
Revenue Management Under the Markov Chain Choice Model

Jacob B. Feldman
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
jbf232@cornell.edu

Huseyin Topaloglu
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
topaloglu@orie.cornell.edu

July 31, 2014

Abstract

We consider revenue management problems when customers choose among the offered products
according to the Markov chain choice model. In this choice model, a customer arrives into the
system to purchase a particular product. If this product is available for purchase, then the
customer purchases it. Otherwise, the customer transitions to another product or to the no
purchase option, until she reaches an available product or the no purchase option. We consider
three classes of problems. First, we study assortment problems, where the goal is to find a set of
products to offer so as to maximize the expected revenue from each customer. We give a linear
program to obtain the optimal solution. Second, we study single resource revenue management
problems, where the goal is to adjust the set of offered products over a selling horizon when
the sale of each product consumes the resource. We show how the optimal set of products
to offer changes with the remaining resource inventory and establish that the optimal policy
can be implemented through protection levels. Third, we study network revenue management
problems, where the goal is to adjust the set of offered products over a selling horizon when
the sale of each product consumes a combination of resources. A standard linear programming
approximation of this problem includes one decision variable for each subset of products. We
show that this linear program can be reduced to an equivalent one with a substantially smaller
size. We give an algorithm to recover the optimal solution to the original linear program from
the reduced linear program. The reduced linear program can dramatically improve the solution
times for the original linear program.

Incorporating customer choice behavior into revenue management models has been seeing increased

attention. Traditional revenue management models assume that each customer arrives into the

system with the intention of purchasing a certain product. If this product is available for purchase,

then the customer purchases it. Otherwise, the customer leaves without a purchase. In reality,

however, there may be multiple products that serve the needs of a customer and a customer

may observe the set of available products and make a choice among them. This type of customer

choice behavior is even more prevalent today with the common use of online sales channels that

conveniently bring a variety of options to customers. When customers choose among the available

products, the demand for a particular product naturally depends on what other products are

made available to the customers, creating interactions between the demands for the different

products. When such interactions exist between the demands for the different products, finding

the right set of products to offer to customers can be a challenging task.

In this paper, we consider revenue management problems when customers choose among the

offered products according to the Markov chain choice model. In the Markov chain choice model,

a customer arriving into the system considers purchasing a product with a certain probability. If

this product is available for purchase, then the customer purchases it. Otherwise, the customer

transitions to another product with a certain probability and considers purchasing the other

product, or she transitions to the no purchase option with a certain probability and leaves the

system without a purchase. In this way, the customer transitions between the products until

she reaches a product available for purchase or she reaches the no purchase option. We consider

three fundamental classes of revenue management problems when customers choose under the

Markov chain choice model. In particular, we consider assortment optimization problems, revenue

management problems with a single resource and revenue management problems over a network of

resources. We proceed to describing our contributions to these three classes of problems.

Main Contributions. First, we consider assortment optimization problems. In the assortment

optimization setting, there is a revenue associated with each product. Customers choose among the

offered products according to the Markov chain choice model. The goal is to find a set of products

to offer so as to maximize the expected revenue obtained from each customer. We relate the

probability of purchasing different products under the Markov chain choice model to the extreme

points of a polyhedron (Lemma 1). Although the assortment optimization problem is inherently

a combinatorial optimization problem, we use the relationship between the purchase probabilities

and the extreme points of a polyhedron to give a linear program that can be used to obtain the

optimal set of products to offer (Theorem 2). We show a useful structural property of the optimal

assortment, which demonstrates that as the revenues of the products increase by the same amount,

the optimal assortment to offer becomes larger (Lemma 3). This property becomes critical when

we study the optimal policy for the single resource revenue management problem.

Second, we consider revenue management problems with a single resource. In this setting,

we need to decide which set of products to make available to customers dynamically over a

2

selling horizon. At each time period, an arriving customer chooses among the set of available

products. There is a limited inventory of the resource and the sale of a product consumes one unit

of the resource. The goal is to find a policy to decide with set of products to make available at each

time period in the selling horizon so as to maximize the total expected revenue. Assuming that

the customer choices are governed by the Markov chain choice model, we formulate the problem

as a dynamic program and show that the optimal policy offers a larger set of products as we have

more capacity at a certain time period or as we get closer to the end of the selling horizon, all else

being equal (Theorem 4). In other words, as we have more capacity or we get closer to the end

of the selling horizon, the urgency to liquidate the resource inventory takes over and we offer a

larger set of products. Using these properties, we show that the optimal policy can be implemented

by associating a protection level with each product so that a product is made available to the

customers whenever the remaining inventory of the resource exceeds the protection level of the

product. Thus, although the problem is formulated in terms of which set of products to offer to

customers, we can individually decide whether to offer each product by comparing the remaining

inventory of the resource with the protection level of a product. These intuitive properties of the

optimal policy are consequences of the Markov chain choice model and they do not necessarily hold

when customers choose according to other choice models.

Third, we consider revenue management problems over a network of resources. In the network

revenue management setting, we have a number of resources with limited inventories and each

product consumes a certain combination of resources. We need to decide which set of products

to make available dynamically over a selling horizon. At each time period, an arriving customer

chooses among the set of available products according to the Markov chain choice model. The

goal is to find a policy to decide which set of products to make available at each time period in

the selling horizon so as to maximize the total expected revenue. We can formulate the network

revenue management problem as a dynamic program, but this dynamic program requires keeping

track of the remaining inventory for all resources, so it can be difficult to solve. Instead, we focus

on a deterministic linear programming approximation formulated under the assumption that the

customer choices take on their expected values. In this linear program, there is one decision variable

for each subset of products, which corresponds to the frequency with which we offer a subset of

products to customers. So, the number of decision variables increases exponentially with the number

of products and the deterministic linear program is solved by using column generation.

Focusing on the deterministic linear program described above, we show that if the customers

choose according to the Markov chain choice model, then the deterministic linear program can

immediately be reduced to an equivalent linear program whose numbers of decision variables and

constraints increase only linearly with the numbers of products and resources (Theorem 5). We

develop an algorithm to recover the optimal solution to the original deterministic linear program

by using the optimal solution to the reduced linear program. This algorithm allows us to recover

the frequency with which we should offer each subset of products to customers by using the

optimal solution to the reduced linear program. Finally, by using the reduced linear program,

3

we show that the optimal solution to the deterministic linear program offers only nested subsets

of products (Theorem 8). In other words, the subsets of products offered by the optimal solution

to the deterministic linear program can be ordered such that one subset is included in another

one. This result implies that the optimal solution to the deterministic linear program offers at most

n+ 1 different subsets, where n is the number of products. Therefore, the optimal solution to the

deterministic linear program does not offer too many different subsets and these subsets are related

to each other in the sense that they are nested. Similar to our results for the single resource revenue

management problem, these properties of the optimal solution are consequences of the Markov chain

choice model and they do not necessarily hold under other choice models. Our computational

experiments show that using the reduced linear program can provide remarkable computational

savings over solving the original deterministic linear program through column generation. For

smaller problem instances with 50 resources and 500 products, we can obtain the optimal subset

offer frequencies up to 10,000 times faster by using the reduced linear program, instead of solving

the original deterministic linear program through column generation. For larger problem instances

with 100 resources and 2,000 products, we cannot solve the original deterministic linear program

within two hours of run time, while we can use the reduced linear program to obtain the optimal

subset offer frequencies within four minutes.

Related Literature. The Markov chain choice model has recently been proposed by Blanchet

et al. (2013). The authors demonstrate that the multinomial logit model, which is often used to

model customer choices in practice, is a special case of the Markov chain choice model. They

also show that the Markov chain choice model can approximate a rich class of choice models quite

accurately. They study assortment optimization problems under the Markov chain choice model

without inventory considerations and show that the optimal assortment can be computed through

a dynamic program. We give an alternative solution approach for the assortment problem that

is based on a linear program. This linear program becomes useful to derive structural properties

of the optimal assortment. Also, Blanchet et al. (2013) do not focus on revenue management

problems with limited resources. We show structural properties of the optimal policy for the single

resource revenue management problem and show how to reduce the size of the deterministic linear

programming formulation for the network revenue management problem.

