
Bounding Optimal Expected Revenues for
Assortment Optimization under Mixtures of Multinomial Logits

October 30, 2013

Abstract

We consider assortment problems under a mixture of multinomial logit models. There is a fixed
revenue associated with each product. There are multiple customer types. Customers of different
types choose according to different multinomial logit models whose parameters depend on the
type of the customer. The goal is to find a set of products to offer so as to maximize the expected
revenue obtained over all customer types. This assortment problem under the multinomial logit
model with multiple customer types is NP-complete. Although there are heuristics to find good
assortments, it is difficult to verify the optimality gap of the heuristics. In this paper, motivated
by the difficulty of finding optimal solutions and verifying the optimality gap of heuristics,
we develop an approach to construct an upper bound on the optimal expected revenue. Our
approach can quickly provide upper bounds and these upper bounds are remarkably tight. In
our computational experiments, over a large set of problem instances, the upper bounds provided
by our approach deviate from the optimal expected revenues by only 0.11% on average and by
only 0.83% in the worst case. By using our upper bounds, we are able to verify the optimality
gaps of a greedy heuristic accurately, even when optimal solutions are not available.



Customer choice models are becoming increasingly popular for modeling demand in modern revenue

management systems. In particular, traditional models of demand assume that each customer

arrives into the system with the intention of purchasing a fixed product. If this product is available

for purchase, then the customer makes a purchase. Otherwise, the customer simply leaves the

system. However, modern revenue management systems are able to offer a variety of products to

customers, possibly by exploiting the availability of online sales channels. Often times, there are

multiple offered products that satisfy the needs of a customer, in which case, the customer makes a

choice among the offered products. Due to the choice process, the demand for a particular product

depends on what other products are offered. Thus, customer choice models emerge as a useful tool

for capturing the dependencies between the demands for the offered products.

In this paper, we study assortment problems that capture the customer choice process of the

kind mentioned above. In our problem setting, a firm wants to find a set of products to offer to its

customers. There is a fixed revenue associated with each product. An arriving customer may be

one of multiple customer types. The firm does not known the type of an arriving customer, but it

has access to the probability that an arriving customer is of a particular type. Customers choose

among the offered products according to the multinomial logit model and customers of different

types choose according to different multinomial logit models whose parameters depend on the type

of the customer. This choice model is known as the mixture of multinomial logit models. The

goal of the firm is to find a set or an assortment of products to offer to its customers so as to

maximize the expected revenue obtained from each customer. Bront et al. (2009) show that this

assortment problem is NP-complete, give a mixed integer programming formulation to obtain the

optimal solution and provide computational experiments that demonstrate that a greedy heuristic

performs quite well when compared with the optimal solutions obtained through the mixed integer

programming formulation. However, one shortcoming of using a heuristic is that we use a heuristic

simply due to the fact that we cannot obtain the optimal solution and there is no immediate

way of being confident that the solution provided by a heuristic is actually a good one. In this

paper, motivated by the difficulty of obtaining optimal solutions and evaluating the quality of the

solutions provided by a heuristic, we develop a method to obtain upper bounds on the optimal

expected revenue in our assortment problem. Thus, we can check the gap between the expected

revenue from the solution provided by a heuristic and the upper bound on the optimal expected

revenue to assess the optimality gap of the heuristic.

Our method for obtaining an upper bound on the optimal expected revenue has two crucial

pieces. First, a natural approach for obtaining an upper bound on the optimal expected revenue

is to assume that the firm knows the type of an arriving customer. In this case, we can focus on

each customer type one by one and separately find an assortment that maximizes the expected

revenue from each customer type. This approach essentially allows us to offer different assortments

of products to customers of different types, whereas our assortment problem requires that we find

a single assortment to offer to all customer types. Talluri and van Ryzin (2004) show that if we

focus on one customer type at a time, then the assortment that maximizes the expected revenue
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from a single customer type can be obtained efficiently. This idea provides an efficient approach for

obtaining an upper bound on the optimal expected revenue, but the upper bound provided by this

idea can be quite loose since the assortments that maximize the expected revenues from different

customer types can be drastically different from each other. To overcome this shortcoming, we still

focus on each customer type one by one, but use penalty parameters to penalize a product that

appears in the assortment offered to one customer type but does not appear in the assortment

offered to another customer type. In this way, our goal is to synchronize the assortments offered

to different customer types. We choose the penalty parameters from a certain set that ensures that

we continue obtaining an upper bound on the optimal expected revenue even if we penalize the

presence or absence of the products in the assortments offered to different customer types. We

show that we can choose a good set of penalty parameters by solving a convex program.

Second, as we focus on each customer type one by one and use penalty parameters to penalize

the presence and absence of the products, we obtain assortment problems with a single customer

type, but the penalty parameters play the role of a fixed cost for offering a product. Kunnumkal

et al. (2009) show that if customers choose according to the multinomial logit model, then the

assortment problem with a fixed cost for offering a product is NP-complete, even when there is a

single customer type. To deal with this difficulty, we develop a new approximation to the assortment

problem with a single customer type and a fixed cost for offering a product. Our approximation is

based on the assumption that the probability that a customer leaves without making a purchase

can take on values over a prespecified grid. We design the grid so that we continue obtaining an

upper bound on the optimal expected revenue. Denser grid points provide a tighter upper bound

at the expense of larger computational effort. We give guidelines for choosing a good set of grid

points to balance the tightness of the upper bound with the computational effort.

To our knowledge, our approach is a unique practical method to check the quality of solutions

in assortment problems under a mixture of multinomial logit models. Computational experiments

indicate that our approach yields remarkably tight upper bounds on the optimal expected

revenues. We consider a large set of problem instances with large numbers of products so that we

cannot obtain the optimal solutions in a reasonable amount of run time. For such problem instances,

we demonstrate that the average gap between our upper bounds and the optimal expected revenues

is less than 0.11%. In more than 95% of our problem instances, the upper bounds are within 0.15%

of the optimal expected revenues. In the process, we support the findings of Bront et al. (2009) on

large problem instances for which we cannot compute the optimal solutions and demonstrate that

the optimality gaps of the greedy heuristic are within a fraction of a percent. Without tight upper

bounds on the optimal expected revenues, it would not be possible to obtain such an accurate

characterization of the optimality gaps of the greedy heuristic.

There are three papers that particularly motivated us to construct upper bounds when

customers choose according to a mixture of multinomial logit models. First, McFadden and Train

(2000) show that a mixture of multinomial logit models can approximate any random utility choice
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model, where a customer associates random utilities with the products, choosing the product with

the largest utility. This result holds irrespective of the joint distribution of the random utilities. So,

a mixture of multinomial logit models is a powerful choice model and solving assortment problems

under this choice model can have direct implications on solving assortment problems under arbitrary

random utility choice models. Second, Talluri (2011) considers assortment problems under a

mixture of multinomial logit models, but he focuses on a network revenue management setting. The

author computes an upper bound on the optimal expected revenue by preallocating the available

capacity to different customer types and his approach turns out to be equivalent to assuming that

the firm knows the type of an arriving customer, so that the firm can offer different assortments to

customers of different types. He does not use any penalty parameters to harmonize the assortments

offered to different customer types. In our assortment problems, this approach can yield quite poor

upper bounds and we see a need to improve this approach. The gap between the upper bounds

provided by this approach and the optimal expected revenues can exceed 14%.

Finally, as mentioned above, Bront et al. (2009) show that the assortment problem under

a mixture of multinomial logit models can be formulated as a mixed integer program. They

demonstrate that a greedy heuristic performs quite well when compared with the optimal solutions

obtained by the mixed integer program. However, it is difficult to evaluate the optimality gap of

the greedy heuristic for large problem instances and a good upper bound on the optimal expected

revenue becomes useful in this regard. Furthermore, a tempting approach to obtain an upper bound

on the optimal expected revenue is to solve the linear programming relaxation of their mixed integer

program, but we establish that the upper bound from this linear programming relaxation can be

as poor as focusing on each customer type one by one without using any penalty parameters. In

other words, the upper bound from the linear programming relaxation can correspond to the upper

bound from the approach in Talluri (2011).

To sum up, we make the following contributions in this paper. 1) We develop a new approach to

obtain an upper bound on the optimal expected revenue in assortment problems under a mixture of

multinomial logit models. Our approach finds an assortment that maximizes the expected revenue

from each customer type, but we use penalty parameters to synchronize the assortments offered to

different customer types. This strategy requires solving assortment problems with a single customer

type, but with a fixed cost for offering a product. We show how to approximate such assortment

problems by assuming that the probability that a customer leaves without making a purchase lies

on a prespecified grid. 2) We show how to choose a good set of penalty parameters by solving a

convex program. 3) We show how to choose a good set of grid points. Denser grid points yield

tighter upper bounds at the expense of larger computational effort, but we show that if we simply

use exponential grid points of the form {(1 + ρ)−k+1 : k = 1, 2, . . .} for some ρ > 0, then no other

set of grid points, no matter how dense it is, can improve the upper bound by more than a factor

of 1 + ρ. 4) We show that the linear programming relaxation of the mixed integer program given

by Bront et al. (2009) can be as loose as the upper bound obtained under the assumption that the

firm knows the type of an arriving customer. 5) Computational experiments show that the upper
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bounds from our approach can be very tight. In more than 95% of our problem instances, the

upper bounds are within 0.15% of the optimal expected revenues.

