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Abstract

Motivated by the rising popularity of electronic appointment booking systems, we develop
appointment scheduling models that take into account the patient preferences regarding when
they would like to be seen. The service provider dynamically decides which appointment days
to make available for the patients. Patients arriving with appointment requests may choose
one of the days offered to them or leave without an appointment. Patients with scheduled
appointments may cancel or not show up for the service. The service provider collects “revenues”
from each patient who shows up and incurs a service “cost” that depends on the number of
scheduled appointments. The objective is to maximize the expected net “profit” per day. We
begin by developing a static model that does not consider the current state of the scheduled
appointments. We give a characterization of the optimal policy under the static model and
bound its optimality gap. Building on the static model, we proceed to develop a dynamic
model that considers the current state of the scheduled appointments. In our computational
experiments, we test the performance of our models under the patient preferences estimated
through a discrete choice experiment that we conduct in a large community health center. We
find that our proposed models, especially the dynamic one, can significantly outperform other
benchmarks.



1 Introduction

Enhancing patient experience of care has been set as one of the “triple aims” to improve the

healthcare system in many developed countries including the United States, Canada, and the

United Kingdom. This aim is considered as equally, if not more, important as the other aims of

improving the health of the population and managing per capita cost of care; see Berwick et al.

(2008) and Institute for Healthcare Improvement (2012). An important component of enhancing

patient experience of care is to provide more flexibility to patients regarding how, when and where to

receive treatment. In pursuit of this objective, the National Health Service in the United Kingdom

launched its electronic booking system, called Choose and Book, for outpatient appointments in

January 2006; see Green et al. (2008). In the United States, with the recent Electronic Health

Records and Meaningful Use Initiative, which calls for more and better use of health information

technology, online scheduling is being adopted by an increasingly larger percentage of patients and

clinics; see US Department of Health and Human Services (2011), Weiner et al. (2009), Silvestre

et al. (2009), Wang and Gupta (2011), Zocdoc (2012).

In contrast to the traditional appointment scheduling systems where patients are more or less

told by the clinic when to come and whom to see or are given limited options on the phone, electronic

appointment booking practices make it possible to better accommodate patient preferences by

providing patients with more options. Giving patients more flexibility when scheduling their

appointments have benefits that can go beyond simply having more satisfied patients. More satisfied

patients lead to higher patient retention rates, which potentially allow providers to negotiate better

reimbursement rates with payers; see Rau (2011). More satisfied patients can also lead to reduced

no-show rates, helping maintain the continuity of care and improve patient health outcomes; see

Bowser et al. (2010) and Schectman et al. (2008). An important issue when providing flexibility to

patients is that of managing the operational challenges posed by giving more options. In particular,

one needs to carefully choose the level of flexibility offered to the patients while taking into account

the operational consequences. It is not difficult to imagine that giving patients complete flexibility

in choosing their appointment times would lead to high variability in the daily load of a clinic. Thus,

options provided to the patients need to be restricted in a way that balances the benefits with the

costs. While such decisions have been studied in some industries, such as airlines, hospitality

and manufacturing, scheduling decisions with consideration of patient preferences has largely been

ignored in appointment scheduling literature; see Cayirli and Veral (2003) and Gupta and Denton

(2008) Rohleder and Klassen (2000) . The goal of this paper is to develop models that can aid in

appointment scheduling process while considering the patient preferences.

In this paper, with electronic appointment booking systems in mind, we develop models to decide

which appointment days to offer in response to incoming appointment requests. Specifically, we

consider a single service provider receiving appointment requests every day. The service provider

offers a menu of appointment dates within the scheduling window to choose from. During the

day, patients arrive with the intention of scheduling appointments and they either choose to book
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an appointment on one of the days made available to them or leave without scheduling any. We

assume that patient choice behavior is governed by a multinomial logit choice model; see McFadden

(1974). In the mean time, patients with appointments may decide not to show up and those with

appointments on a future day may cancel. The service provider generates a “revenue” from each

patient who shows up for her appointment and incurs a “cost” that depends on the number of

patients scheduled to be seen on a day. The objective is to maximize the expected net “profit” per

day by choosing the offer set, the set of days offered to patients who demand appointments. We

begin by developing a static model that makes its decisions without using the information about

the appointments that are currently booked. Building on the static model, we develop a dynamic

one that takes the current state of the booked appointments into consideration.

Our static model is based on solving a mathematical program in which the decision variables are

the probabilities with which a particular subset of appointment days will be offered to the patients,

independent of the state of the booked appointments. One difficulty with this formulation is that

since we have one decision variable for each subset of days in the scheduling window, the number of

decision variables increases exponentially with the length of the scheduling window. To overcome

this, we exploit the special structure of the multinomial logit model to reformulate the static model

in a more compact form. The number of decision variables in the compact formulation increases

only linearly with the number of days in the scheduling window, making it tractable to solve. We

show that if the no-show probability, conditional on the event that the patient has not canceled

before her appointment, does not depend on patient delays, then there exists a simple and easy

to implement optimal policy from the static model, which randomizes between only two adjacent

offer sets. To assess the potential performance loss as a result of the static nature of the model,

we provide a bound on the optimality gap of the static model. The bound on the optimality gap

approaches zero as the average patient load per day increases, indicating that the static model may

work well in systems handling large amount of demand.

Our dynamic model improves on the static one by taking the state of the booked appointments

into consideration when making its decisions. The starting point for the dynamic model is the

Markov decision process formulation of the appointment scheduling operations. Unfortunately,

this formulation cannot be solved by using standard dynamic programming tools since the state

space is too large. We propose an approximate method based on the Markov decision process

formulation and this approximate method can be seen as applying a single step of the standard

policy improvement algorithm on an initial “good” policy. For the initial “good” policy, we

employ the policy provided by the static model. Implementing the policy provided by the dynamic

model allows us to make decisions in online fashion by solving a mathematical program that uses

the current state of the booked appointments. The structure of this mathematical program is

similar to one that we solve for the static model. Thus, the structural results obtained for the

static model problem, at least partially, apply to the dynamic model as well. We carry out

a simulation study to investigate how our proposed models perform. We generated numerous

problem instances by varying model parameters so that we can compare the performance of our
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policies with benchmarks over a large set of possible settings regarding the clinic capacity and the

patient demand. Furthermore, we base the preference structure of the patients on a discrete choice

experiment that we conduct in a large community health center. Our simulation study suggests

that the proposed dynamic model significantly outperforms benchmarks.

The studies in Ryan and Farrar (2000), Rubin et al. (2006), Cheraghi-Sohi et al. (2008), Gerard

et al. (2008) and Hole (2008) all point out that patients do have preferences regarding when to

visit the clinic and which physician to see. In general, patients prefer appointments that are sooner

than later, but they may prefer a later day over an earlier one if the appointment on the later

day is at a more convenient time; see Sampson et al. (2008). Capturing these preferences in their

full complexity while keeping the formulation sufficiently simple can be a challenging task, but our

static and dynamic models yield tractable policies to implement in practice. The models we propose

can be particularly useful for clinics that are interested in a somewhat flexible implementation of

open access, the policy of seeing today’s patient today; see Murray and Tantau (2000). While

same-day scheduling reduces the access time for patients and helps keep no-show rates low, it

is a feasible practice only if demand and service capacity are in balance; see Green and Savin

(2008). Furthermore, some patients highly value the flexibility of scheduling appointments for future

days. A recent study in Sampson et al. (2008) found that a 10% increase in the proportion of same-

day appointments was associated with an 8% reduction in the proportion of patients satisfied. This

is a somewhat surprising finding, attributed to the decreased flexibility in booking appointments

that comes with restricting access to same-day appointments. Our models help find the “right”

balance among competing objectives of providing more choices to patients, reducing appointment

delays, increasing system efficiency, and reducing no-shows.

While past studies have found that patients have preferences regarding when they would like to

be seen, to our knowledge, there has been limited attempt in quantifying the relative preferences of

patients using actual data. To develop our understanding of these patient preferences in practice and

to use this insight in populating our model parameters in our computational study, we collected

data from a large urban health center in New York City and used these data to estimate the

parameters of the patient choice model. For the patients of this particular clinic, we give a choice

model that estimates how patients would choose one day over the other. The estimated model

parameters confirm that when patients have a health condition that does not require an emergency

but still needs fast attention, they do prefer to be seen earlier, even after taking their work and

other social obligations into account.

In addition to capturing the preferences of the patients on when they would like to be seen,

a potentially useful feature of our models is that they capture the patient no-show process in

a quite general fashion. In particular, the probability that a customer cancels her appointment

on a given day depends on when the appointment was scheduled and how many days there are

left until the appointment day arrives. In this way, we can model the dependence of cancellation

probabilities on appointment delays. Similarly, we allow the probability that a patient shows up for
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her appointment to depend on how much in advance the appointment was booked. Past studies are

split on how cancellation and no-show probabilities depend on appointment delays. A number of

articles find that patients with longer appointment delays are more likely to not show up for their

appointments; see Grunebaum et al. (1996), Gallucci et al. (2005), Dreiher et al. (2008), Bean and

Talaga (1995) and Liu et al. (2010). On the other hand, there have been other studies that find

no such relationships; see Wang and Gupta (2011) and Gupta and Wang (2011). In this paper, we

keep our formulation general so that no-show and cancellation probabilities can possibly depend

on the delays experienced by patients.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3

describes the model primitives we use. Section 4 presents our static model, gives structural results

regarding the policy provided by this model and provides a bound on the optimality gap. Section

5 develops our dynamic model. Section 6 discusses our discrete choice experiment on patient

preferences, explains our simulation setup and presents our numerical findings. Section 7 provides

concluding remarks.

2 Literature Review

The appointment scheduling literature has been growing rapidly in recent years and the articles by

Cayirli and Veral (2003) and Gupta and Denton (2008) provide a broad and coherent overview of

this literature. Most work in this area focuses on intra-day scheduling and is typically concerned

with timing and sequencing patients with the objective of finding the “right” balance between in-

clinic patient waiting times and physician utilization. Recent examples of this literature include

Wang (1999), Rohleder and Klassen (2000), Denton and Gupta (2003), Robinson and Chen (2003),

Klassen and Rohleder (2004), Green et al. (2006), Kaandorp and Koole (2007), Hassin and Mendel

(2008), Jouini and Benjaafar (2010), Cayirli et al. (2012), and Luo et al. (2012). Other researchers,

including Kim and Giachetti (2006), LaGanga and Lawrence (2007), Muthuraman and Lawley

(2008), Zeng et al. (2010), Huang and Zuniga (2012) and LaGanga and Lawrence (2012), have

studied overbooking strategies to mitigate the impact of no-shows on clinic operations. Along with

the increasing popularity of open access in practice, there are a number of articles on operational

implications of the open access policy; see, for example, Kopach et al. (2007), Qu et al. (2007),

Green and Savin (2008) and Robinson and Chen (2010).

In contrast to the literature on intra-day scheduling, our work focuses on inter-day scheduling

and does not explicitly address how intra-day scheduling needs to be done. In that regard, our

models can be viewed as daily capacity management models for a medical facility. Similar to our

work, Gerchak et al. (1996), Patrick et al. (2008), Liu et al. (2010), Ayvaz and Huh (2010) and Huh

et al. (2012) deal with the allocation and management of daily service capacity. Liu et al. (2010) is

particularly relevant since it also considers a formulation that keeps track of appointments over a

number of days and uses the idea of applying a single step of the policy improvement algorithm to
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develop a heuristic method. However, Liu et al. (2010) do not take patient preferences into account

in any way and assume that patients always accept the appointment day offered to them. This

assumption makes the formulation and analysis in Liu et al. (2010) significantly simpler than

ours. Also, we give a characterization of the structure of the optimal state-independent policy

obtained by solving our static model and provide a bound on the optimality gap of this policy.