Another paper closely related to our work is Talluri and van Ryzin (2004), where the authors

formulate the single resource revenue management problem as a dynamic program and derive

structural properties of the optimality policy under the assumption that the choices of the customers

are governed by the multinomial logit model. Since the Markov chain choice model encapsulates the

multinomial logit model as a special case, our results for the single resource revenue management

problem are more general. A final paper that is of interest to us is Gallego et al. (2011). This

paper shows that if the customers choose according to the multinomial logit model, then the

deterministic linear program for the network revenue management problem can be reduced to an

equivalent linear program whose size grows linearly with the numbers of products and resources. We

find that an analogue of this result can be established when customers choose according to the

4

Markov chain choice model, which is, as mentioned above, more general than the multinomial logit

model. Obtaining the optimal solution to the original deterministic linear program through the

optimal solution to the reduced linear program is substantially more difficult under the Markov

chain choice model and our results demonstrate how to accomplish this task. Overall, effectively

solving single resource and network revenue management problems under the Markov chain choice

model has important implications since the work of Blanchet et al. (2013) shows that the Markov

chain choice model can approximate a rich class of choice models quite accurately.

Our work is also related to the growing literature on assortment optimization problems

without inventory considerations. Rusmevichientong et al. (2010), Wang (2012) and Wang (2013)

study assortment problems when customers choose according to variants of the multinomial

logit model. Bront et al. (2009), Mendez-Diaz et al. (2010) and Desir and Goyal (2013) and

Rusmevichientong et al. (2013) focus on assortment problems when the customer choices are

governed by a mixture of multinomial logit models. Li and Rusmevichientong (2012), Li et al.

(2013), Davis et al. (2013) and Gallego and Topaloglu (2014) develop tractable solution methods for

the assortment problem when customers choose according to the nested logit model. Jagabathula

(2008) and Farias et al. (2013) use a nonparametric choice model to capture customer choices,

where each customer arrives with a particular ordering of products in mind and purchases the first

available product in her ordering. Li and Huh (2011) and Gallego and Wang (2011) study related

pricing problems under the nested logit model.

Network revenue management literature under customer choice behavior is related to our

work as well. As mentioned above, dynamic programming formulations of network revenue

management problems tend to be intractable. Thus, it is customary to formulate deterministic

linear programming approximations under the assumption that customer choices take on their

expected values. Such deterministic linear programs go back to the work of Gallego et al. (2004)

and Liu and van Ryzin (2008). Similar deterministic linear programs are studied by Bront et al.

(2009), Kunnumkal and Topaloglu (2008), Talluri (2011), Meissner et al. (2012) and Vossen and

Zhang (2013). Zhang and Adelman (2009), Kunnumkal and Talluri (2012) and Meissner and

Strauss (2012) provide tractable methods to approximate the dynamic programming formulations

of network revenue management problems under customer choice.

Organization. In Section 1, we formulate the Markov chain choice model. In Section 2, we show

how to solve the assortment optimization problem under the Markov chain choice model. In Section

3, we give structural properties of the optimal policy for the single resource revenue management

problem and characterize the optimal policy through protection levels. In Section 4, we show that

the deterministic linear program for the network revenue management problem can be reduced

to an equivalent linear program whose size increases linearly with the numbers of products and

resources. In Section 5, we give an algorithm to recover the optimal solution to the original

deterministic linear program by using the optimal solution to the reduced linear program. In

Section 6, we provide computational experiments. In Section 7, we conclude.

5

1 Markov Chain Choice Model

We describe the Markov chain choice model that we use throughout the paper. There are n products,

indexed by N =
{
1, . . . , n

}
. With probability λj , a customer arriving into the system considers

purchasing product j. If this product is offered for purchase, then the customer purchases this

product. Otherwise, the customer transitions into product i with probability ρj,i and considers

purchasing product i. With probability 1 −
∑

i∈N ρj,i the customer decides to leave the system

without making a purchase. In this way, the customer transitions between the products according

to a Markov chain until she considers purchasing a product that is offered for purchase or she

decides to leave the system without making a purchase. Given that we offer the subset S ⊂ N of

products, we use Pj,S to denote the probability that a customer considers purchasing product j

during the course of her choice process and purchases this product, whereas we use Rj,S to denote

the probability that a customer considers purchasing product j during the course of her choice

process and does not purchase this product due to the unavailability of this product. Using the

vectors PS = (P1,S , . . . , Pn,S) and RS = (R1,S , . . . , Rn,S), we observe that (PS , RS) satisfies

Pj,S + Rj,S = λj +
∑
i∈N

ρi,j Ri,S ∀ j ∈ N, (Balance)

Pj,S = 0 ∀ j ̸∈ S, Rj,S = 0 ∀ j ∈ S.

We interpret the Balance equations as follows. Noting the definitions of Pj,S and Rj,S , a customer

considers purchasing product j during the course of her choice process with probability Pj,S +

Rj,S . To consider purchasing product j, the customer should either consider purchasing product j

when she arrives into the system or consider purchasing some product i during the course of her

choice process, not purchase product i and transition from product i to product j. If product j is

not offered, then the probability that the customer considers purchasing this product during the

course of her choice process and purchases it is zero, implying that Pj,S = 0 for all j ̸∈ S. Similarly,

if product j is offered, then the probability that the customer considers purchasing this product

during the course of her choice process and does not purchase it is zero, implying that Rj,S = 0 for all

j ∈ S. So, if we offer the subset S of products, then a customer purchases product j with probability

Pj,S . In this setup, a customer may visit an unavailable product multiple times. Substituting Pj,S =

0 for all j ̸∈ S and Rj,S = 0 for all j ∈ S in the Balance equations, we can drop these probabilities

altogether, but the current form of the Balance equations will be more convenient for us.

Throughout the paper, we assume that λj > 0 and
∑

i∈N ρj,i < 1 for all j ∈ N , in which

case, there is a strictly positive probability that a customer arriving into the system can consider

purchasing any of the products and a customer can leave the system after she considers purchasing

any of the products. These assumptions allow us to avoid degenerate cases when deriving our

results, but all of our results hold without any modifications when we have λj = 0 or
∑

i∈N ρj,i = 1

for some j ∈ N . Since we have λj > 0 and Rj,S = 0 for all j ∈ S, the Balance equations imply

that Pj,S > 0 for all j ∈ S. Therefore, there is a strictly positive probability that each product in

the offered subset is purchased by an arriving customer.

6

2 Assortment Optimization

In the assortment optimization setting, we have access to a set of products among which we choose

a subset to offer to customers. There is a revenue associated with each product. Customers choose

among the offered products according to the Markov chain choice model. The goal is to find a

subset of products that maximizes the expected revenue obtained from each customer. Indexing

the products by N =
{
1, . . . , n

}
, we use rj to denote the revenue associated with product j. We

recall that if we offer the subset S of products, then a customer purchases product j with probability

Pj,S , where (PS , RS) satisfies the Balance equations. We can find the subset of products that

maximizes the expected revenue obtained from each customer by solving the problem

max
S⊂N

{∑
j∈N

Pj,S rj

}
. (Assortment)

We observe that even computing the objective value of the problem above for a certain subset S is

not a trivial task, since computing Pj,S requires solving a system of equalities given by the Balance

equations. In this section, we show that the optimal solution to the Assortment problem can be

obtained by solving a linear program. Furthermore, this linear program allows us to derive certain

structural properties of the optimal subset of products to offer and these structural properties

become useful later in the paper. To obtain the optimal solution to the problem above by solving

a linear program, we exploit a connection between (PS , RS) and the extreme points of a suitably

defined polytope. Consider the polytope defined as

H =

{
(x, z) ∈ ℜ2n

+ : xj + zj = λj +
∑
i∈N

ρi,j zi ∀ j ∈ N

}
,

where we use the vectors x = (x1, . . . , xn) and z = (z1, . . . , zn). In the next lemma, we give a

connection between (PS , RS) and the extreme points of H.

Lemma 1 For an extreme point (x̂, ẑ) of H, define Sx̂ =
{
j ∈ N : x̂j > 0

}
. Then, we have

Pj,Sx̂
= x̂j and Rj,Sx̂

= ẑj for all j ∈ N .