The paper is organized as follows. In Section 1, we review the related literature. In Section 2,

we formulate the assortment problem under a mixture of multinomial logit models and we present

our approach for obtaining an upper bound, which is based on offering different assortments to

different customer types, but uses penalty parameters to synchronize the assortments offered to

different customer types. In this way, we obtain assortment problems with a single customer

type but with a fixed cost for offering a product. In Section 3, we show how to approximate

such assortment problems by assuming that the probability of not making a purchase lies on a

prespecified grid. In Section 4, we show how to choose a good set of penalty parameters. In

Section 5, we show how to choose a good set of grid points. In Section 6, we relate our approach

for obtaining upper bounds to a Lagrangian relaxation strategy on an appropriate formulation of

our assortment problem. This development requires more notational overhead than the path we

follow. So, we defer this development towards the end of the paper. Since our approach can be

cast as a Lagrangian relaxation strategy for a nonconvex program, it is difficult to get theoretical

tightness guarantees for our upper bounds. In Section 7, we present computational experiments

and discuss why the upper bounds from the linear programming relaxation of the mixed integer

program given by Bront et al. (2009) tend to be loose. In Section 8, we conclude.

1 Literature Review

Our work is related to assortment problems under the multinomial logit model. Gallego et al.

(2004) and Talluri and van Ryzin (2004) consider assortment problems under the multinomial

logit model with a single customer type and show that the optimal assortment can be obtained

efficiently by focusing on assortments that include a certain number of products with the largest

revenues. Bront et al. (2009) and Mendez-Diaz et al. (2010) consider the assortment problem under

a mixture of multinomial logit models. They show that the problem is NP-complete, give a mixed

integer programming formulation of the problem, present valid cuts to tighten this formulation

and experiment with a greedy heuristic. Rusmevichientong et al. (2010) consider the assortment

problem when there is a constraint on the number of products that can be offered and show that

the optimal assortment can be found efficiently when there is a single customer type. Jagabathula

et al. (2011) consider simple heuristics for assortment problems and show that these heuristics

obtain the optimal assortment when customers choose according to the multinomial logit model

with a single customer type. Gallego et al. (2011) and Wang (2013) study assortment problems

under the multinomial logit model, where customers become more likely to leave without a purchase

when the offered assortment lacks variety. Their goal is to capture the fact that customers tend to

be attracted to competitors when the offered assortment does not provide enough variety. Davis

et al. (2013) give linear programming formulations for assortment problems with constraints on

the offered assortment, when customers choose according to the multinomial logit model with a
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single customer type. Rusmevichientong et al. (2013) consider the assortment problem under a

mixture of multinomial logit models, show that the problem is NP-complete even when there are

only two customer types and give performance guarantees for the class of assortments that include a

certain number of products with the largest revenues. Desir and Goyal (2013) give fully polynomial

time approximation schemes for various assortment problems. These approximation schemes get

cumbersome when the number of customer types is large.

There is assortment optimization work under other choice models. Davis et al. (2011), Li and

Rusmevichientong (2012), Gallego and Topaloglu (2012) and Li et al. (2013) consider assortment

problems when customers choose according a nested logit model with a single customer type and

show that the problem is tractable. Farias et al. (2013) consider a choice model where each customer

arrives with a particular ordering of products in mind and purchases the first product in the ordering

that is offered. They focus on estimating the parameters of the choice model in a way consistent

with observed sales data. Blanchet et al. (2013) consider a choice model, where if a customer finds

that the product he is interested in is not available, then he makes a transition to another product

according to a Markov chain and considers purchasing the other product, until he reaches a product

that is available or reaches the option of leaving without purchasing anything. The authors show

that the assortment problem is tractable under this choice model.

There is related literature on network revenue management models incorporating customer

choice behavior. In this setting, an airline sells itinerary products over a flight network. Customers

arriving into the system make a choice among the offered itineraries and the goal is to dynamically

adjust the set of available itineraries over time so as to maximize the expected revenue obtained

over the selling horizon. A common approach for such network revenue management problem is to

formulate deterministic linear programming approximations. Examples of such approximations can

be found in Gallego et al. (2004), Liu and van Ryzin (2008), Zhang and Adelman (2009), Kunnumkal

and Topaloglu (2008), Meissner et al. (2012), Kunnumkal and Talluri (2012) and Vossen and Zhang

(2013). Usually, the decision variables in these approximations correspond to the number of time

periods during which a particular subset of itineraries are made available. Since there is one decision

variable for each subset of itineraries, the number of decision variables can be large and it is common

to solve the approximations by using column generation. The column generation subproblems in

this setting precisely correspond to the assortment problem that we consider in this paper when

customers choose according to a mixture of multinomial logit models.

Although McFadden and Train (2000) do not focus on solving assortment problems, their work

demonstrates that a mixture of multinomial logit models is a powerful choice model as it can

accurately approximate any choice model that is based on random utility maximization. Vulcano

et al. (2012) consider the problem of estimating the parameters of the multinomial logit model with

a single customer type from sales data. Kleywegt and Wang (2013) estimate the parameters of a

mixture of multinomial logit models from sales data and they focus on the case where the sets of

products offered to the customers are not observable.
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2 Problem Formulation and Decomposition Approach

We use N to denote the set of possible products that we can offer to customers. The revenue

associated with product j is rj . We use G to denote the set of customer types. The probability

that a customer of type g arrives into the system is αg, where we have
∑

g∈G αg = 1. We use

the vector x = {xj : i ∈ N} ∈ {0, 1}|N | to capture the set of products that we offer to the

customers, where we have xj = 1 if product j is offered, otherwise we have xj = 0. A customer

of a certain type makes a choice among the offered products according to the multinomial logit

model whose parameters depend on the type of the customer. In particular, a customer of type

g associates the preference weight vgj with product j. For all customer types, we normalize the

preference weight of the no purchase option to one. In this case, if the set of products that we

offer to the customers is captured by the vector x, then a customer of type g purchases product

j with probability P g
j (x) = vgj xj/(1 +

∑
i∈N vgi xi). Thus, if the set of products that we offer to

the customers is captured by the vector x, then the expected revenue obtained from a customer is

given by
∑

g∈G αg
∑

j∈N rj P
g
j (x). Noting the definition of P g

j (x), we can find the set of products

that maximizes the expected revenue obtained from a customer by solving the problem

Z∗ = max
x∈{0,1}|N|

{∑
g∈G

αg

∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj

}
. (1)

In the problem above, the fraction computes the expected revenue obtained from a customer of

type g as a function of the set of products that we offer, whereas the outer sum computes the

expected revenue over all customer types. It is likely that obtaining exact solutions to problem (1)

is difficult. In particular, Bront et al. (2009) show that the problem above is NP-complete. Motivated

by this complexity result, we focus on obtaining an upper bound on the optimal expected revenue

Z∗, given by the optimal objective value of problem (1).

A natural approach for obtaining an upper bound on the optimal expected revenue Z∗ is to

proceed under the assumption that we can offer different sets of products to different customer types,

but use penalty parameters to penalize the absence or presence of the products in the assortments

offered to different customer types. To pursue this reasoning, we use λ = {λg
j : j ∈ N, g ∈ N} ∈

ℜ|N |×|G| to denote a vector of penalty parameters. As a function of the penalty parameters, we

define Πg(λ) as the optimal objective value of the problem

Πg(λ) = max
x∈{0,1}|N|

{ ∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj
−

∑
j∈N

λg
j xj

}
. (2)

The problem above finds a set of products to offer so as to maximize the expected profit obtained

from a customer of type g, where we generate a revenue of rj when we sell product j and incur a

cost of λg
j when we offer product j. The next lemma shows that

∑
g∈G αg Πg(λ) provides an upper

bound on the optimal expected revenue Z∗, as long as the penalty parameters take values in the

set Λ = {λ ∈ ℜ|N |×|G| :
∑

g∈G αg λg
j = 0 ∀ j ∈ N}. The proof is rather simple, but we include the

proof to explicitly show the necessity of imposing the condition λ ∈ Λ.
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Lemma 1 For any λ ∈ Λ, we have
∑

g∈G αg Πg(λ) ≥ Z∗.

Proof. Letting x∗ be an optimal solution to problem (1), we observe that x∗ is a feasible, but not

necessarily an optimal solution to problem (2), in which case, we obtain

∑
g∈G

αg Πg(λ) ≥
∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

∗
j

1 +
∑

j∈N vgj x
∗
j

−
∑
j∈N

λg
j x

∗
j

}

=
∑
g∈G

αg

∑
j∈N rj v

g
j x

∗
j

1 +
∑

j∈N vgj x
∗
j

−
∑
j∈N

{∑
g∈G

αg λg
j

}
x∗j = Z∗,

where the last equality follows from the definition of x∗ and the fact that the penalty parameters

satisfy λ ∈ Λ so that we have
∑

g∈G αg λg
j = 0 for all j ∈ N . �

The penalty parameters can be positive or negative, where a positive value for λg
j discourages

offering product j to a customer of type g, whereas a negative value for λg
j encourages offering

product j to a customer of type g. Since the zero vector 0̄ ∈ ℜ|N |×|G| is in Λ, Lemma 1 implies

that
∑

g∈G αg Πg(0̄) provides an upper bound on the optimal expected revenue Z∗ and this upper

bound corresponds to the one obtained by offering different sets of products to different customer

types without using any penalty parameters. In general, using penalty parameters other than zero

can potentially yield tighter upper bounds and our computational experiments indicate that the

benefits from using penalty parameters other than zero can be substantial.

Noting that we can use
∑

g∈G αg Πg(λ) for any λ ∈ Λ as an upper bound on the optimal expected

revenue Z∗, we can try to solve the problem minλ∈Λ
∑

g∈G αg Πg(λ) to obtain the tightest possible

upper bound, but solving the last optimization problem is intractable. In particular, computing

Πg(λ) at any λ requires solving problem (2). Problem (2) maximizes the expected profit from a

customer of type g, where we generate a revenue from each product we sell and incur a cost for each

product we offer. Kunnumkal et al. (2009) show that such an assortment optimization problem that

involves costs for offering the products is NP-complete. To overcome this difficulty, we develop an

approximation Πg(λ), while maintaining the upper bound provided by Lemma 1.

