatci
Phil. Trans. R. Soc. A366 
(2008), 1907-1919. 

http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract


A linear network
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Metering policy
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Optimal policy?

For each of   i  = I, I-1, …… 1  in turn choose
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Proportionally fair metering
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Brownian network model

Then                                              is a J-dimensional 
Brownian motion starting from the origin 

with drift  

and variance  
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Brownian network model
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Brownian network model
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If                          then there is a unique 
stationary distribution  W under which the 
components of 

are independent, and           is exponentially 
distributed with parameter

and queue sizes are given by 
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Delays

Let                                          

- the time it would take to process the work in 
queue  i at the current metered rate.  Then 
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A tree network



A tree network
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Route choices



Route choices
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Route choices
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Brownian network model

• As Mike has cogently argued, for many 
applications it may be  easier to describe 
the workload arrival process in terms of the 
mean and variance of a Brownian motion.

• If relevant time periods long enough, 
negative increments less likely. 

• The Brownian model exposes structure in a 
way that more detailed models (e.g. MDP 
models) do not.
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