Proof. We claim that ẑj = 0 for all j ∈ Sx̂. To get a contradiction, assume that ẑj > 0 for some

j ∈ Sx̂. By the definition of Sx̂, there are |Sx̂| nonzero components of the vector x̂. We have

x̂j = 0 for all j ̸∈ Sx̂. Since (x̂, ẑ) satisfies x̂j + ẑj = λj +
∑

i∈N ρi,j ẑi for all j ∈ N and λj > 0

for all j ∈ N , having x̂j = 0 for all j ̸∈ Sx̂ implies that ẑj > 0 for all j ̸∈ Sx̂. Therefore, there

are n − |Sx̂| nonzero components of the vector ẑ corresponding to the products that are not in

Sx̂. By our assumption, there is one more nonzero component of the vector ẑ that corresponds to

one of the products in Sx̂. Therefore, it follows that (x̂, ẑ) has |Sx̂|+ n− |Sx̂|+ 1 = n+ 1 nonzero

components. Since an extreme point of a polytope defined by n equalities cannot have more than n

nonzero components, we get a contradiction and the claim follows. By the claim and the definition

of Sx̂, we have x̂j = 0 for all j ̸∈ Sx̂ and ẑj = 0 for all j ∈ Sx̂. Furthermore, noting that (x̂, ẑ) ∈ H,

7

we have x̂j+ ẑj = λj+
∑

i∈N ρi,j ẑj for all j ∈ N . The last two statements imply that (x̂, ẑ) satisfies

the Balance equations with S = Sx̂. Thus, it must be the case that (x̂, ẑ) = (PSx̂
, RSx̂

). �

An important implication of Lemma 1 is that we can obtain the optimal objective value of the

Assortment problem by solving the linear program

max
(x,z)∈ℜ2n

+

{∑
j∈N

rj xj : xj + zj = λj +
∑
i∈N

ρi,j zi ∀ j ∈ N

}
.

To see this result, we use Ŝ to denote the optimal solution to the Assortment problem. Since

(PŜ, RŜ) satisfies the Balance equations with S = Ŝ, it follows that (PŜ, RŜ) is a feasible solution

to the linear program above providing the objective value
∑

j∈N rj Pj,Ŝ. Therefore, there exists a

feasible solution to the linear program above, which provides an objective value that is equal to the

optimal objective value of the Assortment problem, indicating that the optimal objective value

of the linear program above is at least as large as the optimal objective value of the Assortment

problem. On the other hand, letting (x̂, ẑ) be the optimal solution to the linear program above,

define the subset Sx̂ = {j ∈ N : x̂j > 0}. Without loss of generality, we assume that (x̂, ẑ) is an

extreme point solution, in which case, Lemma 1 implies that Pj,Sx̂
= x̂j for all j ∈ N . Therefore, the

subset Sx̂ provides an objective value of
∑

j∈N rj Pj,Sx̂
=

∑
j∈N rj x̂j for the Assortment problem,

indicating that there exists a feasible solution to the Assortment problem, which provides an

objective value that is equal to the optimal objective value of the linear program above. Thus, the

optimal objective value of the Assortment problem is at least as large as the optimal objective

value of the linear program above, establishing the desired result. Naturally, we can obtain the

optimal objective value of the linear program above by using its dual, which is given by

max
v∈ℜn

{∑
j∈N

λj vj : vj ≥ rj ∀ j ∈ N, vj ≥
∑
i∈N

ρj, i vi ∀ j ∈ N

}
, (Dual)

where we use the vector v = (v1, . . . , vn). In this next theorem, we show that the Dual problem

can be used to obtain the optimal solution to the Assortment problem.

Theorem 2 Letting v̂ be the optimal solution to the Dual problem, define Ŝ =
{
j ∈ N : v̂j = rj

}
.

Then, Ŝ is the optimal solution to the Assortment problem.

Proof. We use Ẑ to denote the optimal objective value of the Dual problem. By the discussion

right before the theorem, Ẑ also corresponds to the optimal objective value of the Assortment

problem. We note that for each j ∈ N , we have v̂j = rj or v̂j =
∑

i∈N ρj,i v̂i. In particular, if we have

v̂j > rj and v̂j >
∑

i∈N ρj,i v̂i for some j ∈ N , then we can decrease the value of the decision variable

v̂j by a small amount, while keeping the feasibility of the solution v̂ for the Dual problem. The

solution obtained in this fashion provides a strictly smaller objective value than the optimal solution,

which is a contradiction. Since we have v̂j = rj or v̂j =
∑

i∈N ρj,i v̂i for all j ∈ N , by the definition of

Ŝ, it holds that v̂j = rj for all j ∈ Ŝ and v̂j =
∑

i∈N ρj,i v̂i for all j ̸∈ Ŝ. By the Balance equations,

8

we also have Pj,Ŝ = 0 for all j ̸∈ Ŝ and Rj,Ŝ = 0 for all j ∈ Ŝ. Therefore, we obtain Pj,Ŝ v̂j = Pj,Ŝ rj

for all j ∈ N and Rj,Ŝ v̂j =
∑

i∈N Rj,Ŝ ρj,i v̂i for all j ∈ N . Adding the last two equalities over all

j ∈ N , it follows that
∑

j∈N Pj,Ŝ v̂j +
∑

j∈N Rj,Ŝ v̂j =
∑

j∈N Pj,Ŝ rj +
∑

j∈N
∑

i∈N Rj,Ŝ ρj,i v̂i. If we

arrange the terms in this equality, then we obtain

∑
j∈N

Pj,Ŝ rj =
∑
j∈N

{
Pj,Ŝ +Rj,Ŝ −

∑
i∈N

ρi,j Ri,Ŝ

}
v̂j =

∑
j∈N

λj v̂j = Ẑ,

where the second equality uses the fact that (PŜ, RŜ) satisfies the Balance equations with S = Ŝ

and the third equality is by the fact that v̂ is the optimal solution to theDual problem. Since Ẑ also

corresponds to the optimal objective value of the Assortment problem, having
∑

j∈N Pj,Ŝ rj = Ẑ

implies that Ŝ is the optimal solution to the Assortment problem. �

By Theorem 2, we can obtain the optimal solution to the Assortment problem by solving

the Dual problem, which indicates that the Assortment problem is tractable. Blanchet et al.

(2013) demonstrate the tractability of the Assortment problem, but they do not use a linear

program. One useful implication of Theorem 2 is that it is possible to build on this theorem to show

that the optimal solution to the Assortment problem becomes a smaller subset when we decrease

the revenues associated with all of the products by the same positive amount. This result becomes

useful when we show the optimality of protection level policies for the single resource revenue

management problem. In the next lemma, we show that the optimal solution to the Assortment

problem becomes a smaller subset as we decrease the product revenues.

Lemma 3 For η ≥ 0, let v̂η be the optimal solution to the Dual problem after decreasing the

revenues of all products by η. Then, we have
{
j ∈ N : v̂ηj = rj − η

}
⊂

{
j ∈ N : v̂0j = rj

}
.

Proof. By the same argument in the proof of Theorem 2, we have v̂0j = rj or v̂0j =
∑

i∈N ρj,i v̂
0
i

for all j ∈ N , in which case, noting the constraints in the Dual problem, we obtain v̂0j =

max
{
rj ,

∑
i∈N ρj,i v̂

0
i

}
for all j ∈ N . A similar argument yields v̂ηj = max

{
rj − η,

∑
i∈N ρj,i v̂

η
i

}
for all j ∈ N . We define ṽ = (ṽ1, . . . , ṽn) as ṽj = min

{
v̂0j , v̂

η
j +η

}
for all j ∈ N . We claim that ṽ is a

feasible solution to the Dual problem. To see the claim, by the definition of ṽ, we have ṽj ≤ v̂0j and

ṽj ≤ v̂ηj + η for all j ∈ N . In this case, using the fact that v̂0j = max
{
rj ,

∑
i∈N ρj,i v̂

0
i

}
, we obtain

max
{
rj ,

∑
i∈N ρj,i ṽi

}
≤ max

{
rj ,

∑
i∈N ρj,i v̂

0
i

}
= v̂0j for all j ∈ N . Similarly, using the fact that

v̂ηj = max
{
rj − η,

∑
i∈N ρj,i v̂

η
i

}
, we have max

{
rj ,

∑
i∈N ρj,i ṽi

}
≤ max

{
rj ,

∑
i∈N ρj,i (v̂

η
i + η)

}
≤

max
{
rj − η,

∑
i∈N ρj,i v̂

η
i

}
+ η = v̂ηj + η for all j ∈ N . Therefore, the discussion so far

shows that max
{
rj ,

∑
i∈N ρj,i ṽi

}
≤ v̂0j and max

{
rj ,

∑
i∈N ρj,i ṽi

}
≤ v̂ηj + η, indicating that

max
{
rj ,

∑
i∈N ρj,i ṽi

}
≤ min

{
v̂0j , v̂

η
j + η

}
= ṽj for all j ∈ N , where the last equality is by the

definition of ṽ. Having max
{
rj ,

∑
i∈N ρj,i ṽi

}
≤ ṽj for all j ∈ N implies that ṽ is a feasible

solution to the Dual problem and the claim follows. To get a contradiction to the result that we

want to show, we assume that there exists some j ∈ N such that j ∈
{
i ∈ N : v̂ηi = ri − η