3 Upper Bound on Optimal Expected Revenue

At the end of the previous section, we propose solving the problem minλ∈Λ
∑

g∈G αg Πg(λ) to

obtain the tightest possible upper bound on the optimal expected revenue Z∗, but solving this

optimization problem turns out to be intractable. In this section, we develop an approximation

Π̃g(·) to Πg(·). This approximation is tractable to compute and it satisfies Π̃g(λ) ≥ Πg(λ) for

all λ ∈ Λ. In this case, by Lemma 1, we have
∑

g∈G αg Π̃g(λ) ≥
∑

g∈G αg Πg(λ) ≥ Z∗ for any

λ ∈ Λ, implying that we can use
∑

g∈G αg Π̃g(λ) for any λ ∈ Λ as an upper bound on the optimal

expected revenue Z∗. In this case, we can solve the problem minλ∈Λ
∑

g∈G αg Π̃g(λ) to obtain the

tightest possible upper bound on the optimal expected revenue provided by the approximations
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{Π̃g(·) : g ∈ G}. Solving problem minλ∈Λ
∑

g∈G αg Π̃g(λ) turns out to be tractable. To develop an

approximation to Πg(λ), we note that 1/(1 +
∑

j∈N vgj xj) in problem (2) is the probability that a

customer of type g does not purchase anything when the set of offered products is captured by the

vector x. We fix the value of this no purchase probability at p and solve the problem

max
x∈{0,1}|N|

{∑
j∈N

p rj v
g
j xj −

∑
j∈N

λg
j xj :

1

1 +
∑

j∈N vgj xj
= p

}

for a fixed value of p. In this case, it follows that if we solve the problem above for all values

of p in the interval [0, 1] and pick the largest optimal objective value over all values of p, then

we obtain the optimal objective value Πg(λ) of problem (2). We make a few refinements in this

approach. Since the smallest possible value of the no purchase probability for any customer type is

pmin = ming∈G{1/(1 +
∑

j∈N vgj )}, we can consider all possible values of p in the interval [pmin, 1],

rather than [0, 1]. Furthermore, we can replace the equality constraint in the problem above with

the corresponding greater than or equal to constraint 1/(1+
∑

j∈N vgj xj) ≥ p, since after replacing

the equality constraint with the greater than or equal to constraint, if the constraint ends up being

loose for any value of p, then we can increase the value of p until we make the constraint tight,

which would only increase the objective value of the problem. So, since we want to find the value

of p that makes the objective value of the problem above as large as possible, the values of p that

render the constraint loose are not relevant to us. Thus, writing the objective function of the

problem above as
∑

j∈N (p rj v
g
j − λg

j )xj and noting that the constraint 1/(1 +
∑

j∈N vgj xj) ≥ p is

equivalent to
∑

j∈N vgj xj ≤ 1/p− 1, the discussion above implies that if we solve the problem

max
x∈{0,1}|N|

{∑
j∈N

(p rj v
g
j − λg

j )xj :
∑
j∈N

vgj xj ≤
1

p
− 1

}
(3)

for all values of p in the interval [pmin, 1] and pick the largest optimal objective value over all values

of p, then we obtain the optimal objective value Πg(λ) of problem (2). To develop an approximation

to Πg(λ), we focus on the values of p over a set of grid points, while ensuring that our approximation

is an upper bound on Πg(λ) even though we focus only on the grid points.

To develop an approximation to Πg(λ), consider problem (3) for some p ∈ [pmin, 1]. If we replace

the value of p in the objective function with a larger value and the value of p in the constraint with a

smaller value, then the optimal objective value of problem (3) gets larger. For any pL, pU ∈ [pmin, 1]

with pL ≤ pU , we define Πg(λ, pL, pU ) as the optimal objective value of the problem

Πg(λ, pL, pU ) = max
x∈[0,1]|N|

{∑
j∈N

(pU rj v
g
j − λg

j )xj :
∑
j∈N

vgj xj ≤
1

pL
− 1

}
. (4)

We observe that problem (4) is a continuous knapsack problem, where the capacity of the knapsack

is 1/pL − 1, the utility of item j is pU rj v
g
j − λg

j and the space consumption of item j is vgj . As

mentioned above, for any p ∈ [pL, pU ], comparing problems (3) and (4), we observe that the

objective function coefficients and the right side of the constraint in problem (4) are larger than
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those in problem (3). Furthermore, problem (4) does not impose integrality constraints on the

decision variables. Thus, the optimal objective value of problem (4) is larger than that of problem

(3). To develop an approximation on Πg(λ) while making sure that our approximation is an upper

bound on Πg(λ), we consider an arbitrary set of grid points {pk : k = 1, . . . ,K + 1} that satisfy

pmin = p1 ≤ p2 ≤ . . . ≤ pK ≤ pK+1 = 1. Focusing only on this set of grid points, we solve

problem (4) for all values of pL, pU with pL = pk and pU = pk+1 for all k = 1, . . . ,K. The next

proposition shows that picking the largest optimal objective value of problem (4) over all values of

pL, pU provides an upper bound on Πg(λ).

Proposition 2 For any λ ∈ Λ, we have

max
k∈{1,...,K}

{
Πg(λ, pk, pk+1)

}
≥ Πg(λ).

Proof. We fix some λ ∈ Λ. We show that there exists k ∈ {1, . . . ,K} such that Πg(λ, pk, pk+1) ≥
Πg(λ) and this inequality establishes the desired result. Letting x∗ be an optimal solution to

problem (2), we define p∗ as p∗ = 1/(1+
∑

j∈N vgj x
∗
j ) and choose k such that p∗ ∈ [pk, pk+1]. Since

p∗ ≥ pk, we have
∑

j∈N vgj x
∗
j = 1/p∗ − 1 ≤ 1/pk − 1, which implies that the solution x∗ is feasible

to problem (4), when this problem is solved with pL = pk and pU = pk+1. Thus, using the fact

that p∗ ≤ pk+1, we obtain Πg(λ) =
∑

j∈N p∗ rj v
g
j x

∗
j −

∑
j∈N λg

j x
∗
j ≤

∑
j∈N (pk+1 rj v

g
j − λg

j )x
∗
j ≤

Πg(λ, pk, pk+1), where the first inequality is by p∗ ≤ pk+1 and the second inequality is by the fact

that the solution x∗ is feasible to problem (4) when solved with pL = pk and pU = pk+1. �

Proposition 2 implies that if we let Π̃g(λ) = maxk∈{1,...,K}{Πg(λ, pk, pk+1)} and use Π̃g(λ)

as an approximation to Πg(λ), then this approximation is an upper bound on Πg(λ). We note

that Proposition 2 holds for any set of grid points {pk : k = 1, . . . ,K + 1}. In other words,

we have maxk∈{1,...,K}{Πg(λ, pk, pk+1)} ≥ Πg(λ) irrespective of the placement and number of grid

points. Also, we observe that computing Π̃g(λ) for any λ ∈ Λ requires solving K continuous

knapsack problems. Each knapsack problem can be solved by ordering the items according to their

utility to space consumption ratios and filling the knapsack starting from the item with the largest

utility to space consumption ratio. Therefore, we can compute maxk∈{1,...,K}{Πg(λ, pk, pk+1)} for

any λ ∈ Λ quickly as long as the number of grid points is not too large. In Section 5, we dwell on

the question of how to choose a reasonable set of grid points.

There are two sources of error when we use Π̃g(λ) = maxk∈{1,...,K}{Πg(λ, pk, pk+1)} as an

approximation to Πg(λ). First, the approximation Π̃g(λ) is obtained by solving problem (4) by

using the set of grid points {pk : k = 1, . . . ,K + 1}, where as Πg(λ) is obtained by solving

problem (3) for all p ∈ [pmin, 1]. Intuitively speaking, if the set of grid points is dense, then

we expect the discrepancy due to focusing only on the grid points not to be large. This observation

also indicates that by choosing a denser set of grid points, we can obtain better approximations

to Πg(λ). Second, problem (3) imposes integrality constraints on the decision variables, whereas

problem (4) does not. Our expectation is that the continuous relaxation of a knapsack problem
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provides good approximations to the original one and the discrepancy due to relaxing the integrality

constraints is not large. It is indeed possible to formulate a continuous knapsack problem whose

optimal objective value deviates from the original binary one at most by a factor of two, but the

deviation tends to be much less in practice; see Williamson and Shmoys (2011).

4 Choosing Penalty Parameters

At the end of Section 2, we propose solving the problem minλ∈Λ
∑

g∈G αg Πg(λ) to obtain an upper

bound on the optimal expected revenue Z∗, but solving this optimization problem is intractable. To

overcome this difficulty, we propose using maxk∈{1,...,K}Π
g(λ, pk, pk+1) as an approximation to

Πg(λ) and solving the problem

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg(λ, pk, pk+1)

}}
. (5)

Noting that maxk∈{1,...,K}{Πg(λ, pk, pk+1)} ≥ Πg(λ) for any λ ∈ Λ by Proposition 2 and

minλ∈Λ
∑

g∈G αg Πg(λ) ≥ Z∗ by Lemma 1, it follows that the optimal objective value of problem

(5) provides an upper bound on the optimal expected revenue Z∗. Also, it is worthwhile to note

that our notation in problem (5) suggests that the sets of grid points {pk : k = 1, . . . ,K + 1}
that we use for different customer types are the same, but it does not have to be the case and

we can use different sets of grid points for different customer types. In this section, we show

that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is a convex function of λ, in which case, the objective function

of the minimization problem in (5) is convex. Furthermore, we show how to obtain subgradients

of maxk∈{1,...,K}Π
g(·, pk, pk+1). Since the condition λ ∈ Λ enforces a set of linear constraints on

the penalty parameters, these results indicate that we can solve problem (5) by using subgradient

search for minimizing a convex function subject to linear constraints; see Ruszczynski (2006).