To our knowledge, Rohleder and Klassen (2000), Gupta and Wang (2008) and Wang and Gupta

(2011) are the only three articles that consider patient preferences in the context of appointment

scheduling. These three articles deal with appointment scheduling within a single day, whereas our

work focuses on decisions over multiple days. By focusing on a single day, Rohleder and Klassen

(2000), Gupta and Wang (2008) and Wang and Gupta (2011) develop policies regarding the specific

timing of the appointments, but they do not incorporate the fact that the appointment preferences

of patients may not be restricted within a single day. Furthermore, their proposed policies do not

smooth out the daily load of the clinic. In contrast, since our policies capture preferences of patients

over a number of days into the future, they can help in using the capacity of the clinic efficiently

by distributing demand over multiple days. However, our focus on scheduling appointments over

multiple days precludes us from providing any specific prescription as to how the appointments

should be scheduled within each day. Another interesting point of departure between our work

and the previous literature is the assumptions regarding how patients interact with the clinic while

scheduling their appointments. Specifically, Gupta and Wang (2008) and Wang and Gupta (2011)

assume that patients first reveal a set of their preferred appointment slots to the clinic, which then

decides whether to offer the patient an appointment in the set or to reject the patient. In our

model, the clinic offers a set of appointment dates to the patients and the patients either choose

one of the offered days or decline to make an appointment.

While there is limited work on customer choice behavior in healthcare appointment scheduling,

there are numerous related papers in the broader operations literature, particularly in revenue

management and assortment planning. Typically, these papers deal with problems where a firm

chooses a set of products to offer its customers based on inventory levels and remaining time in

the selling horizon. In response to the offered set of products, customers make a choice within the

offered set. Talluri and van Ryzin (2004a) consider a revenue management model on a single flight

leg, where customers make a choice among the fare classes made available to them. The authors

show that if the choices of the customers are governed by the multinomial logit model, then it is

optimal to offer a set that includes a certain number of fare classes with the highest fares. Gallego

et al. (2004), Liu and van Ryzin (2008), Kunnumkal and Topaloglu (2008) and Zhang and Adelman

(2009) extend this model to a flight network. The fundamental approach in the latter papers is

to formulate deterministic approximations to the revenue management problem by assuming that

the customer demand takes on its expected value. Bront et al. (2009) and Rusmevichientong et al.

(2010) study product offer decisions when there are multiple customer types, each type choosing

according to multinomial logit models with different parameters and show that the corresponding

optimization problem is NP-hard. In contrast, Gallego et al. (2011) show that the product offer
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decisions under the multinomial logit model can be formulated as a linear program when there is

a single customer type. Topaloglu (2010) extends the work in Gallego et al. (2011) to a setting

that accounts for stocking decisions for the products. We refer the reader Talluri and Van Ryzin

(2004b) and Kök et al. (2009) for detailed overview of the literature on revenue management and

product offer decisions.

3 Model Primitives

We are interested in scheduling patient appointments over time. On each day, we observe the

state of the appointments that were already scheduled and decide which appointment days to make

available for the patients requesting appointments on the current day. During the day, arriving

patients may choose to schedule appointments among the days made available to them and patients

with scheduled appointments may cancel their appointments. Furthermore, patients with scheduled

appointments for the current day may not show up. We generate a revenue from each patient that

shows up for service and we incur a capacity cost as a function of the number of patients we plan

to serve on a day. The objective is to decide which set of days to make available for appointments

to maximize the expected net profit per day.

Throughout the paper, we assume that the following sequence of events occur on a particular

day. First, we observe the state of the appointments that were already scheduled and decide which

subset of days in the future to make available for the patients making appointment requests on the

current day. Second, patients arrive with appointment requests and choose an appointment day

among the days that are made available to them. Third, some of the patients with appointments

scheduled for future days may cancel their appointments and we observe the cancellations. Also,

some of the patients with appointments scheduled on the current day may not show up and

we observe those who do. In reality, appointment requests, cancellations and show-ups occur

throughout the day with no particular time ordering among them, but our sequence of events is

simply a modeling choice and our policies continue to work as long as the set of days made available

for appointments are chosen at the beginning of a day. The revenue we generate is determined by

the number of patients that we serve on a day, whereas the cost we incur is determined by the

number of appointments scheduled for a day before we observe the show-ups. The cost is assumed

to be driven by the number of appointments scheduled for a day before we observe the show-ups

mainly because staffing is the primary cost driver and staffing decisions have to be made before we

observe which appointments show up.

The number of appointment requests on each day has Poisson distribution with mean λ. Each

patient calling in for an appointment can be scheduled either for the current day or for one of the τ

future days. Therefore, the scheduling horizon is T = {0, 1, . . . , τ}, where day 0 corresponds to the

current day and the other days correspond to a day in the future. The decision we make on each day

is the subset of days in the scheduling horizon that we make available for appointments. If we make
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the subset S ⊂ T of days available for appointments, then a patient schedules an appointment j days

into the future with probability Pj(S). We assume that the choice probability Pj(S) is governed by

the multinomial logit choice model; see McFadden (1974). Under this choice model, each patient

associates the preference weight of vj with the option of scheduling an appointment j days into the

future. Furthermore, each patient associates the nominal preference weight of 1 with the option of

not scheduling an appointment at all. In this case, if we offer the subset S of days available for

appointments, then the probability that an incoming patient schedules an appointment j ∈ S days

into the future is given by

Pj(S) =
vj

1 +
∑

k∈S vk
. (1)

With the remaining probability, N(S) = 1 −
∑

j∈S Pj(S) = 1/(1 +
∑

k∈S vk), a patient leaves the

system without scheduling an appointment at all.

If a patient called in i days ago and scheduled an appointment j days into the future, then this

patient cancels her appointment on the current day with probability r′ij , independent of the other

appointments scheduled. For example, if the current day is October 15, then r′13 is the probability

a patient who called in on October 14 and scheduled an appointment for October 17 cancels her

appointment on the current day. We let rij = 1− r′ij so that rij is the probability that we retain a

patient who called in i days ago and scheduled an appointment j days into the future. If a patient

called in i days ago and scheduled an appointment on the current day, then this patient shows up

for her appointment with probability si, conditional on the event that she has not canceled until

the current day. We assume that rij is decreasing in j for a fixed value of i so that the patients

scheduling appointments further into the future are less likely to be retained.

For each patient served on a particular day, we generate a nominal revenue of 1. We have a

regular capacity of serving C patients per day. After observing the cancellations, if the number of

appointments scheduled for the current day exceeds C, then we incur an additional staffing and

overtime cost of θ per patient above the capacity. The cost of the regular capacity of C patients is

assumed to be sunk and we do not explicitly account for this cost in our model. With this setup,

the profit per day is linear in the number of patients that show up and piecewise-linear and concave

in the number of appointments that we retain for the current day, but our results are not tied to

the structure of this cost function and it is straightforward to extend our development to cover the

case where the profit per day is a general concave function of the number of patients that show up

and the number of appointments that we retain.

We can formulate the problem as a dynamic program by using the status of the appointments

at the beginning of a day as the state variable. In particular, given that we are at the beginning of

day t, we can let Xij(t) be the number of patients that called in i days ago (on day t− i), scheduled

an appointment j days into the future (for day t − i + j) and are retained without cancellation

until the current day t. In this case, the vector X(t) = {Xij(t) : 1 ≤ i ≤ j ≤ τ} describes the state

of the scheduled appointments at the beginning of day t. This state description has τ (τ + 1)/2

8



dimensions and the state space can be very large even if we bound the total number of scheduled

appointments on a given day by some realistic finite number. In the next section, we begin with

developing a static model that makes its decisions without considering the current state of the

booked appointments. Later in the paper, we build on the static model to construct a dynamic

model that indeed considers the state of the booked appointments when making its decisions.

4 Static Model

In this section, we consider a static model that makes each subset of days in the scheduling horizon

available for appointments with a fixed probability. Since the probability offering a particular

subset of days is fixed, this model does not account for the current state of appointments when

making its decisions. We solve a mathematical program to find the best probability with which

each subset of days should be made available.

To formulate the static model, we let h(S) be the probability with which we make the subset

S ⊂ T of days available. If we make the subset S of days available with probability h(S),

then the probability that a patient schedules an appointment j days into the future is given

by
∑

S⊂T Pj(S)h(S). Given that a patient schedules an appointment j days into the future,

we retain this patient until the day of the appointment with probability r̄j = r0j r1j . . . rjj and

this patient shows up for her appointment with probability s̄j = r0j r1j . . . rjj sj . Thus, noting

that the number of appointment requests on a day has Poisson distribution with parameter λ, if

we make the subset S of days available with probability h(S), then the number of patients that

schedule an appointment j days into future and that are retained until the day of the appointment

is given by a Poisson random variable with mean λ r̄j
∑

S⊂T Pj(S)h(S). Similarly, we can use a

Poisson random variable with mean λ s̄j
∑

S⊂T Pj(S)h(S) to capture the number of patients that

schedule an appointment j days into the future and that show up for their appointments. In

this case, using Pois(α) to denote a Poisson random variable with mean α, on each day, the

total number of patients whose appointments we retain until the day of the appointment is given

by Pois
(∑

j∈T
∑

S⊂T λ r̄j Pj(S)h(S)
)
and the total number of patients that show up for their

appointments is given by Pois
(∑

j∈T
∑

S⊂T λ s̄j Pj(S)h(S)
)
. To find the subset offer probabilities

that maximize the expected profit per day, we can solve the problem

max
∑
j∈T

∑
S⊂T

λ s̄j Pj(S)h(S)− θE
{[

Pois
(∑

j∈T

∑
S⊂T

λ r̄j Pj(S)h(S)
)
− C

]+}
(2)

subject to
∑
S⊂T

h(S) = 1 (3)

h(S) ≥ 0 S ⊂ T , (4)

where we use [·]+ = max{·, 0}. In the problem above, the two terms in the objective function

correspond to the expected revenue and the expected cost per day. The constraint ensures that

the total probability with which we offer a subset of days is equal to 1. Noting ∅ ⊂ T , the problem

above allows not offering any appointment slots to an arriving patient.
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4.1 Reformulation

We observe that problem (2)-(4) has 2|T | decision variables, which can be too many in practical

applications. For example, if we have a scheduling horizon of a month, then the number of decision

variables in this problem exceeds a billion. However, it turns out that we can give an equivalent

formulation for problem (2)-(4) that has only |T |+ 1 decision variables, which makes the solution

of this problem quite tractable. In particular, Proposition 1 below shows that problem (2)-(4) is

equivalent to the problem

max
∑
j∈T

λ s̄j xj − θE
{[

Pois
(∑

j∈T
λ r̄j xj

)
− C

]+}
(5)

subject to
∑
j∈T

xj + u = 1 (6)

xj
vj

− u ≤ 0 j ∈ T (7)

xj , u ≥ 0 j ∈ T . (8)

In the problem above, we interpret the decision variable xj as the probability that a patient

schedules an appointment j days into the future. The decision variable u corresponds to the

probability that a patient does not schedule an appointment. The objective function accounts for

the expected profit per day as a function of the scheduling probabilities. Constraint (6) captures

the fact that each patient either schedules an appointment on one of the future days or does

not. To see an interpretation of constraints (7), we note that if we offer the subset S of days,

then the probability that a patient schedules an appointment j days into the future is given by

Pj(S) = vj/(1 +
∑

k∈S vk) if j ∈ S and 0 otherwise. On the other hand, the probability that a

patient does not schedule an appointment is given by N(S) = 1/(1 +
∑

k∈S vk). Therefore, we

have Pj(S)/vj − N(S) ≤ 0. Surprisingly constraints (7) are the only place where the parameters

of the multinomial logit choice model appears in problem (5)-(8) and these constraints turn out

to be adequate to capture the choices of the patients as stipulated by the multinomial logit choice

model. In the next proposition, we show that problems (2)-(4) and (5)-(8) are equivalent to each

other. The proof uses the approach followed by Topaloglu (2010). We give the main ideas of the

proof here, but defer the details to the appendix.