}
, but

j ̸∈
{
i ∈ N : v̂0i = ri

}
. So, we have v̂ηj +η = rj < v̂0j , in which case, noting that ṽj = min

{
v̂0j , v̂

η
j +η

}
,

9

we get ṽj < v̂0j . Since ṽi ≤ v̂0i for all i ∈ N by the definition of ṽ, it follows that the components of

ṽ are no larger than the corresponding components of v̂0 and there exists some j ∈ N such that ṽj

is strictly smaller than v̂0j . Since ṽ is a feasible solution to the Dual problem, the last observation

contradicts the fact that v̂0 is the optimal solution to the Dual problem. �

Noting Theorem 2,
{
j ∈ N : v̂ηj = rj − η

}
is the optimal solution to the Assortment problem

when we decrease the revenues associated with all of the products by η. Therefore, Lemma 3 implies

that if we decrease the revenues associated with all of the products by the same positive amount

η, then the optimal solution to the Assortment problem becomes a smaller subset.

3 Single Resource Revenue Management

In the single resource revenue management setting, we manage one resource with a limited amount

of capacity. At each time period in the selling horizon, we need to decide which subset of products

to offer to customers. Customers arrive into the system one by one and choose among the offered

products according to the Markov chain choice model. When we sell a product, we generate

a revenue and consume one unit of the resource. The goal is to find a policy to dynamically

decide which subsets of products to offer over the selling horizon so as to maximize the total

expected revenue. Such single resource revenue management problems arise when airlines control

the availability of different fare classes on a single flight leg. Different fare classes correspond to

different products and the seats on the flight leg correspond to the resource. Talluri and van Ryzin

(2004) consider this single resource revenue management problems when customers choose under

a general choice model. In this section, we give structural properties of the optimal policy when

customers choose under the Markov chain choice model. Similar to our notation in the previous

section, we index the products by N =
{
1, . . . , n

}
and denote the revenue associated with product

j by rj . If we offer the subset S of products, then a customer purchases product j with probability

Pj,S . There are T time periods in the selling horizon. For simplicity of notation, we assume that

there is exactly one customer arrival at each time period. We have c units of resource available at

the beginning of the selling horizon. We let Vt(x) be the optimal total expected revenue over the

time periods t, . . . , T , given that we have x units of remaining capacity at the beginning of time

period t. We can compute
{
Vt(x) : x = 0, . . . , c, t = 1, . . . , T

}
by solving the dynamic program

Vt(x) = max
S⊂N

{∑
j∈N

Pj,S

{
rj + Vt+1(x− 1)

}
+

{
1−

∑
j∈N

Pj,S

}
Vt+1(x)

}

= max
S⊂N

{∑
j∈N

Pj,S

{
rj + Vt+1(x− 1)− Vt+1(x)

}}
+ Vt+1(x), (Single Resource)

with the boundary conditions that VT+1(x) = 0 for all x = 0, . . . , c and Vt(0) = 0 for all t =

1, . . . , T . The optimal total expected revenue is given by V1(c).

We let Ŝt(x) be the optimal subset of products to offer given that we have x units of remaining

capacity at the beginning of time period t, in which case, Ŝt(x) is given by the optimal solution

10

to the problem on the right side of the Single Resource dynamic program. In this section, we

show that there exists an optimal policy that satisfies the properties Ŝt(x− 1) ⊂ Ŝt(x) and Ŝt(x) ⊂
Ŝt−1(x). The first property implies that if we have fewer units of remaining capacity at a particular

time period, then the optimal subset of products to offer becomes smaller. The second property

implies that if we have more time periods left in the selling horizon with a particular number of

units of remaining capacity, then the optimal subset of products to offer becomes smaller. The first

property has an important implication when implementing the policy obtained from the Single

Resource dynamic program. Since the optimal subset of products to offer becomes smaller when

we have fewer units of remaining capacity at a time period, we let x̄jt be the smallest value of the

remaining capacity such that it is still optimal to offer product j at time period t. In this case, if we

have x units of remaining capacity at the beginning of time period t and x ≥ x̄jt, then it is optimal

to offer product j. Otherwise, it is optimal not to offer product j. Therefore, we can associate

a threshold value x̄jt for each product j and time period t such that we can decide whether it is

optimal to offer product j at time period t by comparing the remaining resource capacity with the

threshold value. The threshold value x̄jt is referred to as the protection level for product j at time

period t and the resulting policy is referred to as a protection level policy.

Optimality of a protection level policy significantly simplifies the implementation of the optimal

policy since we can separately decide whether to offer each product by comparing the remaining

resource capacity with the threshold value of the product. Since protection level policies form

the standard capacity control tool in revenue management systems, optimality of protection level

policies is also likely to enhance the practical appeal of the Markov chain choice model. In the next

theorem, we show that the optimal subset of products to offer becomes smaller as we have fewer

units of remaining capacity at a particular time period or as we have more time periods left in the

selling horizon with a particular number of units of remaining capacity.

Theorem 4 There exists an optimal policy for the Single Resource dynamic program such that

Ŝt(x− 1) ⊂ Ŝt(x) and Ŝt(x) ⊂ Ŝt−1(x).

Proof. It is a standard result that the first differences of the value functions computed through the

Single Resource dynamic program increases as we have fewer units of remaining capacity or as we

have more time periods left in the selling horizon. In particular, letting ∆Vt(x) = Vt(x)−Vt(x−1),

Talluri and van Ryzin (2004) show that ∆Vt+1(x) ≤ ∆Vt+1(x − 1) and ∆Vt+1(x) ≤ ∆Vt(x)

under any choice model. Letting rjt(x) = rj − ∆Vt+1(x), by definition, Ŝt(x) is the optimal

solution to the problem maxS⊂N
∑

j∈N Pj,s (rj − ∆Vt+1(x)) = maxS⊂N
∑

j∈N Pj,s rjt(x), whereas

Ŝt(x − 1) is the optimal solution to the problem maxS⊂N
∑

j∈N Pj,s (rj − ∆Vt+1(x − 1)) =

maxS⊂N
∑

j∈N Pj,s (rjt(x) − (∆Vt+1(x − 1) − ∆Vt+1(x))). Identifying rjt(x) with the revenue of

product j in the Assortment problem, the problem that computes Ŝt(x) has the same form

as the Assortment problem. The problem that computes Ŝt(x − 1) also has the same form as

the Assortment problem as long as we identify rjt(x) − (∆Vt+1(x − 1) − ∆Vt+1(x)) with the

11

revenue of product j in the Assortment problem. Thus, the revenue of each product in the

problem that computes Ŝt(x − 1) is obtained by subtracting ∆Vt+1(x − 1) − ∆Vt+1(x) from the

revenue of the corresponding product in the problem that computes Ŝt(x). By the discussion at

the beginning of the proof, we have ∆Vt+1(x− 1)−∆Vt+1(x) ≥ 0 and Lemma 3 implies that if we

decrease the revenue of each product by the same positive amount, then the optimal solution to the

Assortment problem becomes a smaller subset. Thus, it follows that Ŝt(x−1) ⊂ Ŝt(x). Following

the same argument but using the fact that the first differences of the value functions increase as

we have more time periods left in the selling horizon, we can show that Ŝt−1(x) ⊂ Ŝt(x). �

By Theorem 4, implementing the optimal policy obtained from the Single Resource dynamic

program requires only keeping track of the optimal protection level x̄jt for all j ∈ N and

t = 1, . . . , T , instead of keeping track of the optimal subset of products Ŝt(x) to offer for all

x = 0, . . . , c and t = 1, . . . , T . In the next section, we consider network revenue management

problems when customers choose according to the Markov chain choice model.