It is not difficult to see that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is convex in λ. When we view

Πg(λ, pk, pk+1) as a function of λ, it corresponds to the optimal objective value of the linear program

in (4) as a function of its objective function coefficients. Thus, it follows from linear programming

theory that Πg(λ, pk, pk+1) is convex in λ. Since the pointwise maximum of convex functions is also

convex, it follows that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is convex in λ, as desired.

To show how to obtain subgradients of maxk∈{1,...,K}Π
g(·, pk, pk+1), we let Π̃g(λ) =

maxk∈{1,...,K}Π
g(λ, pk, pk+1). To compute a subgradient of Π̃g(·) at some λ̂ ∈ ℜ|N |×|G|, we solve

problem (4) with λ = λ̂ and pL = pk, pU = pk+1 for all k = 1, . . . ,K. We let k∗ ∈ {1, . . . ,K} be

such that we obtain the largest optimal objective value for problem (4) when we solve this problem

with pL = pk
∗
and pU = pk

∗+1. In other words, we have Π̃g(λ̂) = Πg(λ̂, pk
∗
, pk

∗+1). Furthermore,

we let x∗ be an optimal solution to problem (4) when we solve this problem with λ = λ̂, pL = pk
∗

and pU = pk
∗+1, in which case, we get

∑
j∈N (pk

∗+1 rj v
g
j − λ̂g

j )x
∗
j = Πg(λ̂, pk

∗
, pk

∗+1) = Π̃g(λ̂) as

well. On the other hand, at any arbitrary λ, we have Π̃g(λ) ≥ Πg(λ, pk
∗
, pk

∗+1) by the definition

of Π̃g(·). Also, when we solve problem (4) with an arbitrary value of λ but with pL = pk
∗
and
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pU = pk
∗+1, the solution x∗ is feasible but not necessarily optimal to problem (4) and we obtain∑

j∈N (pk
∗+1 rj v

g
j − λg

j )x
∗
j ≤ Πg(λ, pk

∗
, pk

∗+1) ≤ Π̃g(λ). If we subtract this chain of inequalities

from the equality
∑

j∈N (pk
∗+1 rj v

g
j − λ̂g

j )x
∗
j = Π̃g(λ̂) obtained above, then we get

Π̃g(λ) ≥ Π̃g(λ̂)−
∑
j∈N

x∗j (λ
g
j − λ̂g

j ).

The expression above indicates that Π̃g(·) satisfies the subgradient inequality at the point λ̂ with

the subgradient D(λ̂) = {Dc
j(λ̂) : j ∈ N, c ∈ G} ∈ ℜ|N |×|G| given by Dc

j(λ̂) = −x∗j if c = g and

Dc
j(λ̂) = 0 if c ∈ G \ {g}. To sum up, if we want to compute a subgradient of Π̃g(·) at the point

λ̂, then we solve problem (4) with λ = λ̂ and pL = pk, pU = pk+1 for all k = 1, . . . ,K. We let

k∗ ∈ {1, . . . ,K} be such that we obtain the largest optimal objective value for problem (4) when we

solve this problem with pL = pk
∗
and pU = pk

∗+1. Finally, using x∗ to denote an optimal solution

to problem (4) when this problem is solved with λ = λ̂, pL = pk
∗
and pU = pk

∗+1, D(λ̂) as defined

above provides a subgradient of Π̃g(·) at λ̂.

5 Effective Grid Points

The optimal objective value of problem (5) provides an upper bound on the optimal expected

revenue Z∗ for any choice of the grid points {pk : k = 1, . . . ,K +1}. By the discussion that follows

Proposition 2, we can obtain tighter upper bounds by using a denser set of grid points, but the

computational effort to solve problem (5) increases with a denser set of grid points. To provide

some guideline into the choice of the grid points, in this section, we explore the performance of

exponential grid points. In particular, for fixed ρ > 0, we focus on the set of exponential grid points

{(1 + ρ)−k+1 : k = 1, . . . ,K + 1}, where K is large enough that (1 + ρ)−K ≤ pmin < (1 + ρ)−K+1,

in which case, these grid points cover the interval [pmin, 1].

In this section, we show that if we compute an upper bound on the optimal expected revenue Z∗

by using the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1} in problem (5), then no

other set of grid points, irrespective of how dense the set of grid points is, can improve this upper

bound by more than a factor of 1+ρ. In other words, if we use Z̄exp
ρ to denote the optimal objective

value of problem (5) when we use the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1}
in this problem and Z̄arb to denote the optimal objective value of problem (5) with any arbitrary

set of grid points, then it always holds that Z̄exp
ρ ≤ (1 + ρ) Z̄arb. Therefore, when we use the set of

exponential grid points to obtain an upper bound, we can a priori be sure that it is not possible to

improve this upper bound by more than a factor of 1 + ρ by using a denser set of grid points. This

result, in a sense, gives a performance guarantee for the set of exponential grid points. Furthermore,

since the set of exponential grid points is denser to the left side of the interval [pmin, 1] and less

dense to the right, this result builds the intuition that it is beneficial to use denser grid points when

approximating smaller values of the no purchase probability. The next proposition becomes useful

when showing the effectiveness of exponential grid points.
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Proposition 3 Let {(1 + ρ)−k+1 : k = 1, . . . ,K + 1} be a set of exponential grid points for some

ρ > 0 and {pl : l = 1, . . . , L+ 1} be an arbitrary set of grid points with p1 ≤ p2 ≤ . . . ≤ pL+1, both

covering the interval [pmin, 1]. For any g ∈ G and λ ∈ Λ, we have

max
k∈{1,...,K}

{
Πg((1 + ρ)λ, (1 + ρ)−k, (1 + ρ)−k+1)

}
≤ (1 + ρ) max

l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}
. (6)

Proof. We let k∗ ∈ {1, . . . ,K} be the value of k that attains the maximum on the left side of

the inequality in (6). Also, we let l∗ ∈ {1, . . . , L} be such that pl
∗ ≤ (1 + ρ)−k∗ < pl

∗+1. Finally,

we let x∗ be an optimal solution to problem (4) when we solve this problem after replacing λ

with (1 + ρ)λ and with pL = (1 + ρ)−k∗ , pU = (1 + ρ)−k∗+1. Since pl
∗ ≤ (1 + ρ)−k∗ , we have

1/pl
∗ − 1 ≥ 1/(1 + ρ)−k∗ − 1, implying that x∗ is a feasible solution to problem (4) when we solve

this problem with pL = pl
∗
, pU = pl

∗+1. Using the definition of x∗, we have

Πg((1 + ρ)λ, (1 + ρ)−k∗ , (1 + ρ)−k∗+1) =
∑
j∈N

((1 + ρ)−k∗+1 rj v
g
j − (1 + ρ)λg

j )x
∗
j

≤ (1 + ρ)
∑
j∈N

(pl
∗+1 rj v

g
j − λg

j )x
∗
j ≤ (1 + ρ)Πg(λ, pl

∗
, pl

∗+1) ≤ (1 + ρ) max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}
,

where the first inequality follows by (1 + ρ)−k∗ < pl
∗+1 and the second inequality holds since x∗ is

a feasible, but not necessarily an optimal solution to problem (4) when this problem is solved with

pL = pl
∗
, pU = pl

∗+1. By the definition of k∗, the first expression in the chain of inequalities above

is equal to the expression on the left side of (6) and the desired result follows. �

The inequality in (6) holds for any g ∈ G and λ ∈ Λ, in which case, multiplying this inequality

by αg, adding over all g ∈ G and taking the minimum of both sides over all λ ∈ Λ, we get

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg((1 + ρ)λ, (1 + ρ)−k, (1 + ρ)−k+1)

}}
≤

(1 + ρ) min
λ∈Λ

{∑
g∈G

αg max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}}
.

By the definition of Λ, we have λ ∈ Λ if and only if (1 + ρ)λ ∈ Λ. So, the constraint in the

minimization problem on the left side above can be written as (1 + ρ)λ ∈ Λ. Thus, replacing all

occurrences of (1 + ρ)λ with λ through change of variables, we write the inequality above as

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg(λ, (1 + ρ)−k, (1 + ρ)−k+1)

}}
≤

(1 + ρ) min
λ∈Λ

{∑
g∈G

αg max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}}
.

We observe that the expression on the left side of the inequality above is the optimal objective

value of problem (5) when we use the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1}
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in this problem, whereas the expression on the right side is the optimal objective value of problem

(5) when we use an arbitrary set of grid points {pl : l = 1, . . . , L + 1}. Therefore, the inequality

above shows that the upper bound on the optimal expected revenue obtained by using an arbitrary

set of grid points {pl : l = 1, . . . , L+ 1} in problem (5) cannot improve the upper bound obtained

by using the set of exponential grid points {(1 + ρ)−k+1 : k = 1, . . . ,K + 1} by more than a factor

of 1 + ρ, which is the desired result.