Proposition 1. Problems (2)-(4) is equivalent to problem (5)-(8) in the sense that given an optimal

solution to one problem, we can generate a feasible solution to the other one providing the same

objective value.

Proof. Assume that h∗ = {h∗(S) : S ⊂ T } is an optimal solution to problem (2)-(4). Letting

x∗j =
∑

S⊂T Pj(S)h
∗(S) and u∗ =

∑
S⊂T N(S)h∗(S), we show in the appendix that (x∗, u∗) with

x∗ = (x∗0, . . . , x
∗
τ ) is a feasible solution to problem (5)-(8) providing the same objective value as

the solution h∗. On the other hand, assume that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is an optimal

solution to problem (5)-(8). We reorder and reindex the days in the scheduling horizon so that
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we have x∗0/v0 ≥ x∗1/v
∗
1 ≥ . . . ≥ x∗τ/v

∗
τ . Constraints (7) in problem (5)-(8) also ensure that

u∗ ≥ x∗0/v0 ≥ x∗1/v1 ≥ . . . ≥ x∗τ/v
∗
τ . We define the subsets S0, S1, . . . , Sτ as Sj = {0, 1, . . . , j}. For

notational convenience, we define x∗τ+1 = 0. In this case, letting

h∗(∅) = u∗ − x∗0
v0

and h∗(Sj) =
[
1 +

∑
k∈Sj

vk

] [x∗j
vj

−
x∗j+1

vj+1

]
(9)

for all j = 0, 1, . . . , τ and letting h∗(S) = 0 for all other subsets of T , we show in the appendix that

{h∗(S) : S ⊂ T } ends up being a feasible solution to problem (2)-(4) providing the same objective

value as the solution (x∗, u∗). 2

The proof above indicates that we can obtain an optimal solution to problem (2)-(4) by solving

problem (5)-(8) and using (9). Furthermore, (9) shows that there are at most |T | + 1 subsets for

which the decision variables {h(S) : S ⊂ T } take strictly positive values in an optimal solution. In

the next section, under certain assumptions on the show-up probabilities, we further reduce the

number of subsets for which the decision variables {h(S) : S ⊂ T } can take strictly positive

values. Problem (5)-(8) has a manageable number of decision variables and constraints, but its

objective function is nonlinear. Noting that the complicating term in the objective function is of

the form E
{
[Pois(α)− C]+

}
for α ∈ ℜ+, a simple calculation, given in Lemma 7 in the appendix,

shows that F (α) = E
{
[Pois(α)− C]+

}
is a differentiable and convex function of α.

Given that the objective function of problem (5)-(8) is convex and its constraints are linear,

we can use a variety of convex optimization approaches to solve this problem. One approach

is to use a general-purpose cutting-plane method for convex optimization, which represents the

objective function of problem (5)-(8) with a number of cuts; see Ruszczynski (2006). A more

direct approach for solving this problem is to observe that the function F (·) as defined in the

previous paragraph is a scalar and convex function. So, it is straightforward to build an accurate

piecewise linear and convex approximation to F (·) by evaluating this function at a finite number

of grid points. We denote the approximation constructed in this fashion by F̂ (·). In this case,

to obtain an approximate solution to problem (5)-(8), we can maximize the objective function∑
j∈T λ s̄j xj−θF̂ (α) subject to the constraint that α =

∑
j∈T λ r̄j xj and constraints (6)-(8). Since

this optimization problem has a piecewise linear objective function and linear constraints, it can

be solved as a linear program. Furthermore, if we choose F̂ (·) as a lower bound or an upper bound

on F (·), then we obtain a lower or upper bound on the optimal objective value of problem (5)-

(8). When the lower and upper bounds are close to each other, we can be confident about the

quality of the solution we obtain from our approximation approach.

Another algorithmic strategy that we can use to solve problem (5)-(8) is based on dynamic

programming. For a fixed value of u, we observe that the constraints in this problem correspond

to the constraints of a knapsack problem. In particular, the items correspond to the days in the

scheduling horizon, the capacity of the knapsack is 1 − u and we can put at most vj × u units

of item j into the knapsack. So, for a fixed value of u, we can solve problem (5)-(8) by using
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dynamic programming. In this dynamic program, the decision epochs correspond to days in the

scheduling horizon T . The state at decision epoch j ∈ T has two components. The first component

corresponds to the value of
∑j−1

k=0 xk, capturing to the portion of the knapsack capacity consumed

by the decisions in the earlier decision epochs. The second component corresponds to the value of∑j−1
k=0 λ r̄k xk, capturing the accumulated value of the argument of the second term in the objective

function of problem (5)-(8). Thus, for a fixed value of u, we can solve problem (5)-(8) by computing

the value functions {Θj(·, · |u) : j ∈ T } though the optimality equation

Θj(b, c |u) = max λ s̄j xj +Θj+1(b+ xj , c+ λ r̄j xj |u) (10)

subject to 0 ≤ xj/vj ≤ u, (11)

with the boundary condition that Θτ+1(b, c |u) = −θE{[Pois(c) − C]+} when b = 1 − u and

Θτ+1(b, c |u) = −∞ when b ̸= 1 − u. In the dynamic program above, we accumulate the first

component of the objective function of problem (5)-(8) during the course of the decision epochs,

but the second component of the objective function through the boundary condition. Having

Θτ+1(b, c |u) = −∞ when b ̸= 1− u ensures that we always consume the total capacity availability

of 1 − u in the knapsack. It is straightforward to accurately solve the dynamic program for all

u ∈ ℜ+ by discretizing the state variable (b, c) and u over a fine grid in ℜ3
+. Solving the dynamic

program for all u ∈ ℜ+, maxu∈ℜ+ Θ1(0, 0 |u) gives optimal objective value of problem (5)-(8).

4.2 Static Model under Delay-Independent Show-up Probabilities

As we describe at the end of the previous section, it is not difficult to obtain good solutions

to problem (5)-(8). Nevertheless, although we can obtain good solutions to problem (5)-(8),

the structure of the optimal subset offer probabilities obtained from problem (2)-(4) is still not

obvious. Furthermore, many of the subset offer probabilities {h(S) : S ⊂ T } may take positive

values in the optimal solution, indicating that the static policy may be highly randomized, which

may be undesirable for practical implementation. In this section, we consider the special case where

the show-up probability of an appointment does not depend on how many days ago the patient called

in. We show two results regarding the structure of the optimal subset availability probabilities.

First, we show that the subsets of days that we make available always consists of a certain number of

consecutive days. In particular, we show that there exist optimal offer probabilities {h∗(S) : S ⊂ T }
such that h∗(S) > 0 if and only if S is a subset of the form {0, 1, . . . , j} for some j ∈ T . Second,

we show that the optimal subset availability probabilities randomize between only two subsets and

these two subsets differ only in one day. These results indicate that the randomized nature of the

static model is not a huge practical concern.

Throughout this section, we assume that sj is independent of j and we use s0 to denote

the common value of {sj : j ∈ T }. Thus, noting the definitions r̄j = r0j r1j . . . rjj and

s̄j = r0j r1j . . . rjj sj , we obtain s̄j = r̄j s0. We emphasize that although the show-up probabilities

are assumed to be independent of how many days ago an appointment was scheduled, the
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probability of retaining an appointment rij can still be arbitrary. Define the scalar function R(·)
as R(α) = s0 α − θE

{
[Pois(α) − C]+

}
. Using the fact that s̄j = r̄j s0, we can write the objective

function of problem (5)-(8) succinctly as R
(∑

j∈T λ r̄j xj
)
and problem (5)-(8) becomes

max R
(∑

j∈T
λ r̄j xj

)
(12)

subject to
∑
j∈T

xj + u = 1 (13)

xj
vj

− u ≤ 0 j ∈ T (14)

xj , u ≥ 0 j ∈ T . (15)

In the next proposition, we show that there exists an optimal solution to the problem above where at

most one of the decision variables (x0, x1, . . . , xτ ) satisfy 0 < xj/vj < u. The other decision variables

satisfy either xj/vj = u or xj/vj = 0. This result ultimately becomes useful to characterize the

structure of the optimal subset offer probabilities. Before giving this result, we make one observation

that becomes useful in the proof. In particular, noting the assumption that rij is decreasing in j for

fixed i, the definition of r̄j implies that r̄j = r0j r1j . . . rjj ≥ r0,j+1 r1,j+1 . . . rj,j+1 rj+1,j+1 = r̄j+1,

establishing that r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ .

Proposition 2. Assume that {sj : j ∈ T } share a common value. Then, there exists an optimal

solution (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) to problem (12)-(15) that satisfies

u∗ =
x∗0
v0

= . . . =
x∗k−1

vk−1
≥

x∗k
vk

≥
x∗k+1

vk+1
= . . . =

x∗τ
vτ

= 0 (16)

for some k ∈ T .

Proof. We let (x∗, u∗) be an optimal solution to problem (12)-(15) and y∗ =
∑

j∈T λ r̄j x
∗
j so that

the optimal objective value of the problem is R(y∗). For a fixed value of u, consider the problem

ζ(u) = min
∑
j∈T

xj (17)

subject to
∑
j∈T

λ r̄j xj = y∗ (18)

0 ≤ xj ≤ vj u j ∈ T , (19)

whose optimal objective value is denoted by ζ(u). For the moment, assume that there exists

û satisfying ζ(û) = 1 − û. We establish the existence of such û later in the proof. We let x̂ =

(x̂0, . . . , x̂τ ) be an optimal solution to the problem above when we solve this problem with u = û. In

this case, we have
∑

j∈T x̂j = ζ(û) = 1 − û,
∑

j∈T λ r̄j x̂j = y∗, x̂j/vj ≤ û for all j ∈ T , which

implies that (x̂, û) is a feasible solution to problem (12)-(15) providing an objective function value

of R(y∗). Thus, the solution (x̂, û) is also optimal to problem (12)-(15).

Problem (17)-(19) is a knapsack problem where the items are indexed by T , the disutility of each

item is 1 and the space requirement of item j is λ r̄j . We can put at most vj u units of item j into the
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knapsack. We can solve this knapsack problem by starting from the item with the smallest disutility

to space ratio and filling the knapsack with the items in that order. Noting that r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ ,

the disutility to space ratios of the items satisfy 1/(λ r̄0) ≤ 1/(λ r̄1) ≤ . . . ≤ 1/(λ r̄τ ) so that it is

optimal to fill the knapsack with the items in the order 0, 1, . . . , τ . Therefore, if we solve problem

(17)-(19) with u = û, then the optimal solution x̂ satisfies x̂0 = v0 û, x̂1 = v1 û, . . . , x̂k−1 = vk−1 û,

x̂k ∈ [0, vk û], xk+1 = 0, . . . , xτ = 0 for some k ∈ T . Therefore, the solution (x̂, û), which is optimal

to problem (12)-(15), satisfies (16) and we obtain the desired result.