4 Network Revenue Management

In the network revenue management setting, we manage a network of resources, each of which

has a limited amount of capacity. At each time period in the selling horizon, we need to decide

which subset of products to offer to customers. Customers arrive into the system one by one and

choose among the offered products according to the Markov chain choice model. Each product uses

a certain combination of resources. When we sell a product, we generate a revenue and consume

the capacities of the resources used by the product. The goal is to find a policy to dynamically

decide which subsets of products to make available over the selling horizon so as to maximize

the total expected revenue. Such network revenue management problems model the situation

faced by an airline making itinerary availability decisions over a network of flight legs. Different

itineraries correspond to different products and seats on different flight legs correspond to different

resources. Gallego et al. (2004) and Liu and van Ryzin (2008) study network revenue management

problems when customers choose according to a general choice model. The dynamic programming

formulation of the problem requires keeping track of the remaining capacities on all of the flight legs,

resulting in a high dimensional state variable. To deal with this difficulty, the authors formulate

a linear program under the assumption that the customer choices take on their expected values.

In practice, this linear program may have a large number of decision variables and it is commonly

solved through column generation. In this section, we show that the size of the linear program can

be drastically reduced when customers choose under the Markov chain choice model.

There are m resources indexed by M =
{
1, . . . ,m

}
. Similar to the previous two sections,

we index the products by N =
{
1, . . . , n

}
. Each customer chooses among the offered products

according to the Markov chain choice model. Therefore, if we offer the subset S of products,

then a customer purchases product j with probability Pj,S , where (PS , RS) satisfies the Balance

equations. There are T time periods in the selling horizon. For simplicity of notation, we assume

12

that exactly one customer arrives at each time period. We have cq units of resource q available at

the beginning of the selling horizon. If we sell one unit of product j, then we generate a revenue

of rj and consume aq,j units of resource q. Under the assumption that the customer choices take

on their expected values, we can formulate the network revenue management problem as linear

program. In particular, using the decision variable uS to capture the probability of offering subset

S of products at a time period, we can find good subset offer probabilities u =
{
uS : S ⊂ N

}
by

solving the linear program

max
u∈ℜ2n

+

{ ∑
S⊂N

∑
j∈N

T rj Pj,S uS :
∑
S⊂N

∑
j∈N

T aq,j Pj,S uS ≤ cq ∀ q ∈ M

∑
S⊂N

uS = 1

}
. (Choice Based)

Noting the definition of the decision variable uS , the expression
∑

S⊂N T Pj,S uS in the objective

function and the first constraint of the problem above corresponds to the total expected number

of sales for product j over the selling horizon. Therefore, the objective function in the problem

above computes the total expected revenue over the selling horizon. The first constraint ensures

that the total expected capacity of resource q consumed over the selling horizon does not exceed

the capacity of this resource. The second constraint ensures that we offer a subset of products with

probability one at each time period, but this subset can be the empty set.

In our formulation of the network revenue management problem, the probabilities (PS , RS)

do not depend on the time period, which allows us to use a single decision variable uS in

the Choice Based linear program to capture the probability of offering subset S at any time

period. In practical applications, customers arriving at different time periods can choose according

to choice models with different parameters. If the choice models governing the customer choices at

different time periods have different parameters, then we can address this situation by using the

decision variable uS,t, which corresponds to the probability of offering subset S of products at time

period t. Our results in this section continue to hold with simple modifications when we work with

the decision variables
{
uS,t : S ⊂ N, t = 1, . . . , T

}
. We can interpret the Choice Based linear

program as a crude approximation to the network revenue management problem formulated under

the assumption that the customer choices take on their expected values. Liu and van Ryzin (2008)

propose various approximate policies that use the solution to the Choice Based linear program

to decide which subset of products to offer at each time period.

Since the Choice Based linear program has one decision variable for each subset of products,

its number of decision variables grows exponentially with the number of products. Therefore, a

common approach for solving this problem is to use column generation. In this section, we show

that if customers choose according to the Markov chain choice model, then the Choice Based

linear program can equivalently be formulated as a linear program with only 2n decision variables

and m + n constraints. To give the equivalent formulation, we use the decision variable xj to

represent the fraction of customers that consider purchasing product j during the course of their

13

choice process and purchase this product. Also, we use the decision variable zj to represent the

fraction of customers that consider purchasing product j during the course of their choice process

and do not purchase this product due to the unavailability of this product. Our main result in this

section shows that the Choice Based linear program is equivalent to the linear program

max
(x,z)∈ℜ2n

+

{∑
j∈N

T rj xj :
∑
j∈N

T aq,j xj ≤ cq ∀ q ∈ M

xj + zj = λj +
∑
i∈N

ρi,j zi ∀ j ∈ N

}
. (Reduced)

By the definition of the decision variable xj , the expression Txj in the objective function and

the first constraint of the problem above corresponds to the expected number of sales for product

j over the selling horizon. In this case, the objective function of the problem above computes

the total expected revenue over the selling horizon. The first constraint ensures that the total

expected capacity of resource q consumed over the selling horizon does not exceed the capacity of

this resource. The second constraint is similar to the Balance equations. Noting the definitions of

the decision variables xj and zj , xj + zj is the fraction of customers that consider product j during

the course of their choice process. For a customer to consider product j during the course of her

choice process, she should either consider purchasing product j when she arrives into the system

or consider purchasing some product i, not purchase this product and transition from product i to

product j. There are 2n decision variables and m+ n constraints in the Reduced linear program

and it can be possible to solve the Reduced linear program for practical networks directly by using

linear programming software. In the next theorem, we show that the Reduced linear program is

equivalent to the Choice Based linear program in the sense that we can use the optimal solution

to the Reduced linear program to obtain the optimal solution to the Choice Based one.

Theorem 5 Letting (x̂, ẑ) be the optimal solution to the Reduced linear program, there exist

subsets S1, . . . , SK and positive scalars γ1, . . . , γK summing to one such that x̂ =
∑K

k=1 γ
k PSk

and ẑ =
∑K

k=1 γ
k RSk . The optimal objective values of the Reduced and Choice Based linear

programs are the same and the solution û obtained by letting ûSk = γk for all k = 1, . . . ,K and

ûS = 0 for all S ̸∈
{
S1, . . . , SK

}
is optimal to the Choice Based linear program.

Proof. Noting the definition of H in Section 2, since (x̂, ẑ) is a feasible solution to the Reduced

linear program, we have (x̂, ẑ) ∈ H. Thus, there exist extreme points (x1, z1), . . . , (xK , zK) of H
and positive scalars γ1, . . . , γK summing to one such that x̂ =

∑K
k=1 γ

k xk and ẑ =
∑K

k=1 γ
k zk. For

all k = 1, . . . ,K, define the subset Sk =
{
j ∈ N : xkj > 0

}
. By Lemma 1, we have Pj,Sk = xkj

and Rj,Sk = zkj for all j ∈ N , which implies that x̂ =
∑K

k=1 γ
k xk =

∑K
k=1 γ

k PSk and ẑ =∑K
k=1 γ

k zk =
∑K

k=1 γ
k RSk , showing the first part of the theorem. To show the second part of

the theorem, by the definition of û, we have
∑

S⊂N Pj,S ûS =
∑K

k=1 Pj,Sk γk = x̂j . Thus, we

obtain
∑

j∈N
∑

S⊂N T aq,j Pj,S ûS =
∑

j∈N T aq,j x̂j ≤ cq, where the inequality uses the fact that

14

(x̂, ẑ) is a feasible solution to the Reduced linear program. Furthermore, we have
∑

S⊂N ûS =∑K
k=1 γ

k = 1. Therefore, û is a feasible solution to the Choice Based linear program. Since∑
S⊂N Pj,S ûS = x̂j , we obtain

∑
S⊂N

∑
j∈N T rj Pj,S ûS =

∑
j∈N T rj x̂j , which implies that the

solution û provides an objective value for the Choice Based linear program that is equal to the

optimal objective value of the Reduced linear program. Thus, the optimal objective value of the

Choice Based linear program is at least as large as that of the Reduced linear program.