Since pmin < (1+ρ)−K+1, we haveK = O(log(pmin)/ log(1+ρ)). For example, if the no purchase

probability of a customer type is no smaller than 0.01 when we offer all of the products, then we

can set pmin = 0.01. If we want a performance guarantee of %0.1 by using a set of exponential grid

points, then we can choose ρ = 0.001, in which case, K comes out to be about 4600. When we

use this set of exponential grid points, no other set of grid points can improve the upper bound

provided by the optimal objective value of problem (5) by more than 0.1%.

6 Connection to Lagrangian Relaxation

Noting that Πg(λ) is the optimal objective value of problem (2), Lemma 1 indicates that if we have

λ ∈ Λ, then
∑

g∈G αg Πg(λ) provides an upper bound on the optimal expected revenue Z∗. In this

section, our goal is to show that this result can be motivated by using Lagrangian relaxation on an

appropriate formulation of problem (1). For this purpose, we define the decision variable xgj such

that xgj = 1 if we offer product j to a customer of type g, otherwise we have xgj = 0. In this case,

we choose an arbitrary customer type ϕ and write problem (1) equivalently as

Z∗ = max
∑
g∈G

αg

∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

(7)

subject to xgj = xϕj ∀ j ∈ N, g ∈ G \ {ϕ}

xgj ∈ {0, 1} ∀ j ∈ N, g ∈ G.

By the constraints above, we can replace the decision variables {xgj : g ∈ G} with a single decision

variable xϕj , in which case, the problem above becomes equivalent to problem (1). Relaxing the

constraints in problem (7) by associating the Lagrange multipliers {αgλg
j : j ∈ N, g ∈ G \ {ϕ}}

with them, the objective function of the problem above can be written as

∑
g∈G\{ϕ}

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
+ αϕ

{ ∑
j∈N rj v

ϕ
j x

ϕ
j

1 +
∑

j∈N vϕj x
ϕ
j

+
∑
j∈N

[ ∑
g∈G\{ϕ}

αg λg
j

αϕ

]
xϕj

}
. (8)

We use {αg : g ∈ G \ {ϕ}} to scale the Lagrange multipliers {αgλg
j : j ∈ N, g ∈ G \ {ϕ}}, as this

scaling ultimately allows us to draw parallels with our earlier development more easily. This scaling

is not a concern since if αg = 0 for some customer type g, then we can drop this customer type from

consideration. If we define the additional Lagrange multipliers {λϕ
j : j ∈ N} for the customer type

ϕ as λϕ
j = −

∑
g∈G\{ϕ} α

g λg
j/α

ϕ for all j ∈ N , then the coefficient of the decision variable xϕj in the

last sum in (8) is −λϕ
j . Also, noting that αϕ λϕ

j = −
∑

g∈G\{ϕ} α
g λg

j , we have
∑

g∈G αg λg
j = 0 for
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all j ∈ N , which implies that λ = {λg
j : j ∈ N, g ∈ G} satisfies λ ∈ Λ. In this case, noting that the

coefficient of the decision variable xϕj in the last sum in (8) is −λϕ
j , we can write (8) as

∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
.

Thus, the discussion so far shows that relaxing the constraints in problem (7) by associating the

Lagrange multipliers {αg λg
j : j ∈ N, g ∈ G \ {ϕ}} with them is equivalent to solving the problem

max
∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
(9)

subject to xgj ∈ {0, 1} ∀ j ∈ N, g ∈ G,

as long as λ ∈ Λ. Noting that problem (9) is obtained by relaxing the constraints in problem (7) by

associating the Lagrange multipliers {αg λg
j : j ∈ N, g ∈ G \ {ϕ}} with them, it is straightforward

to show that the optimal objective value of the problem above provides an upper bound on the

optimal objective value of problem (7), which is Z∗. We observe that problem (9) decomposes by

customer types. Furthermore, noting the definition of Πg(λ) in (2), the optimal objective value of

problem (9) is given by
∑

g∈G αg Πg(λ). Therefore, it follows that
∑

g∈G αg Πg(λ) provides an upper

bound on the optimal expected revenue Z∗ as long as λ satisfies λ ∈ Λ. This result corresponds to

the result that is given in Lemma 1, but as we show in this section, it is possible to reach this result

by using Lagrangian relaxation on an appropriate formulation of problem (1). In other words, the

approach that we use to obtain upper bounds on the optimal expected revenue can be motivated

by using Lagrangian relaxation.

7 Computational Experiments

In this section, we provide computational experiments that test the quality of the upper bounds

on the optimal expected revenue that we obtain by solving problem (5).

7.1 Benchmark Strategies

We compare the upper bounds provided by the following three benchmark strategies.

Penalty Multipliers (PM). This benchmark strategy corresponds to the upper bound provided

by the optimal objective value of problem (5). The set of grid points that we use is of the form

{(1 + ρ)−k+1 : k = 1, . . . ,K + 1} with K = O(log(pmin)/ log(1 + ρ)). We use ρ = 0.001. To

ensure that λ ∈ Λ, we choose an arbitrary customer type ϕ and assume that only the penalty

multipliers {λg
j : j ∈ N, g ∈ G \ {ϕ}} are decision variables in problem (5). We solve the penalty

parameters corresponding to customer type ϕ in terms of the other penalty parameters to obtain

λϕ
j = −

∑
g∈G\{ϕ} α

gλg
j/α

ϕ for all j ∈ N . In this way, we ensure that λ ∈ Λ without explicitly

imposing this constraint. When implementing PM, we solve problem (5) by using subgradient
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search with the initial solution λ = 0̄. We use subgradient search for 100 iterations, where the step

size at iteration t is of the form 1/t. Our hope is that these 100 iterations get us into the vicinity

of a reasonable solution. After these 100 iterations, we switch to another form for the step size,

where we increase the step size by a factor of two after each iteration that yields an improvement

in the objective value of problem (5), whereas we decrease the step size by a factor of two after

each iteration that does not yield an improvement. This form for the step size may not ensure

convergence to an optimal solution to problem (5), but it provides consistently good performance

in our experience. Since the optimal objective value of problem (5) provides an upper bound on

the optimal expected revenue Z∗ and this problem is a minimization problem, any feasible solution

to problem (5) also provides an upper bound on the optimal expected revenue.

Customer Type Decomposition (CD). This benchmark strategy corresponds to the upper bound

obtained under the assumption that we know the type of an arriving customer so that we can

offer different sets of products to customers of different types. In particular, we can solve the

problem maxx∈{0,1}|N|
∑

j∈N P g
j (x) rj = maxx∈{0,1}|N|(

∑
j∈N rj v

g
j xj)/(1 +

∑
j∈N vgj xj) to find a

set of products that maximizes the expected revenue obtained from a customer of type g. Talluri

and van Ryzin (2004) show that this problem, which involves a single customer type, can be solved

efficiently. Thus, letting Ẑg be the optimal objective value of this problem, the largest expected

revenue that we can obtain from a customer of type g is given by Ẑg. The upper bound provided by

CD is
∑

g∈G αg Ẑg, which corresponds to the optimal expected revenue that can be obtained under

the assumption that we can offer different sets of products to customers of different types. Since

problem (1) requires that we offer a single set of products to customers of all types,
∑

g∈G αg Ẑg is

an upper bound on the optimal objective value of problem (1). CD builds on Talluri (2011), where

the author shows that allowing to offer different sets to different customer types can provide good

approximations in network revenue management problems.

Branch and Bound (BB). Bront et al. (2009) give a mixed integer programming formulation

for problem (1), but solving this mixed integer programming formulation to optimality can be

time consuming for large problem instances. We apply branch and bound on the mixed integer

programming formulation for a fixed amount of run time and check the best upper bound that

branch and bound achieves on the optimal objective value of the mixed integer program. Therefore,

the upper bound provided by BB corresponds to the best upper bound that we obtain by using

branch and bound for a fixed amount of run time. We choose the run time for branch and bound

as twice the run time for PM, so that we can compare the upper bounds obtained by PM and BB

within comparable amounts of run time.

7.2 Experimental Setup

In our computational experiments, we generate a large number of problem instances and compare

the upper bounds provided by PM, CD and BB for each problem instance. We use the following

approach for generating our problem instances. Throughout our computational experiments, the
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number of products is 100 and the number of customer types is 50. To come up with the revenues,

we simply sample rj from the uniform distribution over [0, 2000] for all j ∈ N . To come up with

the probabilities {αg : g ∈ G} of observing customers of different types, we sample βg from the

uniform distribution over [0, 1] for all g ∈ G and set αg = βg/
∑

c∈G βc.

To come up with the preference weights, we choose a set S ⊂ N of products and designate them

as specialty products. We refer to the remaining set of products as staple products. Customers

of different types can associate significantly different preference weights with a specialty product,

indicating that the evaluations of a specialty product by customers of different types can be quite

different. Customers of different types evaluate a staple product more or less in the same fashion. We

vary the number of specialty products in our computational experiments. To generate preference

weights with these characteristics, for all j ∈ N , g ∈ G, we sample Xg
j as follows. If product j

is a specialty product, then we sample Xg
j from the uniform distribution over [0.1, 0.3] ∪ [0.7, 0.9],

whereas if product j is a staple product, then we sample Xg
j from the uniform distribution over

[0.3, 0.7]. Thus, the variance of Xg
j is larger when product j is a specialty product. For all j ∈ N ,

we also sample κj from the uniform distribution over [1, K̄], where K̄ is a parameter that we vary in

our computational experiments. In this case, we set the preference weight vgj that a customer of type

g associates with product j as a quantity that is proportional to κj X
g
j . In this setup, the value of

κj determines an overall magnitude for the preference weights {vgj : g ∈ G} associated with product

j. Furthermore, if product j is a specialty product, then the variance of Xg
j is relatively large, in

which case, the variance of κj X
g
j is relatively large as well. So, if product j is a specialty product,

then the preference weights {vgj : g ∈ G} that customers of different types associate with product

j display relatively large variability among themselves, which agrees with our expectation from a

specialty product. Similarly, if product j is a staple product, then the variance of Xg
j is relatively

small so that the preference weights {vgj : g ∈ G} that customers of different types associate with

product j display relatively small variability among themselves.