It remains to show that there exists û with ζ(û) = 1 − û. Note that ζ(·) is continuous. By

the definitions of (x∗, u∗) and y∗, if we solve problem (17)-(19) with u = u∗, then x∗ is a feasible

solution providing an objective value of
∑

j∈T x∗j = 1−u∗, where the equality is by (13). Since the

solution x∗ may not be optimal to problem (17)-(19), we obtain ζ(u∗) ≤ 1 − u∗. Also, we clearly

have ζ(1) ≥ 0. Letting g(u) = 1− u, we obtain ζ(u∗) ≤ g(u∗) and ζ(1) ≥ g(1). Since ζ(·) and g(·)
are continuous, there exists û such that ζ(û) = g(û) = 1− û. 2

We emphasize that the critical assumption in Proposition 2 is that s̄j = r̄j s0 for all j ∈ T and

it is possible to modify this Proposition 2 to accommodate the cases where we do not necessarily

have the ordering r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ . The key observation is that whatever ordering we have

among the probabilities {r̄j : j ∈ T }, the disutility to space ratios of the items in the problem

(17)-(19) satisfy the reverse ordering as long as s̄j = r̄j s0. In this case, we can modify the ordering

of the decision variables (x0, . . . , xτ ) in the chain of inequalities in (16) in such a way they follow

the ordering of {rj : j ∈ T } and the proof of Proposition 2 still goes through.

We can build on Proposition 2 to solve problem (12)-(15) through bisection search. In particular,

for fixed values of k and u, (16) shows that the decision variables x0, x1, . . . , xk−1 can be fixed at

xj = u vj for all j = 0, 1, . . . , k−1, whereas the decision variables xk+1, . . . , xτ can be fixed at 0. So,

for a fixed value of k, to find the best values of u and xk, we can solve the problem

Zk = max R
( k−1∑

j=0

λ r̄j vj u+ λ r̄k xk

)

subject to

k−1∑
j=0

vj u+ xk + u = 1

xk
vk

− u ≤ 0

xk, u ≥ 0,

where we set the optimal objective value Zk of the problem above to −∞ whenever the problem is

infeasible. To find the best value of k, we can simply compute Zk for all k ∈ T and pick the value

that provides the largest value of k. Thus, max{Zk : k ∈ T } corresponds to the optimal objective

value of problem (12)-(15). Although the problem above, which provides Zk for a fixed value of k,

appears to involve the two decision variables xk and u, we can solve one of the decision variables

in terms of the other one by using the first constraint, in which case, the problem above becomes
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a scalar optimization problem. Furthermore, noting the definition of R(·) and the discussion in

the last two paragraphs of Section 4.1, the objective function of the problem above is concave.

Therefore, we can solve the problem above by using bisection search.

The next corollary shows two intuitive properties of the optimal subset availability probabilities.

First, the optimal subset offer probabilities from problem (2)-(4) makes only subsets of the form

{0, 1, . . . , j} available for some j ∈ T . So, it is optimal to make a certain number of days into the

future available without skipping any days in between. Second, the optimal subset offer probabilities

randomize at most between two possible subsets and these two subsets differ from each other only

in one day. These results indicate that the randomized nature of the static policy is not a huge

concern, as we randomize between only two subsets that are not too different from each other.

Corollary 3. Assume that {sj : j ∈ T } share a common value. Then, there exists an optimal

solution h∗ = {h∗(S) : S ⊂ T } to problem (2)-(4) with only two of the decision variables satisfying

h∗(S1) ≥ 0, h∗(S2) ≥ 0 for some S1, S2 ⊂ T and all of the other decision variables are equal to

0. Furthermore, the two subsets S1 and S2 are either of the form S1 = ∅ and S2 = {0}, or of the

form S1 = {0, 1, . . . , j} and S2 = {0, 1, . . . , j + 1} for some j ∈ T .

Proof. By Proposition 2, there exists an optimal solution x∗ to problem (5)-(8) that satisfies

(16). We define the subsets S0, S1, . . . , Sτ as in the proof of Proposition 1 and construct an optimal

solution h∗ to problem (2)-(4) by using x∗ as in (9). In this case, since x∗ satisfies (16) for some

k ∈ T , only two of the decision variables {h(S) : S ⊂ T } can take on nonzero values and these two

decision variables are h∗(Sk−1) and h∗(Sk). Thus, the desired result follows by observing that Sk

is a subset of the form {0, 1, . . . , k}. 2

4.3 Performance Guarantee

The static model in problem (2)-(4) makes each subset of days available with a fixed probability and

does not consider the current state of the scheduled appointments when making its decisions. A

natural question is what kind of performance we can expect from such a static model. In this

section, we develop a performance guarantee for our static model. In particular, we study the

policy obtained from the simple deterministic approximation

ZDET = max
∑
j∈T

λ s̄j xj − θ
[∑
j∈T

λ r̄j xj − C
]+

(20)

subject to
∑
j∈T

xj + u = 1 (21)

xj
vj

− u ≤ 0 j ∈ T (22)

xj , u ≥ 0 j ∈ T . (23)

The objective function above is the deterministic analogue of the one in problem (5)-(8), where

the Poisson random variable is replaced by its expectation. Similar to problem (5)-(8), problem
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(20)-(23) characterizes a static model, but this static model is obtained under the assumption

that all random quantities take on their expected values. In this section, we show that the policy

obtained from problem (20)-(23) has a reasonable performance guarantee, even though this problem

ignores all uncertainty. Since problem (5)-(8) explicitly addresses the uncertainty, the policy

obtained from this problem is trivially guaranteed to perform better than the one obtained from

problem (20)-(23). It is common in revenue management literature to develop performance bounds

for policies obtained from deterministic approximations. Gallego and van Ryzin (1994) give a

performance bound for the policy obtained from a deterministic approximation in a dynamic pricing

problem with a single product. Gallego and van Ryzin (1997) extend this work to multiple products.

Levi and Radovanovic (2010) focus on resource allocation problems with reusable resources and

provide a performance bound for the policy obtained from a deterministic approximation. Topaloglu

et al. (2011) bound the performance of a deterministic approximation for overbooking over a single

flight leg. Our work has a similar flavor to these papers but it ultimately allows us to point out

the problem parameters that affect the performance of the policies from a static model.

In the next lemma, we begin by showing that the optimal objective value of problem (20)-(23)

provides an upper bound on the expected profit per day generated by the optimal policy, which

can be a policy that depends on the state of the system. The proof of this result follows from a

standard argument that uses Jensen’s inequality and is given in the appendix. Throughout this

section, we use V ∗ to denote the expected profit per day generated by the optimal policy.

Lemma 4. We have ZDET ≥ V ∗.

We let Π(x) with x = (x0, . . . , xτ ) be the objective function of problem (5)-(8). If (x∗, u∗) is

an optimal solution to this problem, then the static policy that uses the subset offer probabilities

h∗ = {h∗(S) : S ⊂ T } defined as in (9) generates an expected profit of Π(x∗) per day. Since V ∗ is

the expected profit per day generated by the optimal policy, we have Π(x∗)/V ∗ ≤ 1. In the next

proposition, we give a lower bound on Π(x∗)/V ∗, which bounds the optimality gap of the policy

that we obtain by solving problem (5)-(8).

Proposition 5. Letting (x∗, u∗) be an optimal solution to problem (5)-(8), we have

Π(x∗)

V ∗ ≥ 1−
θ

√
r̄0
2π

√
λ r̄0
C

s̄0min

{
v0

1 + v0
,
C

λ r̄0

}√
λ

. (24)

Proof. Letting (x̂, û) be an optimal solution to problem (20)-(23), we have Π(x∗) ≥ Π(x̂). Since

we can always offer the empty set with probability one, the optimal objective value of problem

(5)-(8) is nonnegative and we obtain Π(x∗)/V ∗ = [Π(x∗)]+/V ∗ ≥ [Π(x̂)]+/V ∗. Using Lemma

4, we continue this chain of inequalities as [Π(x̂)]+/V ∗ ≥ [Π(x̂)]+/ZDET ≥ Π(x̂)/ZDET = 1 −
(ZDET −Π(x̂))/ZDET . So, it is enough to show that the second term on the right side of (24)
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upper bounds (ZDET −Π(x̂))/ZDET . For a Poisson random variable with mean α, Lemma 8 in the

appendix shows that E{[Pois(α)−C]+} ≤ [α−C]++α/
√
2π C. In this case, letting β =

∑T
j=1 λ s̄j x̂j

and α =
∑T

j=1 λ r̄j x̂j for notational brevity, we obtain

ZDET −Π(x̂)

ZDET
=

[β − θ [α− C]+]− [β − θE{[Pois(α)− C]+}]
ZDET

≤

θ α√
2π C

ZDET
≤

θ λ r̄0√
2π C

ZDET
, (25)

where the second inequality is by noting that
∑

j∈T x̂j ≤ 1, r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ so that α ≤ λ r̄0.

We proceed to constructing a lower bound on ZDET . The solution (x̃, ũ) we obtain by setting

x̃0 =
v0

1+v0
, ũ = 1

1+v0
and all other decision variables to zero is feasible to problem (20)-(23). Thus, if

λ r̄0
v0

1+v0
≤ C, then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0−θ [λ r̄0 x̃0−C]+ = λ s̄0

v0
1+v0

. On

the other hand, if λ r̄0
v0

1+v0
> C, then the solution (x̃, ũ) we obtain by setting x̃0 =

C
λ r̄0

, ũ = 1− C
λ r̄0

and all other decision variables to zero is feasible to problem (20)-(23). Thus, if λ r̄0
v0

1+v0
> C,

then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0 − θ [λ r̄0 x̃0 − C]+ = s̄0
C
r̄0
. Collecting the two

cases together, we lower bound ZDET by s̄0min
{
λ v0

1+v0
, C
r̄0

}
. Continuing the chain of inequalities

in (25) by using the lower bound on ZDET , we obtain

θ λ r̄0√
2π C

ZDET
≤

θ λ r̄0√
2π C

s̄0min

{
λ

v0
1 + v0

,
C

r̄0

} .

Arranging the terms in the last expression above yields the desired result. 2

The performance guarantee in (24) has useful practical implications. Noting that λ r̄0 is an

upper bound on the expected number of appointments we retain on a particular day, if C and

λ satisfy C ≥ λ r̄0, then we essentially have a situation where the capacity exceeds the expected

demand. In this case, the quantity
√

λ r̄0/C in the numerator on the right side of (24) is upper

bounded by 1 and the min operator in the denominator evaluates to v0
1+v0

, which implies that Π(x∗)
V ∗

is lower bounded by 1− θ
√

r̄0/(2π)/(s̄0
v0

1+v0

√
λ). Therefore, the performance guarantee improves

with rate 1/
√
λ, indicating that as long as capacity exceeds the expected demand, the performance

of static policies improves with the demand volume. In other words, we expect static policies to

perform well in systems handling large demand volumes. Similarly, if the capacity and the expected

demand increase with the same rate so that the ratio C
r̄0 λ

stays constant, then the performance of

state independent policies still improves with rate 1/
√
λ, even when C

λ r̄0
evaluates to a number less

than 1. These observations support using policies from static models for large systems with high

demand volumes.