On the other hand, let ũ be the optimal solution to the Choice Based linear program. Define

(x̃, z̃) as x̃j =
∑

S⊂N Pj,S ũS and z̃j =
∑

S⊂N Rj,S ũS for all j ∈ N . We have
∑

j∈N T aq,j x̃k =∑
S⊂N

∑
j∈N T aq,j Pj,S ũS ≤ cq, where we use the fact that ũ satisfies the first constraint in the

Choice Based linear program. Since (PS , RS) satisfies the Balance equations, we have Pj,S +

Rj,S = λj+
∑

i∈N ρi,j Ri,S for all S ⊂ N . Multiplying this equality by ũS , adding over all S ⊂ N and

noting that ũ is a feasible solution to the Choice Based linear program satisfying
∑

S⊂N ũS = 1,

we get x̃j+ z̃j =
∑

S⊂N Pj,S ũS+
∑

S⊂N Rj,S ũS = λj+
∑

S⊂N

∑
i∈N ρi,j Ri,S ũS = λj+

∑
i∈N ρi,j z̃j ,

where the first and last equalities use the definitions of x̃ and z̃. Thus, (x̃, z̃) is a feasible solution to

the Reduced linear program. Noting that
∑

j∈N T rj x̃j =
∑

S⊂N

∑
j∈N T rj Pj,S ũS , the solution

(x̃, z̃) provides an objective value for the Reduced linear program that is equal to the optimal

objective value of the Choice Based linear program. Therefore, the optimal objective value of the

Reduced linear program is at least as large as that of the Choice Based linear program. Noting

the discussion at the end of the previous paragraph, the Choice Based and Reduced linear

programs have the same optimal objective value and the solution û defined in the theorem is

optimal to the Choice Based linear program. �

By Theorem 5, we have a general approach for recovering the optimal solution to the Choice

Based linear program by using the optimal solution to the Reduced linear program. Letting (x̂, ẑ)

be the optimal solution to the Reduced linear program, the key is to find subsets S1, . . . , SK and

positive scalars γ1, . . . , γK summing to one such that (x̂, ẑ) can be expressed as x̂ =
∑K

k=1 γ
k PSk

and ẑ =
∑K

k=1 γ
k RSk . Finding such subsets and scalars is not a straightforward task. In the next

section, we give a tractable algorithm for this purpose.

5 Recovering the Optimal Solution

In this section, we consider the question of recovering the optimal solution to the Choice Based

linear program by using the optimal solution to the Reduced linear program. By the discussion

at the end of the previous section, letting (x̂, ẑ) be the optimal solution to the Reduced linear

program, the key is to find subsets S1, . . . , SK and positive scalars γ1, . . . , γK summing to one such

that (x̂, ẑ) can be expressed as x̂ =
∑K

k=1 γ
k PSk and ẑ =

∑K
k=1 γ

k RSk . In this case, the solution

û obtained by letting ûSk = γk for all k = 1, . . . ,K and ûS = 0 for all S ̸∈
{
S1, . . . , SK

}
is optimal

to the Choice Based linear program. One possible approach to find the subsets S1, . . . , SK and

scalars γ1, . . . , γK is to express (x̂, ẑ) as x̂ =
∑

S⊂N γS PS and ẑ =
∑

S⊂N γS RS for unknown

positive scalars
{
γS : S ⊂ N

}
satisfying

∑
S⊂N γS = 1 and solve these equations for the unknown

15

scalars. Since there are 2n + 1 equations, there exists a solution where at most 2n + 1 of the

unknown scalars take strictly positive values, but solving these equations directly is not tractable

since the number of unknown scalars grows exponentially with the number of products. We can

use an idea similar to column generation, where we focus on a small subset of the unknown scalars{
αS : S ⊂ N

}
and iteratively extend this subset, but this approach can be as computationally

intensive as solving the Choice Based linear program directly by using column generation, which

ultimately becomes problematic when dealing with large problem instances.

In this section, we give a tractable dimension reduction approach to find subsets S1, . . . , SK

and positive scalars γ1, . . . , γK summing to one such that the optimal solution (x̂, ẑ) to the

Reduced linear program can be expressed as x̂ =
∑K

k=1 γ
k PSk and ẑ =

∑K
k=1 γ

k RSk . For

large network revenue management problem instances, our computational experiments show that

this dimension reduction approach can recover the optimal solution to the Choice Based linear

program remarkably fast. Our dimension reduction approach uses the following recursive idea. Since

(x̂, ẑ) is a feasible solution to the Reduced linear program, we have (x̂, ẑ) ∈ H. We define

Sx̂ =
{
j ∈ N : x̂j > 0

}
to capture the nonzero components of x̂ and consider three cases. In the

first case, we assume that Sx̂ = ∅, implying that x̂j = 0 for all j ∈ N . Since (x̂, ẑ) ∈ H and

x̂j = 0 for all j ∈ N , (x̂, ẑ) satisfies the Balance equations with S = ∅, so that we must have

(x̂, ẑ) = (P∅, R∅). Thus, we can express (x̂, ẑ) simply as x̂ = P∅ and ẑ = R∅ and we are done. In

the rest of the discussion, we assume that Sx̂ ̸= ∅. We define αx̂ = min
{
x̂j /Pj,Sx̂

: j ∈ Sx̂

}
.

In the second case, we assume that αx̂ ≥ 1. Having αx̂ ≥ 1 implies that x̂j ≥ Pj,Sx̂
for all

j ∈ Sx̂. By the definition of Sx̂ and the Balance equations, we also have x̂j = 0 = Pj,Sx̂
for all

j ̸∈ Sx̂. Thus, we have x̂j ≥ Pj,Sx̂
for all j ∈ N . Since (x̂, ẑ) ∈ H, Lemma 10 in the appendix

shows that we also have ẑj ≥ Rj,Sx̂
for all j ∈ N . In this case, using the fact that (x̂, ẑ) ∈ H,

if we add the equalities in the definition of H for all j ∈ N and arrange the terms, then we

get
∑

j∈N x̂j +
∑

j∈N (1 −
∑

i∈N ρj,i) ẑj =
∑

j∈N λj . Similarly, adding the Balance equations

for all j ∈ N , we get
∑

j∈N λj =
∑

j∈N Pj,Sx̂
+

∑
j∈N (1 −

∑
i∈N ρj,i)Rj,Sx̂

. Thus, we obtain∑
j∈N x̂j +

∑
j∈N (1−

∑
i∈N ρj,i) ẑj =

∑
j∈N Pj,Sx̂

+
∑

j∈N (1 −
∑

i∈N ρj,i)Rj,Sx̂
. Since we have

x̂j ≥ Pj,Sx̂
and ẑj ≥ Rj,Sx̂

for all j ∈ N , the last equality implies that x̂j = Pj,Sx̂
and ẑj = Rj,Sx̂

for

all j ∈ N . Thus, we can express (x̂, ẑ) simply as x̂ = PSx̂
and ẑ = RSx̂

and we are done. As a side

note, if αx̂ > 1, then we have x̂j > Pj,Sx̂
for all j ∈ N . Using the fact that ẑj ≥ Rj,Sx̂

for all j ∈ N ,

we get a contradiction to the last equality. So, the largest possible value of αx̂ is one.

In the third case, we assume that αx̂ < 1. We define (û, v̂) as ûj = (x̂j − αx̂ Pj,Sx̂
)/(1 − αx̂)

and v̂j = (x̂j − αx̂Rj,Sx̂
)/(1 − αx̂) for all j ∈ N . In this case, by the definition of (û, v̂), we have

x̂ = αx̂ PSx̂
+(1−αx̂) û and ẑ = αx̂RSx̂

+(1−αx̂) v̂. We define Sû =
{
j ∈ N : ûj > 0

}
to capture the

nonzero components of û. In the next lemma, we show that (û, v̂) defined above satisfies (û, v̂) ∈ H
and the nonzero components of û captured by Sû is a strict subset of the nonzero components of

x̂ captured by Sx̂. This result implies that (x̂, ẑ) can be expressed as a convex combination of

(PSx̂
, Rx̂) and (û, v̂), where (û, v̂) ∈ H and the set of nonzero components of û is a strict subset

16

of the set of nonzero components of x̂. If we have Sû = ∅, then we can follow the argument

in the first case above to show that (û, v̂) = (P∅, R∅), in which case, we are done since we can

express (x̂, ẑ) as a convex combination of (PSx̂
, RSx̂

) and (P∅, R∅). On the other hand, defining

αû =
{
ûj /Pj,Sû

: j ∈ Sû

}
, if we have αû ≥ 1, then we can follow the argument in the second case

above to show that (û, v̂) = (PSû
, RSû

). In this case, we are done since we can express (x̂, ẑ) as a

convex combination of (PSx̂
, RSx̂

) and (PSû
, RSû

). Finally, if we have αû < 1, then we can use the

argument in the third case above to show that (û, v̂) can be expressed as a convex combination of

(PSû
, Rû) and (p̂, q̂), where (p̂, q̂) ∈ H and the set of nonzero components of p̂ is a strict subset of

the set of nonzero components of û. Repeating the same argument recursively, the process stops

after a finite number of iterations since the vector p̂ has strictly fewer nonzero components than û,

which has, in turn, strictly fewer nonzero components than x̂.