As mentioned above, we set the preference weight vgj that a customer of type g associates with

product j as a quantity that is proportional to κj X
g
j . To come up with the values of the preference

weights, we sample P g
0 from the uniform distribution over [0, P̄0] for all g ∈ G, where P̄0 is a

parameter that we vary in our computational experiments. In this case, we set the value of the

preference weight vgj as vgj = κj X
g
j (1−P g

0 )/(P
g
0

∑
i∈N κiX

g
i ). Noting that

∑
j∈N vgj = (1−P g

0 )/P
g
0

in this setup, even if we offer all of the products, a customer of type g leaves without making a

purchase with probability 1/(1+
∑

j∈N vgj ) = P g
0 . So, if we use a larger value for P̄0, then customers

are more likely to leave without making a purchase. Also, if we use a larger value for P̄0, then the

variance of P g
0 gets larger and customers of different types tend to become more heterogeneous in

terms of their tendency to leave without making a purchase.

In our computational experiments, we vary |S|, K̄ and P̄0 over |S| ∈ {20, 40, 60}, K̄ ∈ {5, 10, 20}
and P̄0 ∈ {0.4, 0.6, 0.8}. This setup provides 27 parameter combinations. In each parameter

combination, we generate 1000 individual problem instances by using the approach described
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above. For each problem instance, we compute the upper bounds on the optimal expected revenue

provided by PM, CD and BB. To put these upper bounds into perspective, we also use a greedy

heuristic to find a solution to problem (1). In the greedy heuristic, we start with a solution to

problem (1) that does not include any products. Given the current solution, we try adding or

removing each one of the products into or from this current solution. Among all of these options,

we update the current solution by using the option that provides the largest improvement in the

expected revenue from the current solution. If none of the options provides an improvement, then

we stop. The expected revenue from the solution obtained by the greedy heuristic provides a lower

bound on the optimal expected revenue. By checking the gap between the upper bound on the

optimal expected revenue provided by PM, CD or BB and the expected revenue from the greedy

heuristic, we can assess how PM, CD and BB compare with each other in terms of the tightness of

their upper bounds and we can get a conservative estimate of how much the upper bounds provided

by PM, CD and BB deviate from the optimal expected revenue.

7.3 Computational Results

We give our computational results in Table 1. The first column in this table shows the parameter

combinations for our test problems by using (|S|, K̄, P̄0). We recall that we generate 1000 problem

instances in each parameter combination. For each problem instance k, we compute the expected

revenue from the solution obtained by the greedy heuristic. We let GRRk be this expected

revenue. We use PM, CD and BB to compute upper bounds on the optimal expected revenue. We

let PMUk, CDUk and BBUk respectively be the upper bounds provided by PM, CD and BB for

problem instance k. The second column in Table 1 shows the percent gap between the upper

bounds from PM and the expected revenues from the greedy heuristic, averaged over all problem

instances in a parameter combination. In other words, this column shows the average of the data

points {100× (PMUk − GRRk)/PMUk : k = 1, . . . , 1000}, which can be used to assess the average

optimality gap of the greedy heuristic when we use the upper bounds from PM to check the quality

of a solution. The third and the fourth columns respectively show the 95th percentile and maximum

of the same data points {100× (PMUk − GRRk)/PMUk : k = 1, . . . , 1000}. The interpretations of

the fifth, sixth and seventh columns are similar to those of the previous three columns, but the

fifth, sixth and seventh columns respectively show the average, 95th percentile and maximum of

the percent gaps between {CDUk : k = 1, . . . , 1000} and {GRRk : k = 1, . . . , 1000}, giving a feel for

the optimality gaps of the greedy heuristic when we only use the upper bounds provided by CD to

check the quality of a solution. Finally, the eighth, ninth and tenth columns respectively show the

average, 95th percentile and maximum of the percent gaps between {BBUk : k = 1, . . . , 1000} and

{GRRk : k = 1, . . . , 1000}, which indicate the optimality gaps of the greedy heuristic when we only

use BB to obtain upper bounds on the optimal expected revenues.

The results in Table 1 indicate that the upper bounds provided by PM for our problem instances

are remarkably tight. Over all of our problem instances, the average gap between the upper bounds
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Param. % Gap. of PMUk % Gap. of CDUk % Gap. of BBUk

Comb. with GRRk with GRRk with GRRk

(|S|, K̄, P̄0) Avg. 95th Max. Avg. 95th Max. Avg. 95th Max.

(20, 5, 0.4) 0.11 0.12 0.34 4.48 6.51 9.92 3.85 5.93 9.06
(20, 5, 0.6) 0.11 0.13 0.29 5.50 8.08 12.02 5.11 7.66 11.63
(20, 5, 0.8) 0.11 0.13 0.31 6.23 9.26 12.59 5.21 8.05 11.30

(20, 10, 0.4) 0.10 0.12 0.28 4.78 7.10 9.87 4.07 6.32 9.38
(20, 10, 0.6) 0.11 0.12 0.17 5.74 8.54 12.02 5.59 8.37 11.94
(20, 10, 0.8) 0.11 0.12 0.41 6.35 9.68 14.76 5.79 9.02 13.71

(20, 20, 0.4) 0.10 0.12 0.26 4.88 7.35 9.79 4.14 6.53 9.26
(20, 20, 0.6) 0.10 0.12 0.25 5.71 8.62 13.14 5.52 8.45 12.13
(20, 20, 0.8) 0.11 0.13 0.36 6.58 10.02 15.55 6.16 9.56 14.85

(40, 5, 0.4) 0.11 0.16 0.51 4.46 6.54 9.23 3.80 5.84 8.53
(40, 5, 0.6) 0.11 0.15 0.52 5.46 8.10 10.75 5.04 7.67 10.44
(40, 5, 0.8) 0.11 0.14 0.54 6.14 9.28 12.95 5.08 7.89 11.29

(40, 10, 0.4) 0.11 0.13 0.62 4.69 7.01 10.11 3.99 6.23 8.84
(40, 10, 0.6) 0.11 0.14 0.47 5.69 8.62 12.20 5.52 8.38 12.05
(40, 10, 0.8) 0.11 0.13 0.29 6.34 9.60 12.72 5.77 8.89 12.09

(40, 20, 0.4) 0.11 0.14 0.33 4.82 7.44 10.29 4.07 6.44 8.57
(40, 20, 0.6) 0.11 0.14 0.39 5.81 8.68 12.47 5.65 8.49 12.34
(40, 20, 0.8) 0.11 0.14 0.37 6.57 9.83 14.26 6.13 9.30 13.97

(60, 5, 0.4) 0.12 0.19 0.80 4.42 6.55 9.12 3.88 5.87 8.47
(60, 5, 0.6) 0.12 0.18 0.83 5.38 7.89 10.94 4.92 7.39 10.60
(60, 5, 0.8) 0.12 0.17 0.59 5.95 9.05 13.13 4.86 7.72 11.71

(60, 10, 0.4) 0.11 0.15 0.39 4.77 7.32 10.84 4.16 6.50 9.88
(60, 10, 0.6) 0.11 0.15 0.38 5.61 8.34 11.19 5.43 8.18 11.08
(60, 10, 0.8) 0.11 0.15 0.44 6.27 9.59 13.65 5.66 8.92 12.75

(60, 20, 0.4) 0.11 0.13 0.37 4.81 7.17 10.22 4.14 6.26 9.89
(60, 20, 0.6) 0.11 0.14 0.53 5.77 8.62 12.54 5.62 8.41 12.39
(60, 20, 0.8) 0.11 0.14 0.33 6.44 9.78 14.39 5.99 9.27 13.69

Average 0.11 5.54 5.01

Table 1: Comparison of the upper bounds provided by PM, CD and BB.

from PM and the expected revenues from the greedy heuristic is 0.11%, whereas the maximum

gap between the upper bounds from PM and the expected revenues from the greedy heuristic is

0.83%. The remarkably small gaps between the upper bounds from PM and the expected revenues

from the greedy heuristic demonstrate that the upper bounds provided by PM are within a fraction

of a percent of the optimal expected revenues. Furthermore, if we use PM to obtain upper bounds on

the optimal expected revenues, then we can establish that the greedy heuristic provides optimality

gaps no larger than 0.83% for our problem instances. In contrast, the upper bounds provided by CD

or BB can be substantially looser. The gap between the upper bound from CD and the expected

revenue from the greedy heuristic can be as large as 15.55%. In other words, if we use the upper

bounds from CD to evaluate the quality of a solution, then there are problem instances where we

are left with the impression that the greedy heuristic may have optimality gaps as large as 15.55%,

although we can use the upper bounds from PM to establish that the optimality gaps of the greedy

heuristic are actually no larger than 0.83%. The upper bounds provided by BB improve those

provided by CD only slightly. The average and maximum gaps between the upper bounds from

BB and the expected revenues from the greedy heuristic are respectively 5.01% and 14.85%. The
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same gaps are respectively 5.54% and 15.55% when we consider CD. Overall, our computational

results for PM demonstrate that the upper bounds from PM are within 1% of the optimal expected

revenues and the optimality gaps of the greedy heuristic are no larger than 1%. The last observation,

together with the fact that the gap between the upper bound provided by BB and the expected

revenue from the greedy heuristic can approach 15%, indicates that the upper bound provided by

BB can deviate from the optimal expected revenue by nearly 14%. Naturally, the mixed integer

programming formulation used by BB would eventually obtain the optimal expected revenue, but

it turns out that this formulation is not effective when we want to obtain good upper bounds on

the optimal expected revenues within a limited amount of run time. We shortly investigate the

reasons why BB does not noticeably improve the upper bounds from CD.