It turns out that λ does not have to get too large to get a sensible performance guarantee from

(24) for practical applications. To get a feel for the performance guarantee in (24), we consider a

system with C = 12, λ = 16, v0 = 1, r̄0 = 1, s̄0 = 0.9 and θ = 1.5. These parameters correspond

to a case where if we offer only the current day for an appointment, then a patient leaves without
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scheduling any appointments with probability N({0}) = 1/(1 + v0) = 1/2. The probability that

we retain a patient with a same day appointment is 1 and the probability that this patient shows

up for her appointment is 0.9. Considering the fact that we generate a nominal revenue of 1 from

each served patient, the overtime cost of 1.5 is reasonably high. The capacity and the arrival rate

are reasonable for a small clinic. For these problem parameters, the right side of (24) evaluates to

about 62%, indicating that there exists a static policy that generates at least 62% of the optimal

expected profit per day. For a larger clinic with C = 36 and λ = 48, the performance guarantee

comes out to be about 78%.

4.4 Extensions to Static Model

Our results in Section 4.2 demonstrate that if the show-up probability of an appointment does

not depend on how many days ago the patient called in, then the randomized nature of the static

model is not a huge practical concern. Under this assumption, there exists an optimal solution

to problem (2)-(4) that randomizes between only two subsets of days and these subsets include a

certain number of consecutive days, without skipping any days in between. A natural question is

whether we can alleviate the concerns about the randomized nature of the static model when the

show-up probabilities do depend on how many days ago the patient called in.

If we want to eliminate randomization between multiple subsets of days in problem (2)-(4), then

we can impose the constraints h(S) ∈ {0, 1} for all S ⊂ T in this problem, in which case, problem

(2)-(4) looks for one set of days to offer to patients. It turns out that a transformation similar to

the one in Section 4.1 still holds even when we have the constraints h(S) ∈ {0, 1} for all S ⊂ T in

problem (2)-(4). In particular, if we have the constraints h(S) ∈ {0, 1} for all S ⊂ T in problem

(2)-(4), then we can add the constraints xj/vj ∈ {0, u} for all j ∈ T in problem (5)-(8). Under

this modification to problem (5)-(8), problem (5)-(8) becomes equivalent to problem (2)-(4) with

the additional constraints that h(S) ∈ {0, 1} for all S ⊂ T . We record this result in the next

proposition. The proof follows from an argument similar to that of Proposition 1 and we defer it

to the appendix.

Proposition 6. Consider problem (2)-(4) with the additional constraints ht(S) ∈ {0, 1} for all

S ⊂ T and problem (5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . These two

problems are equivalent in the sense that given an optimal solution to one problem, we can generate

a feasible solution to the other one providing the same objective value.

Therefore, to find one set of days to offer to customers, we can solve problem (5)-(8) with the

additional constraints xj/vj ∈ {0, u} for all j ∈ T . When we have the constraints xj/vj ∈ {0, u}
for all j ∈ T in problem (5)-(8), the algorithmic strategies that we can use to solve this problem

closely mirror those described at the end of Section 4.1. In particular, since the nonlinearity in

the objective function of problem (5)-(8) involves the scalar function F (α) = E
{
[Pois(α)−C]+

}
, it

is straightforward to construct accurate piecewise linear approximations to this scalar function. In
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this case, problem (5)-(8) with the additional constraints that xj/vj ∈ {0, u} for all j ∈ T can be

formulated as a mixed integer linear program. Another option is to use the dynamic program in

(10)-(11). In particular, if we impose the constraint xj/vj ∈ {0, u} in each decision epoch, then this

dynamic program solves problem (5)-(8) for a fixed value of u and with the additional constraints

xj/vj ∈ {0, u} for all j ∈ T .

We emphasize that the reformulation in Section 4.1 is still instrumental to solving problem

(2)-(4) under the additional constraints ht(S) ∈ {0, 1} for all S ⊂ T . Without this reformulation,

problem (2)-(4) has 2|T | decision variables, whereas our reformulation yields a problem with |T |+1

decision variables, which can either directly be solved as a mixed integer linear program or through

dynamic programming.

Another issue in problem (2)-(4) is that this problem is constructed under the assumption

that the arrival rates are stationary and the preference of a patient for different appointment days

depends on how many days into the future the appointment is made, rather than the particular

day of the week of the appointment. Under this assumption, we were able to focus on the expected

profit per day in problem (2)-(4). In practice, however, the arrival rates may be nonstationary,

depending on the day of the week. Furthermore, the preference of a patient for different days of the

week may be more pronounced than the preference for different appointment delays. It is possible

to enrich our static model to capture the case where the arrival rates are nonstationary and a

patient has different preferences for different days of the week. If nonstationarities follow, say, a

weekly pattern, then we can choose the scheduling horizon τ to be a multiple of a week. In this case,

we need to work with the extended set of decision variables by letting ht(S) be the probability with

which we offer the subset S of days given that we are on day t of the week. Using these decision

variables, we can construct a model analogous to problem (2)-(4), but we account for the total

expected profit per a week in the objective function, rather than expected profit per day. For this

extended version of problem (2)-(4), we can still come up with a transformation similar to the one

in Section 4.1 that reduces the number of decision variables from exponential in the length of the

scheduling horizon to linear. Finally, our model assumes that the patients do not have a preference

between different hours of the day. Just as we can incorporate preferences between different days

of the week, we can incorporate preferences between different hours of the day, as long as we incur

overtime cost whenever the aggregate capacity availability in a day is violated.

5 Dynamic Model

The static model in the previous section identifies a fixed set of probabilities with which to offer

each subset of days, independent of the currently booked appointments. In other words, the policy

from this static model does not take the state of the system into consideration. Clearly, there

is potential to improve such a policy if decisions can take into account the current system state

information. In this section, we begin by giving a Markov decision process formulation of the
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appointment scheduling operation. By building on this formulation, we develop a dynamic model

that makes its decisions by considering the current state of the system.

5.1 Dynamic Program

As mentioned at the end of Section 3, for 1 ≤ i ≤ j ≤ τ , we can use Xij(t) to denote the number

of patients that called in i days ago (on day t − i) and scheduled an appointment j days into

the future (for day t − i + j) given that we are at the beginning of day t. We call the vector

X(t) = {Xij(t) : 1 ≤ i ≤ j ≤ τ} as the appointment schedule at the beginning of day t. For a given

policy π, let hπ(X(t), S) denote the probability that the subset S of days is offered to the patients

when the system state is X(t) under policy π. In this case, the evolution of the appointment

schedule Xπ(t) under policy π is captured by

Xπ
ij(t+ 1) =

{
Pois(

∑
S⊂T λ r0j Pj(S)h

π(Xπ(t), S)) if 1 = i ≤ j ≤ τ

Bin(Xπ
i−1,j(t), ri−1,j) if 2 ≤ i ≤ j ≤ τ ,

where we use Bin(n, p) to denote a Binomial random variable with parameters n and p. On the

other hand, given that we are on day t, we let Uπ
i (t) denote the number of patients who called on

day t − i to make an appointment for the current day and show up for their appointment on day

t. As a function of the appointment schedule on day t, we can characterize Uπ
i (t) by

Uπ
i (t) =

{
Pois(

∑
S⊂T λ s0 P0(S)h

π(Xπ(t), S)) if i = 0

Bin(Xπ
ii(t), si) if 1 ≤ i ≤ τ .

Finally, we let Xπ
00(t) be the number of patients who call on day t and choose to schedule their

appointments on the same day, in which case, Xπ
00(t) is characterized by

Xπ
00(t) = Pois

( ∑
S⊂T

λP0(S)h
π(Xπ(t), S)

)
.

Define ϕπ(x) to be the long-run average expected reward under policy π given the initial state

x = Xπ(0), which is to say that

ϕπ(x) = lim
k→∞

E
{ k∑

t=0

( τ∑
i=0

Uπ
i (t)− θ

[ τ∑
i=1

Xπ
ii(t) +X00(t)− C

]+) ∣∣∣Xπ(0) = x
}

k
.

A scheduling policy π∗ is optimal if it satisfies ϕπ∗
(x) = supπ ϕ

π(x) for all x.

We can try to bound the number of appointments on a given day by a reasonably large number to

ensure that there is a finite number of possible values for the appointment schedule X(t). However,

even if we bound the number of appointments, the appointment schedule X(t) is a high-dimensional

vector and the number of possible values for the appointment schedule would get extremely large

even for small values for the length of the scheduling horizon τ . This precludes us from using

conventional dynamic programming algorithms, such as value iteration or policy iteration, to
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compute the optimal scheduling policy. Therefore, it is of interest to develop computationally

efficient approaches to obtain policies that consider the status of the booked appointments. We

describe one such approach in the next section.

5.2 Policy Improvement Heuristic

In this section, we develop a dynamic model that makes its decisions by taking the current

appointment schedule into consideration. The idea behind our dynamic model is to start with

a static policy that ignores the current appointment schedule and apply the single step of the

policy improvement algorithm. Thus, throughout the paper, we refer to our dynamic model as the

policy improvement heuristic. It is important to note that our policy improvement heuristic does

not call for applying the policy improvement step and computing the improved policy for every

possible state of the appointment schedule. Rather, we apply the policy improvement step only

for the current state of the appointment schedule. In this way, we compute the decisions of our

policy improvement heuristic as needed, only for the states of the appointment schedule we visit. It

turns out that finding the decisions made by our policy improvement heuristic requires solving a

mathematical program similar to the one solved for our static model.

Our policy improvement heuristic is developed by building on a static policy mainly because we

can, in this case, identify closed-form expressions for the value functions in the policy-improvement

step, as described below. Ideally, when implementing the policy improvement heuristic, one uses

the optimal static policy obtained by solving problem (2)-(4), but if there are reasonable alternative

static policies, then one can simply use them instead. Our derivation of the policy improvement

heuristic does not depend on whether or not the initially chosen static policy is obtained through

problem (2)-(4) and we keep our presentation general.

We let h(S) for S ⊆ T be the probability that the subset S of days is offered to each appointment

request under a static policy, which, as mentioned above, may or may have not been obtained

through problem (2)-(4). Given that we are at the beginning of a particular day, the current

appointment schedule is given by x = {xij : 1 ≤ i ≤ j ≤ τ} before we observe the appointment

requests on the current day. Similar to Xij(t), the component xij of the appointment schedule

x represents the number of appointments made i days ago for j days into the future. Consider a

policy π that makes the subset S of days available with probability f(S) on the current day and

switches to the static probabilities h = {h(S) : S ⊂ T } from tomorrow on.

Given that we start with the appointment schedule x, define ∆(x, f, h) to be the difference in

the long-run total expected rewards obtained by following policy π rather than the static policy

that uses the subset offer probabilities h all along. To conduct a one step of the policy improvement

algorithm, we need to maximize ∆(x, f, h) with respect to f = {f(S) : S ⊂ T }. Since policy π

and the static policy that uses h make identical decisions after the current day and appointments

cannot be scheduled beyond τ days into the future, the appointment schedules under the two
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policies are stochastically identical beyond the first τ + 1 days. Thus, we can write ∆(x, f, h) =

Qπ(x, f, h)−QSP (x, h), where Qπ(x, f, h) and QSP (x, h) are respectively the total expected rewards

accumulated over the next τ + 1 days under policies π and the static policy.