In the next lemma, we show that (û, v̂), as defined at the beginning of the previous paragraph,

indeed satisfies (û, v̂) ∈ H and û has strictly fewer nonzero components than x̂.

Lemma 6 For (x̂, ẑ) ∈ H, define Sx̂ =
{
j ∈ N : x̂j > 0

}
, αx̂ = min

{
x̂j /Pj,Sx̂

: j ∈ Sx̂

}
and

jx̂ = argmin
{
x̂j /Pj,Sx̂

: j ∈ Sx̂

}
. Assuming that αx̂ < 1, define (û, v̂) as

ûj =
x̂j − αx̂ Pj,Sx̂

1− αx̂
and v̂j =

ẑj − αx̂Rj,Sx̂

1− αx̂

for all j ∈ N and Sû =
{
j ∈ N : ûj > 0

}
. Then, we have (û, v̂) ∈ H and Sû ⊂ Sx̂ \ {jx̂}.

Proof. First, we show that (û, v̂) ∈ H. We observe that (û, v̂) is obtained by multiplying (x̂, ẑ) by

1/(1 − αx̂) and (PSx̂
, RSx̂

) by −αx̂/(1 − αx̂) and adding them up. Using the fact that (x̂, ẑ) ∈ H
and noting the Balance equations, we have x̂j + ẑj = λj +

∑
i∈N ρi,j ẑi and Pj,Sx̂

+ Rj,Sx̂
=

λj +
∑

i∈N ρi,j Ri,Sx̂
for all j ∈ N . Multiplying these two equations respectively by 1/(1− αx̂) and

−αx̂/(1−αx̂) and adding, it follows that (û, v̂) satisfies ûj+v̂j = λj+
∑

i∈N ρi,j v̂i for all j ∈ N . Thus,

to show that (û, v̂) ∈ H, it is enough to check that ûj ≥ 0 and v̂j ≥ 0 for all j ∈ N . Since

αx̂ ≤ x̂j /Pj,Sx̂
for all j ∈ Sx̂, we have ûj = (x̂j−αx̂ Pj,Sx̂

)/(1−αx̂) ≥ 0 for all j ∈ Sx̂. By definition,

we have x̂j = 0 = Pj,Sx̂
for all j ̸∈ Sx̂. Thus, we also have ûj = (x̂j − αx̂ Pj,Sx̂

)/(1− αx̂) = 0 for all

j ̸∈ Sx̂. By Lemma 10 in the appendix, we have ẑj ≥ Rj,Sx̂
for all j ∈ N . Using the assumption

that αx̂ < 1, we have v̂j = (ẑj − αx̂Rj,Sx̂
)/(1 − αx̂) ≥ 0 for all j ∈ N and the first part of the

lemma follows. Second, we show that Sû ⊂ Sx̂ \ {jx̂}. Consider j ∈ Sû so that ûj > 0. Since

ûj = (x̂j − αx̂ Pj,Sx̂
)/(1− αx̂) > 0, it must be the case that x̂j > 0, indicating that j ∈ Sx̂. So, we

get Sû ⊂ Sx̂. Furthermore, we have jx̂ ̸∈ Sû since ujx̂ = (x̂jx̂ − αx̂ Pjx̂,Sx̂
)/(1− αx̂) = 0, where the

second equality uses the fact that αx̂ = x̂jx̂ /Pjx̂,Sx̂
. Thus, we obtain Sû ⊂ Sx̂ \ {jx̂}. �

Building on the discussion that we have so far in this section, we propose the following algorithm

to find subsets S1, . . . , SK and positive scalars γ1, . . . , γK summing to one such that the optimal

solution (x̂, ẑ) to the Reduced linear program can be expressed as x̂ =
∑K

k=1 γ
k PSk and ẑ =∑K

k=1 γ
k RSk . We refer to this algorithm as the Dimension Reduction algorithm.

17

Dimension Reduction

Step 0. Using (x̂, ẑ) to denote the optimal solution to the Reduced linear program, set (x1, z1) =

(x̂, ẑ). Initialize the iteration counter by setting k = 1.

Step 1. Set Sk =
{
j ∈ N : xkj > 0

}
. If Sk = ∅, then set αk = 1 and stop.

Step 2. Set αk = min
{
xkj /Pj,Sk : j ∈ Sk

}
. If αk ≥ 1, then stop.

Step 3. Set (xk+1, zk+1) as xk+1
j = (xkj − αk Pj,Sk)/(1− αk) and zk+1

j = (zkj − αk Rj,Sk)/(1− αk)

for all j ∈ N . Increase k by one and go to Step 1.

Steps 1, 2 and 3 in the Dimension Reduction algorithm respectively correspond to the first,

second and third cases considered at the beginning of this section. We can use induction over

the iterations of the algorithm to show that (xk, zk) ∈ H at each iteration k. In particular, since

(x̂, ẑ) is a feasible solution to the Reduced linear program, we have (x1, z1) ∈ H. Assuming that

(xk, zk) ∈ H, if we identify (xk, zk) and (xk+1, zk+1) in the algorithm respectively with (x̂, ẑ) and

(û, v̂) in Lemma 6, then this lemma implies that (xk+1, zk+1) ∈ H, completing the induction. On

the other hand, letting jk = argmin
{
xkj /Pj,Sk : j ∈ Sk

}
and noting that (xk, zk) ∈ H, if we

identify Sk and Sk+1 in the algorithm with Sx̂ and Sû in Lemma 6, then this lemma implies that

Sk+1 ⊂ Sk \{jk}. Therefore, xk+1 has strictly fewer nonzero components than xk. This observation

implies that the algorithm stops after at most n+1 iterations with Sn+1 = ∅. In the next theorem,

we show that we can use the Dimension Reduction algorithm to find subsets S1, . . . , SK and

positive scalars γ1, . . . , γK summing to one such that the optimal solution (x̂, ẑ) to the Reduced

linear program can be expressed as x̂ =
∑K

k=1 γ
k PSk and ẑ =

∑K
k=1 γ

k RSk .

Theorem 7 Assume that the Dimension Reduction algorithm stops at iteration K and generates

the subsets S1, . . . , SK and the scalars α1, . . . , αK . Then, letting γk = (1−α1) . . . (1−αk−1)αk for

all k = 1, . . . ,K, we have x̂ =
∑K

k=1 γ
k PSk , ẑ =

∑K
k=1 γ

k RSk and
∑K

k=1 γ
k = 1.

Proof. We use induction over the iterations of the Dimension Reduction algorithm to show

that x̂ = γ1 PS1 + . . . + γk−1 PSk−1 + (γk/αk)xk for all k = 1, . . . ,K. Since γ1 = α1, we have

x̂ = x1 = (γ1/α1)x1, so that the result holds at the first iteration. We assume that the result holds

at iteration k. Noting Step 3 of the algorithm, we have xk = αk PSk + (1− αk)xk+1. In this case,

since x̂ = γ1 PS1 + . . .+ γk−1 PSk−1 + (γk/αk)xk by the induction assumption, we have

x̂ = γ1 PS1 + . . .+ γk−1 PSk−1 +
γk

αk
(αk PSk + (1− αk)xk+1)

= γ1 PS1 + . . .+ γk PSk +
γk+1

αk+1
xk+1,

where the second equality uses the fact that (γk/αk) (1 − αk) = γk+1/αk+1 by the definition of

γk. Therefore, the result holds at iteration k+1 and the induction is complete. A similar argument

also shows that ẑ = γ1RS1 + . . .+ γk−1RSk−1 + (γk/αk) zk. On the other hand, we note that the

algorithm stops in either Step 1 or Step 2. If the algorithm stops in Step 1, then SK = ∅ and

αK = 1. By the discussion that follows the description of theDimension Reduction algorithm, we