It is useful to point out an interesting trend in Table 1. As P̄0 increases, there are larger

gaps between the upper bound provided by CD or BB and the expected revenue from the greedy

heuristic. As mentioned when describing our experimental setup, as P̄0 increases, customers of

different types tend to become more heterogeneous in terms of their tendency to leave without

making a purchase. As customers of different types become more heterogeneous, CD, which is

based on the assumption that we can offer different sets of products to different customer types,

ends up offering significantly different sets to different customer types. In this case, the upper

bound from CD can deviate significantly from the optimal objective value of problem (1), which

does not allow offering different sets of products to different customer types. BB suffers from a

similar shortcoming as well. In contrast, the gaps between the upper bound provided by PM and

the expected revenue from the greedy heuristic remain quite stable as P̄0 increases.

The results in Table 1 show that the upper bounds provided by BB only slightly improve those

provided by CD, indicating that the mixed integer program used by BB is ineffective in obtaining

good upper bounds within a limited amount of run time. One reason that BB is not able to obtain

good upper bounds is that the linear programming relaxation of the mixed integer program used

by BB turns out to be loose. In all of our test problems, the linear programming relaxation of the

mixed integer program only slightly improves the upper bound from CD. To shed more light into

this observation, Proposition 4 in the appendix shows that when we focus on each customer type

individually, if customers of each type make a purchase with a probability that exceeds 1/2, then

the optimal objective value of the linear programming relaxation of the mixed integer program used

by BB precisely corresponds to the upper bound provided by CD. Thus, although it is tempting

to try to obtain upper bounds on the optimal expected revenue by solving the linear programming

relaxation of the mixed integer program used by BB, this upper bound does not improve the one

provided by CD when customers make a purchase with a reasonably large probability.

In Table 2, we give the details on the gaps between the upper bounds obtained by our benchmark

strategies and the expected revenues from the greedy heuristic. The first column in this table shows

the parameter combinations for our test problems. The second column shows the number of problem

instances where the gap between the upper bound obtained by PM and the expected revenue from
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the greedy heuristic is less than 0.1%. The interpretations of the third, fourth, fifth, sixth and

seventh columns are similar to that of the second column, but these columns show the numbers

of problem instances where the gap between the upper bound obtained by PM and the expected

revenue from the greedy heuristic is respectively less than 0.15%, 0.2%, 2.5%, 5% and 7.5%. The

eighth to thirteenth columns have the same interpretations as the second to seventh columns, but

they focus on the gap between the upper bound obtained by BB and the expected revenue from the

greedy heuristic. The upper bounds provided by CD and BB are close to each other. For economy

of space, we do not provide the details on CD. The results in Table 2 indicate that in more than

26000 out of 27000 problem instances, we can use the upper bounds from PM to conclude that

the optimality gap of the greedy heuristic is smaller than 0.15%, which also implies that the upper

bounds provided by PM for these problem instances deviate from the optimal expected revenue by

at most 0.15%. In contrast, the upper bounds provided by BB deviate from the expected revenues

from the greedy heuristic by less than 5% in only about 15000 out of 27000 problem instances. For

PM, the gaps between the upper bound and the expected revenue from the greedy heuristic are

almost exclusively less than 0.2%, whereas none of the gaps between the upper bound from BB

and the expected revenue from the greedy heuristic falls below 0.2%.

The run times for PM are quite reasonable. Over all of our problem instances, the smallest run

time for PM is 2.86 seconds, whereas the largest run time is 8.94 seconds. The average run time over

all problem instances is 4.14 seconds. Overall, our results indicate that PM can obtain quite tight

upper bounds on the optimal expected revenues. In particular, the small gaps between the upper

bounds from PM and the expected revenues from the greedy heuristic do not only demonstrate

that the greedy heuristic is effective in obtaining near optimal solutions, but also point out that

the upper bounds on the expected revenue provided by PM are close to the optimal expected

revenues. In this way, the upper bounds provided by PM can be used to check the quality of the

solutions provided by not only the greedy heuristic, but also any other heuristic or approximation

method used to obtain solutions to assortment problems when customers choose according to a

mixture of multinomial logit models.

8 Conclusions

We developed a method to obtain an upper bound on the optimal expected revenue in assortment

problems, where customers choose according to a mixture of multinomial logit models. Our method

is based on focusing on each customer type one by one and finding a separate assortment that

maximizes the expected revenue from each customer type, but we use penalty parameters to

harmonize the assortments offered to different customer types. This strategy requires solving

assortment problems with a single customer type but with a fixed cost for offering a product. We

develop tractable approximations to such assortment problems by assuming that the probability of

not making a purchase can take values over a prespecified grid. We show how to obtain a set of

good penalty parameters and a good set of grid points. Our computational experiments indicate
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Param. Number of Problems with a Certain Number of Problems with a Certain

Comb. % Gap between PMUk and GRRk % Gap between BBUk and GRRk

(|S|, K̄, P̄0) 0.1% 0.15% 0.2% 2.5% 5% 7.5% 0.1% 0.15% 0.2% 2.5% 5% 7.5%

(20, 5, 0.4) 216 983 996 1000 1000 1000 0 0 0 117 836 996
(20, 5, 0.6) 264 982 993 1000 1000 1000 0 0 0 14 501 939
(20, 5, 0.8) 272 979 997 1000 1000 1000 0 0 0 27 466 916

(20, 10, 0.4) 249 991 998 1000 1000 1000 0 0 0 77 791 988
(20, 10, 0.6) 240 994 1000 1000 1000 1000 0 0 0 14 384 870
(20, 10, 0.8) 241 986 995 1000 1000 1000 0 0 0 20 358 830

(20, 20, 0.4) 268 989 995 1000 1000 1000 0 0 0 79 756 983
(20, 20, 0.6) 306 992 998 1000 1000 1000 0 0 0 26 399 881
(20, 20, 0.8) 256 987 995 1000 1000 1000 0 0 0 11 299 768

(40, 5, 0.4) 157 945 983 1000 1000 1000 0 0 0 116 853 997
(40, 5, 0.6) 206 954 981 1000 1000 1000 0 0 0 17 521 933
(40, 5, 0.8) 238 961 985 1000 1000 1000 0 0 0 29 517 924

(40, 10, 0.4) 157 967 988 1000 1000 1000 0 0 0 99 814 994
(40, 10, 0.6) 217 965 988 1000 1000 1000 0 0 0 16 424 876
(40, 10, 0.8) 246 973 991 1000 1000 1000 0 0 0 13 361 830

(40, 20, 0.4) 178 970 994 1000 1000 1000 0 0 0 107 775 986
(40, 20, 0.6) 243 968 990 1000 1000 1000 0 0 0 10 357 871
(40, 20, 0.8) 252 972 995 1000 1000 1000 0 0 0 11 291 757

(60, 5, 0.4) 109 902 956 1000 1000 1000 0 0 0 95 834 996
(60, 5, 0.6) 123 916 963 1000 1000 1000 0 0 0 26 539 958
(60, 5, 0.8) 162 925 968 1000 1000 1000 0 0 0 37 564 939

(60, 10, 0.4) 135 943 985 1000 1000 1000 0 0 0 78 766 987
(60, 10, 0.6) 166 958 983 1000 1000 1000 0 0 0 13 406 908
(60, 10, 0.8) 183 939 979 1000 1000 1000 0 0 0 14 383 854

(60, 20, 0.4) 139 974 995 1000 1000 1000 0 0 0 92 745 984
(60, 20, 0.6) 168 969 990 1000 1000 1000 0 0 0 11 378 872
(60, 20, 0.8) 206 965 990 1000 1000 1000 0 0 0 9 332 800

Total 5597 26049 26671 27000 27000 27000 0 0 0 1178 14650 24637

Table 2: Distribution of the upper bounds provided by PM and BB.

that our upper bounds can be very tight, while the upper bounds from the linear programming

relaxation of a mixed integer program lag behind by significant amounts.

The approach developed in this paper will hopefully increase the practical use of mixture of

multinomial logit models. In particular, although heuristics tend to provide good assortments, it is

generally difficult to check the quality of the solutions obtained by heuristics and our upper bounds

provide a quick way of checking the quality of the solutions from any heuristic or approximation

method. A useful direction to pursue for future research is to investigate how we can obtain upper

bounds on the optimal expected revenue under other choice models, for which it is difficult to

compute the optimal assortment.
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A Appendix: Upper Bounds from a Linear Programming Formulation

Bront et al. (2009) show that problem (1) can be formulated as a mixed integer program. Thus,

a tempting approach to obtain upper bounds on the optimal expected revenue is to solve the

linear programming relaxation of this mixed integer program. In this section, we show that when

we focus on each customer type individually, if customers of each type make a purchase with a

reasonably large probability, then the optimal objective value of the linear programming relaxation

of the mixed integer program is equal to the upper bound on the optimal expected revenue that

is obtained under the assumption that we can offer different sets of products to different customer

types. To state this result, we note that Bront et al. (2009) show that we can obtain the optimal

objective value of problem (1) by solving the mixed integer program

max
∑
g∈G

∑
j∈N

αg rj v
g
j y

g
j (10)

subject to
∑
j∈N

vgj y
g
j + wg = 1 ∀ g ∈ G

ygj ≤ wg ∀ j ∈ N, g ∈ G

ygj ≤ zj ∀j ∈ N, g ∈ G

wg − ygj ≤ 1− zj ∀j ∈ N, g ∈ G

ygj ≥ 0, wg ≥ 0, zj ∈ {0, 1} ∀j ∈ N, g ∈ G.