When determining f that maximizes ∆(x, f, h), the function QSP (x, h) is simply a

constant. Thus, our objective is equivalent to maximizing Qπ(x, f, h). We proceed to deriving

an expression for Qπ(x, f, h). For 1 ≤ i ≤ j ≤ τ , we let Vij(x) denote the number of patients

who called for appointments i days ago and will not cancel by the morning of their appointment,

which is j − i days from today. We let Wij(x) denote the number of these patients who show up

for their appointments. Similarly, for 0 ≤ j ≤ τ , we let V̄j(f) denote the number of patients who

call to make an appointment today, schedule an appointment for day j in the scheduling horizon

and do not cancel by the morning of their appointment. We let W̄j(f) denote the number of these

patients who show up for their appointments. Finally, for 1 ≤ k ≤ j ≤ τ , we define V̂kj(h) to be

the number of patients who will call to make an appointment on day k in the scheduling horizon

and will not have canceled their appointment by the morning of their appointment, which is on day

j of the scheduling horizon. We define Ŵkj(h) to be the number of these patients who will show

up for their appointments. Under the assumption that the cancellation and no-show behavior of

the patients are independent of each other and the appointment schedule, we characterize the six

random variables defined above as Vij(x) = Bin(xij , r̃ij), Wij(x) = Bin(xij , s̃ij),

V̄j(f) = Pois
( ∑

S⊂T
λ r̄j Pj(S) f(S)

)
, W̄j(f) = Pois

( ∑
S⊂T

λ s̄j Pj(S) f(S)
)
,

V̂kj(h) = Pois
( ∑

S⊂T
λ r̄j−k Pj−k(S)h(S)

)
, Ŵkj(h) = Pois

( ∑
S⊂T

λ s̄j−k Pj−k(S)h(S)
)
,

where r̃ij = rij ri+1,j . . . rjj is the probability that a patient who scheduled her appointment i

days ago will not have canceled her appointment by the morning of the day of her appointment,

which is j − i days from today and s̃ij = sj r̃ij is the probability that a patient who scheduled her

appointment i days ago will show up for her appointment, which is j − i days from today.

Using the random variables defined above, we can capture the reward obtained by the policy

that uses the subset offer probabilities f today and switches to the static probabilities h from

tomorrow on. In particular, letting qj(x, f, h) denote the total expected reward obtained by this

policy j days from today, we have

qj(x, f, h) = E
{ τ−j∑

k=1

Wk,k+j(x) + W̄j(f) +

j∑
k=1

Ŵkj(h)

− θ
[ τ−j∑
k=1

Vk,k+j(x) + V̄j(f) +

j∑
k=1

V̂kj(h)− C
]+}

,

where we set
∑j

k=1 Ŵkj(h) = 0 and
∑j

k=1 V̂kj(h) = 0 when we have j = 0. Thus, it follows

that Qπ(x, f, h) =
∑τ

j=0 qj(x, f, h) and we can implement the policy improvement heuristic by

maximizing
∑

j∈T qj(x, f, h) subject to the constraint that
∑

S⊂T f(S) = 1. The optimal solution
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f∗ = {f∗(S) : S ⊂ T } to the last problem yields the probability with which each subset of days

should be offered on the current day. We note that since qj(x, f, h) depends on the current state

x of the appointment schedule, the offer probabilities f we obtain in this fashion also depend on

the current appointment schedule. Finally, we observe that solving the last optimization problem

simplifies when we approximate the binomial random variables Vij(x) and Wij(x) for 1 ≤ i ≤ j ≤ τ

with Poisson random variables with their corresponding means. In that case, one can check that

the last optimization problem is structurally the same as problem (2)-(4) and we can use arguments

similar to those in Section 4 to obtain the decisions made by the policy improvement heuristic.

6 Computational Results

In this section, we begin by giving the findings from our discrete choice experiment conducted to

elicit patient preferences and to obtain data for our computational work. We proceed to describing

our benchmark policies and experimental setup. We conclude with our computational results.

6.1 Discrete Choice Experiment

Our experiment took place in the Farrell Community Health Center, a large urban primary care

health center in New York City. This center serves about 26,000 patient visits per year. A self-report

survey instrument was created in both English and Spanish to collect data. Adult patients waiting

were approached and informed about this study. After verbal consent was obtained, each patient

was given a questionnaire in her native language, which described a hypothetical health condition

entailing a need for a medical appointment and listed a randomly generated set of two possible

choices of appointment days (for example, the same day and 2 days from now) as well as the option

of seeking care elsewhere. The patient was asked to consider her current schedule and mark the

appointment choice she preferred. Since the nature of the health problem is likely to influence the

preference of the patient, each patient was asked to make a choice for two different problems, one

that can be characterized as “ambiguous” and the other as “urgent.” When describing the health

conditions, we used wording similar to one in Cheraghi-Sohi et al. (2008).

Data were collected from December 2011 to February 2012. To reduce sampling bias, we

conducted surveys across different times of day and different days of week. Overall, 240 patients

were eligible to participate, out of which 161 of them agreed to participate, yielding a response

rate of 67%. Each patient were provided appointment slots over the next five days including the

current day, corresponding to a scheduling horizon length of τ = 5. We separated the data under

the ambiguous health condition and the urgent health condition. For each health condition, we let

K be the set of patients who picked an appointment day within the options offered and K̄ be the

set of patients who picked the option of seeking care elsewhere. For each patient k ∈ K, the data

provide the set of appointment days Sk made available to this patient and the appointment day jk

chosen by this patient, whereas for each patient k ∈ K̄, the data provide the set of appointment
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days Sk made available to the patient. As a function of the parameters v = (v1, . . . , vτ ) of the

choice model, the likelihood function is given by

L(v) =
( ∏

k∈K

vjk

1 +
∑

j∈Sk vj

)( ∏
k∈K̄

1

1 +
∑

j∈Sk vj

)
We maximized the likelihood function above by using a nonlinear programming package to obtain

the estimator for the preference weights v.

We use vA and vU to respectively denote the preference weights estimated by using the data

obtained under the ambiguous and urgent health conditions. Our results yield the estimates

vA = (4.99, 4.66, 3.84, 4.58, 2.54, 1.83) and vU = (2.19, 1.95, 1.09, 0.33, 0.71, 0.19). These estimates

conform with intuition. The preference weights derived from the patients with an ambiguous health

condition reveal that these patients are less sensitive to appointment delays. They appear to favor

any appointment within four day window more or less equally. The patients with urgent symptoms

desire faster access. They prefer appointments on the day during which they call and on the

following day significantly stronger than other appointment day options. Also, we observe that the

magnitudes of the preference weights are smaller when patients face an urgent health condition

compared to when patients face an ambiguous health condition. Noting that the preference weight

of seeking care elsewhere is normalized to one, this observation suggests that patients facing an

urgent health condition have a higher tendency to seek care elsewhere.

6.2 Benchmark Policies

We compare the performance of static and dynamic policies through a series of computational

experiments and test them against other benchmark policies. We work with a total of four policies

in our computational experiments. The first policy we consider is a static policy based on the model

in Section 4. We refer to this policy as SP, standing for static policy. SP solves problem (5)-(8)

and transforms the optimal solution to this problem to an optimal solution to problem (2)-(4) by

using (9). Using h∗ to denote an optimal solution to problem (2)-(4) obtained in this fashion, SP

offers the subset S of days with probability h∗(S).

Our second policy is a dynamic policy based on the model in Section 5. We refer to this policy as

DP, standing for dynamic policy. Letting h∗ be the subset offer probabilities obtained by SP, given

that the appointment schedule on the current day is given by x, DP maximizes
∑

j∈T qj(x, f, h
∗)

subject to the constraint that
∑

S⊂T f(S) = 1. In this case, using f∗ to denote the optimal solution

to this problem, on the current day, we offer the subset S of days with probability f∗(S). We note

that DP recomputes the subset offer probabilities at the beginning of each day by using the current

appointment schedule, but the value of h∗ stays constant throughout.

The third policy can be interpreted as a capacity controlled implementation of open access. We

refer to this policy as CO, standing for controlled open access. CO makes only the current day

available for appointments, but to balance the demand with the available capacity, it also allows the
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possibility of offering no appointment days to an arriving patient. To achieve this, we solve problem

(2)-(4) only by considering the sets S = {0} and S = ∅, in which case, problem (2)-(4) becomes a

convex optimization problem with two decision variables h({0}) and h(∅). Letting (h∗({0}), h∗(∅))
be the optimal solution we obtain, CO offers the current day for appointments with probability

h∗({0}) and does not offer any appointment days with probability h(∅).

The fourth policy is a complement of CO, offering all days in the scheduling horizon. We refer

to this policy as AN, standing for all or nothing. To be specific, AN either makes all days in

the scheduling horizon available for appointments or does not offer an appointment day at all.

The probabilities of offering these two options is obtained by using a similar approach to CO. In

particular, we solve problem (2)-(4) only by considering the sets S = {0, 1, . . . , τ} and S = ∅.

6.3 Experimental Setup

In all of our computational experiments, we set the daily arrival rate λ = 16. To come up with

the capacity of the clinic C, we choose a nominal capacity c̄ and use three different capacity

levels of 0.75 c̄, c̄ and 1.25 c̄. The nominal capacity c̄ is computed as the minimum of the

expected number of appointments that we retain on a particular day given that we open only

the current day or all days in the scheduling horizon for appointments. In other words, we have

c̄ = λ min{
∑

j∈T r̄j Pj({0}),
∑

j∈T r̄j Pj(T )}. If we open all days for appointments, then a greater

fraction of patients book appointments, but these appointments might be scheduled further into

the future and a significant portion of the appointments may be canceled before the appointment

day. On the other hand, if we open only the current day for appointments, then a smaller fraction

of patients book appointments, but they are less likely to cancel. We choose the nominal capacity

value as the minimum of the patient load on a particular day under these two cases. We calibrate

the probability of retaining an appointment such that r̄j = 1 − 0.04 j. Recalling that we retain a

patient with a j day appointment delay until the day of her appointment with probability r̄j , our

choice of retaining probabilities models the situation where the probability of retaining a patient

decreases with the appointment delay. We set sj = 1 so that all patients that have not canceled by

the day of their appointments show up.

Recalling that the revenue of serving a patient is normalized to one, we vary the overtime cost

θ over three different values, 1.25, 1.5 and 1.75. We use two different values for the length of the

scheduling horizon τ . In one set of test problems, we set τ = 5. For these test problems, we

work with two different preference weights, vA and vU , which are the preference weights estimated

under the ambiguous and urgent health conditions in Section 6.1. In another set of test problems,

we set τ = 15. For these test problems, we use two different sets of preference weights that we

generate ourselves. The first one is vI = (1, 1, . . . , 1). Since all preference weights are equal, this

situation corresponds to the case where a patient is indifferent over the days offered to her. The

second set of preference weights is vD = {1.5, 1.4, . . . , 0.1}, capturing the situation where patients

prefer later appointments less. Thus, our experimental setup varies the capacity of the clinic C
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over {0.75 c̄, c̄, 1.25c̄} , the overtime cost θ over {1.25, 1.5, 1.75} and the preference weights v over

{vA, vU , vI , vD}, in which case, we obtain a total of 36 test problems.

We use a simulation study to test the performance of the four policies described in the previous

section. On each day, we sample the number of appointment requests that arrive. Letting

h = {h(S) : S ⊂ T } be the probability with which each subset of days is offered to a patient

under the policy in consideration, each appointment request is offered the subset S of days with

probability h(S), independent of the others. The patient making the appointment request chooses

among the offered days according to the multinomial logit model or leaves without booking an

appointment. Once we collect the booked appointments on the current day in this fashion and

update the appointment schedule, we sample the cancellations and no shows. Based on the no-

shows, we account for the revenue and the overtime cost on the current day, after which, we can

move on to the next day. We simulate each one of the four policies for 135 days and for 100

replications. The first 45 days of each replication is used as a warm up period, during which we do

not collect any revenue or cost information.

6.4 Computational Results

Our computational results are given in Tables 1 and 2. Table 1 focuses on the test problems

with τ = 15, having the preference weights vI or vD. Table 2 focuses on the test problems with

τ = 5, having the preference weights vA or vU . The first three columns in these tables show the

characteristics of the test problems by using the triplet (v, C, θ). The following four columns show

the expected profit per day obtained by the four policies. The last three columns show the percent

gap between the expected profit per day obtained by DP and the remaining three policies.

Our results in Table 1 indicate that DP can provide substantial improvements over the other

three policies that do not consider the state of the appointment schedule when making their

decisions. For the test problems with v = vI , DP performs better than SP, CO and AN respectively

by 8.96%, 12.59% and 16.64% on average. The corresponding gaps are 6.68%, 9.92% and 13.27%

for the test problems with v = vD. In all of the test problems in Table 1, there is a statistically

significant gap between the performance of DP and the performance of the best of the remaining

three policies. Overall, the performance gaps between DP and the other three policies tend to

increase as the overtime cost gets larger. For the test problems with θ = 1.75, the performance gap

between DP and all other three policies can exceed 10%. Indeed, when the overtime cost is high,

it becomes more important to make the scheduling decisions more carefully and the improvement

provided by DP over the static policies, SP, CO and AN, become more noticeable. Interestingly, the

test problems with C = 1.25 c̄ have relatively ample capacity, but this does not necessarily mean

that simpler static policies provide satisfactory performance.

The improvement provided by DP over the other policies can be due to both the increased

number of patients served and the decreased overtime cost. In particular, consider a policy such as
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Prob. Char. Exp. Prof. Per Day % Gap with DP
v C θ SP DP CO AN SP CO AN

vI 0.75c̄ 1.25 5.06 5.40 5.04 4.85 6.30 6.67 10.19
vI 0.75c̄ 1.5 4.60 5.11 4.61 3.72 9.98 9.78 27.20
vI 0.75c̄ 1.75 4.32 4.87 4.30 2.69 11.29 11.70 44.76

vI c̄ 1.25 6.93 7.36 6.52 6.93 5.84 11.41 5.84
vI c̄ 1.5 6.40 7.09 6.25 6.26 9.73 11.85 11.71
vI c̄ 1.75 6.06 6.81 6.02 5.61 11.01 11.60 17.62

vI 1.25c̄ 1.25 7.81 8.27 6.85 7.66 5.56 17.17 7.38
vI 1.25c̄ 1.5 7.27 8.04 6.66 7.16 9.58 17.16 10.95
vI 1.25c̄ 1.75 6.89 7.77 6.53 6.67 11.33 15.96 14.16

Average 8.96 12.59 16.64

vD 0.75c̄ 1.25 6.02 6.31 5.99 5.75 4.60 5.07 8.87
vD 0.75c̄ 1.5 5.49 5.93 5.5 4.62 7.42 7.25 22.09
vD 0.75c̄ 1.75 5.15 5.60 5.16 3.49 8.04 7.86 37.68

vD c̄ 1.25 7.86 8.27 7.57 7.87 4.96 8.46 4.84
vD c̄ 1.5 7.31 7.91 7.26 7.16 7.59 8.22 9.48
vD c̄ 1.75 6.96 7.61 6.92 6.47 8.54 9.07 14.98

vD 1.25c̄ 1.25 9.68 10.18 8.53 9.50 4.91 16.21 6.68
vD 1.25c̄ 1.5 9.14 9.62 8.36 9.09 4.99 13.10 5.51
vD 1.25c̄ 1.75 8.73 9.60 8.25 8.71 9.06 14.06 9.27

Average 6.68 9.92 13.27

Table 1: Performance of the four policies on the test problems with v = vI or v = vD.

AN, which does not impose a control on the days offered and either offers all days in the scheduling

horizon or does not offer anything. Due to the wide availability of options, the patients may be

more likely to book appointments under AN, but since AN offers all days, patients have the option

of booking appointments further into the future. Noting that the cancellation probabilities are

dependent on the appointment delay, more patients cancel. As a result, a policy like AN, may end

up serving a smaller number of patients when compared to DP, despite the fact that AN makes a

wide range of days available for appointments. SP alleviates this shortcoming of AN to a certain

extent since it chooses the sets of days to offer by balancing the tendency of the patients to book and

cancel appointments. On the other hand, from the perspective of overtime cost, due to their static

nature, policies such as SP, CO and AN cannot immediately react to capacities being filled up and

may schedule unnecessary overtime. Overall, DP chooses the set of days to offer by considering

the fact that a large set of days increases the likelihood that a patient books an appointment,

but appointments further into the future are more likely to be canceled. Furthermore, DP adjusts

the set of offered days in response to the current appointment schedule. Thus, DP can effectively

increase the number of patients served, while decreasing the overtime cost.

Table 2 gives our computational results for the case where the preference weights are based on

our discrete choice experiment. We observe that DP continues to provide noticeable improvements

over the other three static policies. Over the test problems with the ambiguous health condition, DP

improves the performance of SP, CO and AN respectively by 3.04%, 4.84% and 5.41% on average.

The same performance gaps come out to be 4.12%, 8.13% and 9.09% for the test problems with
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Prob. Char. Exp. Prof. Per Day % Gap with DP
v C θ SP DP CO AN SP CO AN

vA 0.75c̄ 1.25 8.82 8.83 8.82 8.75 0.11 0.11 0.91
vA 0.75c̄ 1.5 8.22 8.25 8.23 7.78 0.36 0.24 5.70
vA 0.75c̄ 1.75 7.80 7.80 7.81 6.80 0.00 -0.13 12.82

vA c̄ 1.25 11.42 ×11.86 11.15 11.41 3.71 5.99 3.79
vA c̄ 1.5 10.95 ×11.31 10.79 10.94 3.18 4.60 3.27
vA c̄ 1.75 10.53 10.52 10.47 10.51 -0.10 0.48 0.10

vA 1.25c̄ 1.25 12.95 ×13.92 12.34 12.84 6.97 11.35 7.76
vA 1.25c̄ 1.5 12.80 ×13.72 12.22 12.73 6.71 10.93 7.22
vA 1.25c̄ 1.75 12.62 ×13.48 12.10 12.52 6.38 10.24 7.12

Average 3.04 4.87 5.41

vU 0.75c̄ 1.25 6.92 6.93 6.93 6.71 0.14 0.00 3.17
vU 0.75c̄ 1.5 6.41 × 6.65 6.38 5.52 3.61 4.06 16.99
vU 0.75c̄ 1.75 6.04 × 6.30 6.05 4.37 4.13 3.97 30.63

vU c̄ 1.25 9.70 ×10.01 9.21 9.70 3.10 7.99 3.10
vU c̄ 1.5 9.13 × 9.34 8.93 9.12 2.25 4.39 2.36
vU c̄ 1.75 8.70 8.69 8.65 8.55 -0.12 0.46 1.61

vU 1.25c̄ 1.25 11.52 ×12.71 10.23 11.53 9.36 19.51 9.28
vU 1.25c̄ 1.5 11.36 ×12.31 10.16 11.34 7.72 17.47 7.88
vU 1.25c̄ 1.75 11.09 ×11.91 10.08 11.10 6.88 15.37 6.80

Average 4.12 8.13 9.09

Table 2: Performance of the four policies on the test problems with v = vA or v = vU .

the urgent health condition. SP provides noticeably better than CO and AN, indicating that it is

worthwhile to solve a mathematical program to find the best probability with which each subset of

days should be offered. The gap between SP and DP can still be significant and a policy, such as

DP, that makes its decisions by considering the current appointment schedule can be attractive. In

Table 2, we use a “×” to mark the test problems where the performance gap between DP and the

best performing static policy is statistically significant at 5% level. In 13 out of 18 test problems,

the performance gap is statistically significant.

Our computational experiments indicate that there are significant benefits from using dynamic

policies that explicitly consider the state of the appointment schedule. Inevitably, there is additional

computational burden brought out by dynamic policies, but for the test problems we considered,

the decision made by DP can be computed in less than 0.01 seconds. Considering that the subset

offer probabilities used by DP are recomputed at the beginning of each day, such run times are

reasonable. Furthermore, run times that are on the order of a few milliseconds are suitable even if

we recompute the subset offer probabilities for each individual patient. Online scheduling systems,

which are becoming more prevalent in practice, offer immediate access to current appointment

schedules and provide a particularly suitable environment for implementing dynamic policies.
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7 Conclusion

Efficient use of healthcare resources is an important challenge. There is high demand for limited

resources and the demand is expected to increase in the near future, particularly in the United

States with the recent passage of the Patient Protection and Affordable Care Act. Appointment

scheduling is one way of smoothing out the variable daily patient demand, which not only helps in

increasing the utilization of resources, but also provides the patients with the flexibility of choosing

when they will be seen. Although there is a growing body of work on various aspects of appointment

scheduling, with few exceptions, the fact that patients have their own preferences regarding when

they would like to be seen has been assumed away. This paper is directed to fill this gap.

The models we propose incorporate no-shows and cancellations that are dependent on the

appointment delays, embed customer preferences among the different appointment days and take

the current appointment schedule into consideration when making decisions. We provide a number

of analytical characterizations that help simplify the way both the static and dynamic models are

solved. We give a bound on the performance of the static model. Given that the dynamic model

is obtained by applying the policy iteration algorithm on the static model, the dynamic model

is trivially guaranteed to improve the performance of the static one. Our computational results,

which make use of the patient utility estimates obtained from actual clinic data, reveal that our

dynamic model can significantly outperform other benchmark policies.

In this paper, we use the multinomial logit model to capture patient preferences. Multinomial

logit model has found many applications in economics, decision analysis and operations research to

model choice behavior and there are well-established methods for estimating the parameters of this

choice model from data. Recently, Gallego et al. (2011) describe an extension of the multinomial

logit model where the preference weight of not booking an appointment increases if too few days

are offered to patients. Under their choice model, each day in the scheduling horizon has two

parameters, denoted by vj and wj . If we offer the subset S of days, then a patient chooses day j in

the scheduling horizon with probability Pj(S) = vj/(1 +
∑

k ̸∈S wk +
∑

k∈S vk), where the quantity∑
k ̸∈S wk captures the increase in the preference weight of not booking an appointment as a function

of the days that are not offered. It is possible to check that all of our results in the paper continue

to hold under this more general form of the multinomial logit model.

Our approach implicitly assumes that the choice behavior represented by the multinomial logit

model captures the overall patient population preferences. This approach is reasonable when we do

not have access to additional information about patient conditions. When additional information is

available, subset offer decisions may depend on the condition of patients. For example, considering

our computational study, if patients having urgent and ambiguous conditions arrive simultaneously

into the system and we have information about the condition of the patient before offering the

available appointment days, then we can define two sets of decision variables hU = {hU (S) : S ⊂ T }
and hA = {hA{S) : S ⊂ T } to respectively capture the probability that each subset of days is
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offered to a patient with urgent and ambiguous conditions. Our approach can be extended to

jointly optimize the subset offer probabilities (hU , hA).