We use the vector x̂g = {x̂gj : j ∈ N} ∈ {0, 1}|N | to capture the set of products that maximizes

the expected revenue only from customers of type g. In other words, x̂g is an optimal solution

to the problem Ẑg = maxx∈{0,1}|N|
∑

j∈N rj P
g
j (x) with the corresponding optimal objective value

Ẑg. Therefore, the expected revenue
∑

g∈G αg Ẑg provides an upper bound on the optimal objective

value of problem (1), since the expected revenue
∑

g∈G αg Ẑg is obtained under the assumption that

we can offer different sets of products to different customer types, whereas problem (1) requires

that we offer a single set of products to customers of all types. In this case, if we offer the set of

products captured by the vector x̂g, then a customer of type g makes a purchase within the set of

offered products with probability P̂ g =
∑

j∈N P g
j (x̂

g).

The next proposition shows that if we have P̂ g ≥ 1/2 for all g ∈ G, then the optimal objective

value of the linear programming relaxation of problem (10) is equal to
∑

g∈G αg Ẑg. So, if customers

of each type g make a purchase with a probability of at least 1/2 when offered the set of products

captured by the vector x̂g, then the upper bound on the optimal expected revenue provided by the

linear programming relaxation of problem (10) does not improve the upper bound obtained under

the assumption that we can offer different sets of products to different customer types.

Proposition 4 Let x̂g be an optimal solution to the problem maxx∈{0,1}|N|
∑

j∈N rj P
g
j (x) with the

corresponding optimal objective value Ẑg and P̂ g be defined as P̂ g =
∑

j∈N P g
j (x̂

g). If we have

P̂ g ≥ 1/2 for all g ∈ G, then the optimal objective value of the linear programming relaxation of

problem (10) is equal to
∑

g∈G αg Ẑg.
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Proof. We let ζ̂ be the optimal objective value of the linear programming relaxation of problem

(10). First, we show that ζ̂ ≤
∑

g∈G αg Ẑg. We use ŷ = {ŷgj : j ∈ N, g ∈ G}, ŵ = {ŵg : g ∈ G} and

ẑ = {ẑj : j ∈ N} to denote an optimal solution to the linear programming relaxation of problem

(10) and let ζ̂g be defined as ζ̂g =
∑

j∈N rj v
g
j ŷ

g
j , in which case, we have ζ̂ =

∑
g∈G αg ζ̂g. We

observe that we must have ŵg > 0 for all g ∈ G, since if ŵg = 0 for some g ∈ G, then the

second set of constraints in problem (10) imply that ŷgj = 0 for all j ∈ N as well, in which case,

it is not possible to satisfy the first set of constraints. Now, we claim that ζ̂g ≤ Ẑg. To get a

contradiction, we proceed under the assumption that ζ̂g > Ẑg. By the definition of Ẑg, we have

Ẑg ≥
∑

j∈N rj P
g
j (x) = (

∑
j∈N rj v

g
j x

g
j )/(1 +

∑
j∈N vgj x

g
j ) for all x

g ∈ {0, 1}|N |. If we arrange the

terms in this inequality, then it follows that Ẑg ≥
∑

j∈N (rj − Ẑg) vgj x
g
j for all xg ∈ {0, 1}|N |, in

which case, we obtain the chain of inequalities

ζg > Ẑg ≥ max
xg∈{0,1}|N|

{∑
j∈N

(rj − Ẑg) vgj x
g
j

}
≥ max

xg∈{0,1}|N|

{∑
j∈N

(rj − ζ̂g) vgj x
g
j

}

= max
xg∈[0,1]|N|

{∑
j∈N

(rj − ζ̂g) vgj x
g
j

}
≥

∑
j∈N

(rj − ζ̂g) vgj
ŷgj
ŵg

.

The first and third inequalities above use the assumption that ζ̂g > Ẑg. The equality above

follows by noting that the objective function of the second optimization problem above is linear,

in which case, the continuous relaxation of this problem has an integer optimal solution. To

see that the fourth inequality above holds, we note that since ŵg > 0, the second set of

constraints in problem (10) yield ŷgj /ŵ
g ∈ [0, 1] for all j ∈ N so that {ŷgj /ŵg : j ∈ N} is a

feasible solution to the third optimization problem above. From the chain of inequalities above,

we obtain
∑

j∈N (rj − ζ̂g) vgj ŷ
g
j /ŵ

g < ζ̂g, which can equivalently be written as
∑

j∈N rj v
g
j ŷ

g
j <

ζ̂g (ŵg +
∑

j∈N vgj ŷ
g
j ). By the definition of ζ̂g, the left side of the last strict inequality is equal to

ζ̂g, but noting the first set of constraints in problem (10), we have ŵg +
∑

j∈N vgj ŷ
g
j = 1 and the

right of this strict inequality is equal to ζ̂g as well, which is a contradiction. Thus, our claim holds

and we have ζ̂g ≤ Ẑg. In this case, we obtain ζ̂ =
∑

g∈G αg ζ̂g ≤
∑

g∈G αg Ẑg.

Second, we show that ζ̂ ≥
∑

g∈G αg Ẑg. Letting x̂g = {x̂gj : j ∈ N} be defined as in the

statement of the proposition, we define the solution ŷ = {ŷgj : j ∈ N, g ∈ G}, ŵ = {ŵg : g ∈ G}
and ẑ = {ẑj : j ∈ N} to the linear programming relaxation of problem (10) as

ŷgj =
x̂gj

1 +
∑

i∈N vgi x̂
g
i

ŵg =
1

1 +
∑

j∈N vgj x̂
g
j

ẑj = max
g∈G

{
x̂gj

1 +
∑

i∈N vgi x̂
g
i

}
.

It is straightforward to see that the solution (ŷ, ŵ, ẑ) satisfies the first, second and third sets of

constraints in problem (10). Since P̂ g = (
∑

j∈N vgj x̂
g
j )/(1 +

∑
j∈N vgj x̂

g
j ) ≥ 1/2, subtracting one

from both sides of this inequality, we obtain 1/(1+
∑

j∈N vgj x̂
g
j ) ≤ 1/2, which implies that ŷgj ≤ 1/2,

ŵg ≤ 1/2 and ẑj ≤ 1/2 for all j ∈ N , g ∈ G. Also, by the definition of ŷgj and ŵg, we have either

ŵg − ŷgj = 0 or ŵg − ŷgj = ŵg, which happen respectively when x̂gj = 1 and x̂gj = 0. If we have

ŵg− ŷgj = 0, then the fourth set of constraints for this product j and customer type g is satisfied. If
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we have ŵg − ŷgj = ŵg, then we obtain ŵg − ŷgj = ŵg ≤ 1/2 = 1− 1/2 ≤ 1− ẑj , indicating that the

fourth set of constraints for this product j and customer type g is satisfied as well. Thus, the solution

(ŷ, ŵ, ẑ) is feasible to the linear programming relaxation of problem (10). So, the optimal objective

value of the linear programming relaxation of problem (10) satisfies ζ̂ ≥
∑

g∈G
∑

j∈N αg rj v
g
j ŷ

g
j =∑

g∈G αg
∑

j∈N rj v
g
j x̂

g
j/(1 +

∑
i∈N vgi x̂

g
i ) =

∑
g∈G

∑
j∈N αg rj P

g
j (x̂

g) =
∑

g∈G αg Ẑg, where the

first inequality follows from the fact that (ŷ, ŵ, ẑ) is a feasible, but not necessarily an optimal

solution to the linear programming relaxation of problem (10). �

The first part of the proof of Proposition 4 does not use the assumption that P̂ g ≥ 1/2 for

all g ∈ G. Therefore, the upper bound on the optimal expected revenue provided by the linear

programming relaxation of problem (10) is always at least as tight as the upper bound that is

obtained under the assumption that we can offer different sets of products to different customer

types. However, when we focus on each customer type individually, if customers of each type

make a purchase with a probability exceeding 1/2, then the upper bound provided by the linear

programming relaxation of problem (10) is equal to the upper bound that is obtained under the

assumption that we can offer different sets of products to different customer types.

In general, we can give examples where the upper bound provided the linear programming

relaxation of problem (10) is tighter than the upper bound obtained under the assumption that we

can offer different sets of products to different customer types. Consider a problem instance with two

products N = {1, 2} and two customer types G = {1, 2}. The revenues of the products are (r1, r2) =
(95, 7). The preference weights of the two customer types are (v11, v

1
2) = (0.09, 0.09) and (v21, v

2
2) =

(0, 0.01). The probabilities of observing the two customer types are (α1, α2) = (0.5, 0.5). For this

problem instance, the optimal objective value of the linear programming relaxation of problem (10)

is about 3.92. On the other hand, if we assume that we can offer different sets of products to different

customer types, then the upper bound that we obtain is about 3.96. For this problem instance,

the solutions x̂1 = (1, 0) and x̂2 = (1, 1) maximize the expected revenue from each one of the two

customer types when we focus on each one of the two customer types individually. When customers

of each type are offered the solutions corresponding to them, they make a purchase respectively

with probabilities 0.09/(1 + 0.09) ≈ 0.08 and 0.01/(1 + 0.01) ≈ 0.01. Since these probabilities of

making a purchase are less than 1/2, this example violates the assumption of Proposition 4 and

the upper bound on the optimal expected revenue provided by the linear programming relaxation

of problem (10) can be tighter than the upper bound that is obtained under the assumption that

we can offer different sets of products to different customer types.
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