There are a number of research directions to pursue further. First, although the multinomial

logit model is a widely used way of modeling choice, it is of interest to generalize our results to

other choice models that can capture a variety of patient preferences. The key is to keep the

corresponding optimization problems tractable, while using more intricate choice models. Second,

the current paper focuses on the aggregate capacity on each day and charges the overtime cost

by comparing the available daily capacity with the total number of appointments retained on the

current day. If the patients are scheduled for different times of the day, then it might be possible

to shift appointments within a day and still avoid overtime costs. Such an extension may result

in more intricate overtime costs as it requires keeping track of the detailed appointment dynamics

within a day and it is certainly worth investigation.
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A Appendix: Omitted Results

In this section, we give the proofs of the results that are omitted in the paper.

A.1 Proof of Proposition 1

We complete the proof of Proposition 1 in two parts. First, assume that h∗ = {h∗(S) : S ⊂ T } is an

optimal solution to problem (2)-(4). Letting x∗j =
∑

S⊂T Pj(S)h
∗(S) and u∗ =

∑
S⊂T N(S)h∗(S),

we need to show that (x∗, u∗) is a feasible solution to problem (5)-(8) providing the same objective

value as the solution h∗. We have∑
j∈T

x∗j + u∗ =
∑
S⊂T

h∗(S)[
∑
j∈T

Pj(S) +N(S)] =
∑
S⊂T

h∗(S) = 1,

where the second equality follows by the definition of the multinomial logit model and the third

equality follows since h∗ is feasible to problem (2)-(4). Thus, the solution (x∗, u∗) satisfies the first

constraint in problem (5)-(8). On the other hand, using 1(·) to denote the indicator function, we

have x∗j/vj =
∑

S⊂T [1(j ∈ S)h∗(S)/(1 +
∑

k∈S vk)] by the definition of Pj(S) in the multinomial

logit model. Noting that u =
∑

S⊂T [h
∗(S)/(1 +

∑
k∈S vk)], it follows that x∗j/vj ≤ u, indicating

that the solution (x∗, u∗) satisfies the second set of constraints in problem (5)-(8). Since x∗j =∑
S⊂T Pj(S)h

∗(S), comparing the objective functions of problems (2)-(4) and (5)-(8) shows that

the solutions h∗ and (x∗, u∗) provide the same objective values for their problems.

Second, assume that (x∗, u∗) is a feasible solution to problem (5)-(8). We construct the solution

h∗ as in (9). To see that the solutions (x∗, u∗) and h∗ provide the same objective values for their

respective problems, we observe that

∑
S⊂T

Pj(S)h
∗(S) =

τ∑
i=0

Pj(Si)h
∗(Si) =

τ∑
i=j

Pj(Si)h
∗(Si) =

τ∑
i=j

vj

[x∗i
vi

−
x∗i+1

vi+1

]
= x∗j ,

where the first equality is by the fact that h∗(S) takes positive values only for the sets S0, . . . , Sτ

and ∅, the second equality is by the fact that j ∈ Si only when j ≤ i and the third equality follows

by the definition of h∗(Si) and noting that x∗τ+1 = 0. Using the equality above and comparing the

objective functions of problems (2)-(4) and (5)-(8) show that the solutions h∗ and (x∗, u∗) provide

the same objective values for their problems. To see that the solution h∗ is feasible to problem

(2)-(4), we let Vi = 1 +
∑

k∈Si
vk for notational brevity and write

∑
S⊂T h∗(S) as

u∗ − x∗0
v0

+

τ∑
j=0

Vj

[x∗j
vj

−
x∗j+1

vj+1

]
= u∗ + (V0 − 1)

x∗0
v0

+ (V1 − V0)
x∗1
v1

+ . . .+ (Vτ − Vτ−1)
x∗τ
vτ

= 1,

where the first equality follows by rearranging the terms and using the convention that x∗τ+1 = 0

and the second equality is by noting that Vi − Vi−1 = vi and using the fact that (x∗, u∗) is feasible

to problem (5)-(8) so that
∑τ

j=0 x
∗
j + u∗ = 1. 2
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A.2 Proof of Proposition 6

The proof follows from an argument similar to the one in the proof of Proposition 1. Assume that

h∗ = {h∗(S) : S ⊂ T } is an optimal solution to problem (2)-(4) with the additional constraints

ht(S) ∈ {0, 1} for all S ⊂ T . Letting x∗j =
∑

S⊂T Pj(S)h
∗(S) and u∗ =

∑
S⊂T N(S)h∗(S), we can

follow the same argument in Section A.1 to show that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is a feasible

solution to problem (5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . Furthermore,

the objective values provided by the two solutions for their respective problems are identical. On

the other hand, assume that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is an optimal solution to problem

(5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . We reorder and reindex the

days in the scheduling horizon so that we have u∗ = x∗0/v0 = x∗1/v
∗
1 = . . . = x∗j−1/v

∗
j−1 ≥ x∗j/xj =

x∗j+1/vj+1 = . . . = x∗τ/v
∗
τ = 0. We define the subsets S0, S1, . . . , Sτ as Sj = {0, 1, . . . , j}. For

notational convenience, we define x∗τ+1 = 0. In this case, letting

h∗(∅) = u∗ − x∗0
v0

and h∗(Sj) =
[
1 +

∑
k∈Sj

vk

] [x∗j
vj

−
x∗j+1

vj+1

]
for all j = 0, 1, . . . , τ and letting h∗(S) = 0 for all other subsets of T , we can follow the same

argument in Section A.1 to show that {h∗(S) : S ⊂ T } is a feasible solution to problem (2)-(4)

with the additional constraints ht(S) ∈ {0, 1} for all S ⊂ T . Furthermore, we can check that the

two solutions provide the same objective value for their respective problems. 2

A.3 Lemma 7

The following lemma is used in Section 4.

Lemma 7. Letting F (α) = E
{
[Pois(α)− C]+

}
, F (·) is differentiable and convex.

Proof. The proof uses elementary properties of the Poisson distribution. By using the probability

mass function of the Poisson distribution, we have

F (α) =

∞∑
i=C+1

e−α αi

i!
(i− C) =

∞∑
i=C+1

e−α αi

(i− 1)!
−

∞∑
i=C+1

e−α αi

i!
C

= α

∞∑
i=C

e−α αi

i!
− C

∞∑
i=C+1

e−α αi

i!
= αP{Pois(α) ≥ C} − C P{Pois(α) ≥ C + 1}. (26)

Thus, the differentiability of F (·) follows by the differentiability of the cumulative distribution

function of the Poisson distribution with respect to its mean. For the convexity of F (·), we have

dP{Pois(α) ≥ C}
dα

= −dP{Pois(α) ≤ C − 1}
dα

= −
C−1∑
i=0

d
(
e−α αi

i!

)
dα

=
C−1∑
i=0

e−α αi

i!
−

C−1∑
i=1

e−α αi−1

(i− 1)!
= P{Pois(α) = C − 1}.

36



In this case, if we differentiate both sides of (26) with respect to α and use the last chain of

equalities, then we obtain

dF (α)

dα
= P{Pois(α) ≥ C}+ αP{Pois(α) = C − 1} − C P{Pois(α) = C}

= P{Pois(α) ≥ C}+ α
e−α αC−1

(C − 1)!
− C

e−α αC

C!
= P{Pois(α) ≥ C}.

To see that F (·) is convex, we use the last two chains of equalities to observe that the second

derivative of F (α) with respect to α is P
{
Pois(α) = C − 1

}
, which is positive. 2

A.4 Proof of Lemma 4

We let π∗(S) be the steady state probability with which we offer the subset S of days under the

optimal, possibly state-dependent, policy. So, if we consider a particular day in steady state, then

the number of patients that are scheduled for this day j days in advance is given by a Poisson random

variable with mean
∑

S⊂T λPj(S)π
∗(S). Therefore, if we use the random variable A∗

j to denote

the number of patients that we schedule for a particular day j days in advance in steady state, then

A∗
j has mean

∑
S⊂T λPj(S)π

∗(S). We note that A∗
1, A

∗
2, . . . , A

∗
τ are not necessarily independent of

each other, since the decisions under the optimal state-dependent policy on different days can be

dependent. Similarly, in steady state, we let S∗
j be the number of patients that we schedule for a

particular day j days in advance and that show up under the optimal state-dependent policy. Finally,

we let R∗
j be the number of patients that we schedule for a particular day j days in advance and that

we retain until the morning of the appointment under the optimal state dependent policy. Noting

that the show-up and cancellation decisions of the patients are independent of how many patients

we schedule for a particular day, we have E{S∗
j } = s̄j E{A∗

j} and E{R∗
j} = r̄j E{A∗

j}. In this case,

the average profit per day generated by the optimal state-dependent policy satisfies

V ∗ = E
{∑

j∈T
S∗
j

}
− θE

{[∑
j∈T

R∗
j − C

]+}
≤

∑
j∈T

E{S∗
j } − θ

[∑
j∈T

E{R∗
j} − C

]+
=

∑
j∈T

∑
S⊂T

λ s̄j Pj(S)π
∗(S)− θ

[∑
j∈T

∑
S⊂T

λ r̄j Pj(S)π
∗(S)− C

]+
≤ ZDET .

In the chain of inequalities above, the first inequality is by the Jensen’s inequality. The second

equality is by E{S∗
j } = s̄j E{A∗

j} and E{R∗
j} = r̄j E{A∗

j}. To see the second inequality, we note

that {π∗(S) : S ⊂ T } is a feasible but not necessarily an optimal solution to the problem

max
∑
j∈T

∑
S⊂T

λ s̄j Pj(S)w(S)− θ
[∑
j∈T

∑
S⊂T

λ r̄j Pj(S)w(S)− C
]+

subject to
∑
S⊂T

w(S) = 1

w(S) ≥ 0 S ⊂ T

and the optimal objective values of the problem above and problem (20)-(23) are equal to each

other, which can be verified by using the argument in the proof of Proposition 1. 2
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A.5 Lemma 8

The following result is used in the proof of Proposition 5.

Lemma 8. It holds that E{[Pois(α)− C]+} ≤ [α− C]+ + α/
√
2π C.

Proof. For k ≥ C + 1, we observe that [k − C]+ − [α − C]+ ≤ k − α. In particular, for k ≥ α,

this inequality follows by the Lipschitz continuity of the function [· − C]+. For k < α, we have

C + 1 ≤ k < α and it follows [k − C]+ − [α − C]+ = k − α, establishing the desired inequality. In

this case, the result in the lemma follows by noting that

E{[Pois(α)− C]+} =

∞∑
k=C+1

[k − C]+
e−ααk

k!
≤ [α− C]+ +

∞∑
k=C+1

[
[k − C]+ − [α− C]+

] e−ααk

k!

≤ [α− C]+ +

∞∑
k=C+1

(k − α)
e−ααk

k!
= [α− C]+ +

e−ααC

C!
α ≤ [α− C]+ +

e−CCC

C!
α,

where the first inequality follows by adding and subtracting [α − C]+ to the expression on the

left side of this inequality, the second inequality follows by the inequality derived at the beginning

of the proof, the last equality is by arranging the terms in the summation on the left side of

this inequality and the third inequality is by noting that the function f(α) = e−ααC attains its

maximum at α = C. In this case, the result follows by noting that C! ≥
√
2π C(C/e)C by Stirling’s

approximation and using this bound on the right side of the chain of inequalities above. 2

38