18

have (xK , zK) ∈ H, in which case, we can follow the same argument in the first case at the beginning

of this section to conclude that (xK , zK) = (P∅, R∅). Thus, we obtain (xK , zK) = (PSK , RSK). If

the algorithm stops in Step 2, then αK ≥ 1 and we can follow the same argument in the second

case at the beginning of this section to conclude that (xK , zK) = (PSK , RSK). Furthermore, if the

algorithm stops in Step 2, then the discussion in the second case at the beginning of this section

shows that αK ≤ 1. Thus, we must have αK = 1. Therefore, we always have (xK , zK) = (PSK , RSK)

and αK = 1 when the Dimension Reduction algorithm stops. In this case, using the equalities

x̂ = γ1 PS1 + . . . + γk−1 PSk−1 + (γk/αk)xk and ẑ = γ1RS1 + . . . + γk−1RSk−1 + (γk/αk) zk with

k = K, we obtain x̂ =
∑K

k=1 γ
k PSk and ẑ =

∑K
k=1 γ

k RSk . Finally, noting that αK = 1 and using

the definition of γk in the theorem, it follows that γK−1+ γK = (1−α1) . . . (1−αK−2). Repeating

the same argument recursively, we obtain γ2 + . . . + γK = (1 − α1), in which case, since γ1 = α1

by the definition of γk, we get γ1 + γ2 + . . .+ γK = 1. �

By Theorem 7, we can use the Dimension Reduction algorithm to find subsets S1, . . . , SK

and positive scalars γ1, . . . , γK summing to one such that the optimal solution (x̂, ẑ) to the

Reduced linear program can be expressed as x̂ =
∑K

k=1 γ
k PSk and ẑ =

∑K
k=1 γ

k RSk . In this case,

Theorem 5 implies that the solution û obtained by letting ûSk = γk for all k = 1, . . . ,K and ûS = 0

for all S ̸∈
{
S1, . . . , SK

}
is optimal to the Choice Based linear program. These observations

provide a tractable approach for recovering the optimal solution to the Choice Based linear

program by using the optimal solution to the Reduced linear program. In the next theorem, we

use the Dimension Reduction algorithm to show structural properties of the subsets of products

offered by the optimal solution to the Choice Based linear problem. In particular, we show that

the optimal solution to the Choice Based linear program offers at most n+1 different subsets and

these subsets are nested in the sense that one of the subsets is included in another one, naturally

with the exception of the largest subset.

Theorem 8 There exists an optimal solution û to the Choice Based linear program, where at

most n+1 of the decision variables can take on nonzero values. Furthermore, letting ûS1 , . . . , ûSn+1

be these decision variables, we have S1 ⊃ . . . ⊃ Sn+1.

Proof. Letting the subsets S1, . . . , SK be generated by the Dimension Reduction algorithm,

Theorems 5 and 7 imply that there exists an optimal solution û to the Choice Based linear

program, where we have ûSk ≥ 0 for all k = 1, . . . ,K and û(S) = 0 for all S ̸∈
{
S1, . . . , SK

}
. By

discussion that follows the description of the Dimension Reduction algorithm, the algorithm

stops after at most n+1 iterations, which implies that K ≤ n+1 and the first part of the theorem

follows. By the discussion that follows the description of the Dimension Reduction algorithm,

we also have Sk ⊃ Sk+1 for all k = 1, . . . ,K − 1 and the second part of the theorem follows. �

In the next section, we provide computational experiments that test the performance of the

Dimension Reduction algorithm.

19

6 Computational Experiments

In this section, we provide computational experiments to demonstrate the benefits from using the

Reduced linear program to obtain the optimal solution to the Choice Based linear program,

rather than solving the Choice Based linear program directly.

6.1 Experimental Setup

In our computational experiments, we generate a number of network revenue management problem

instances. For each problem instance, we use two strategies to obtain the optimal solution to the

Choice Based linear program. The first strategy solves theChoice Based linear program directly

by using column generation. We refer to this strategy as CG, standing for column generation. The

second strategy solves the Reduced linear program and carries out the Dimension Reduction

algorithm to recover the optimal solution to theChoice Based linear program by using the optimal

solution to the Reduced linear program. We refer to this strategy as DR, standing for dimension

reduction. Our objective is to compare the performances of CG and DR. We use the following

approach to generate our test problems. We sample βj from the uniform distribution over [0, 1] and

set λj = βj/
∑

i∈N βi. Similarly, we sample σj,i from the uniform distribution over [0, 1] and set

ρj,i = (1 − P0)σj,i/
∑

k∈N σj,k, where P0 is a parameter that we vary. In this case, if a customer

considers purchasing product j and product j is not available, then she leaves without making a

purchase with probability 1 −
∑

i∈N ρj,i = 1 − (1 − P0)
∑

i∈N σj,i/
∑

k∈N σj,k = P0. Thus, the

parameter P0 controls the tendency of the customers to leave without a purchase.

In all of our problem instances, we normalize the length of the selling horizon to T = 100. We

sample the revenue rj of product j from the uniform distribution over [200, 600]. For each product

j, we randomly choose a resource qj and set aqj ,j = 1. For the other resources, we set aq,j = 1

with probability ξ and aq,j = 0 with probability 1− ξ for all q ∈ M \ {qj}, where ξ is a parameter

that we vary. Therefore, the expected number of resources used by a product is 1 + (m − 1) ξ

and ξ controls the expected number of resources used by a product. To generate the capacities

of the resources, we solve the problem maxS⊂N

{∑
j∈N rj Pj,S

}
to obtain the optimal subset of

products to offer under the assumption that we have unlimited resource capacities. Letting S∗ be

the optimal solution to this problem, we set the capacity of resource q as cq = κ
∑

j∈N T aq,j Pj,S∗ ,

where κ is another parameter that we vary. We note that
∑

j∈N T aq,j Pj,S∗ is the total expected

capacity consumption of resource q when we offer the subset S∗ of products that is computed under

the assumption that we have unlimited resource capacities. Therefore, the capacity of resource q

is obtained by multiplying this total expected capacity consumption by κ and the parameter κ

controls the tightness of the resource capacities.

We vary (m,n, P0, ξ, κ) over
{
25, 50

}
×
{
250, 500

}
×
{
0.1, 0.3

}
×
{
0.02, 0.2

}
×
{
0.6, 0.8

}
, where

m is the number of resources, n is the number of products and the parameters P0, ξ and κ are as

defined in the previous two paragraphs. This setup yields 32 problem instances.

20

6.2 Computational Results

Table 1 summarizes our main computational results. The first column in this table shows the

problem instances by using the tuple (m,n, P0, ξ, κ). The second column shows the CPU seconds

for CG. The third column shows the CPU seconds for DR. The fourth column shows the ratio of

the CPU seconds for CG and DR, corresponding to the relative improvement in the CPU seconds

obtained by recovering the optimal solution to the Choice Based linear program by using the

Reduced linear program, instead of solving the Choice Based linear program directly by using

column generation. The fifth column shows what portion of the CPU seconds for DR is spent on

solving the Reduced linear program, whereas the sixth column shows what portion of the CPU

second for DR is spent on carrying out the Dimension Reduction algorithm.

The results in Table 1 indicate that DR can provide remarkable performance improvements

over CG. Over all of our test problems, DR improves the CPU seconds for CG by an average

factor of 1,836 and there is a test problem where DR can improve the CPU seconds for CG by a

factor exceeding 10,000. We observe a number of test problems where the CPU seconds for CG

exceed 7,200, corresponding to more than two hours of run time. For these test problems, DR can

obtain the optimal solution to the Choice Based linear program within only 2.5 seconds. About

80% of the CPU seconds for DR is spent on solving the Reduced linear program and the rest is

spent on carrying out the Dimension Reduction algorithm. In Table 1, we observe two trends

in the performance improvements provided by DR. First, as the number of resources and number

of products increase and the size of the problem becomes larger, the performance improvements

provided by DR become more pronounced. For the smallest test problems withm = 25 and n = 250,

DR improves the CPU seconds for CG by an average factor of 503, whereas for the largest test

problems with m = 50 and n = 500, DR improves the CPU seconds for CG by an average factor of

4,229. Second, as κ decreases and the capacities of the resources become tighter, the performance

improvement provided by CG also tends to increase. For the test problems with κ = 0.8, DR

improves the CPU seconds for CG by an average factor of 1,173, whereas for the test problems

with κ = 0.6, DR improves the CPU seconds for CG by an average factor of 2,498. Overall, our

computational results indicate that DR can be faster than CG by orders of magnitude in obtaining

the optimal solution to the Choice Based linear program.

Column generation approaches can be fast in obtaining a near optimal solution, but they can

also be slow in ultimately reaching the optimal solution, which can be a factor in the relatively

poor performance of CG in Table 1. To ensure that this concern is not a significant factor in

our computational experiments, Table 2 shows the CPU seconds for CG to obtain a solution that

provides an objective value within 1% of the optimal objective value of the Choice Based linear

program. Similar to Table 1, the first column in this table shows the problem instances. The second

column shows the CPU seconds for CG to obtain a solution within 1% of the optimal objective

value. For comparison purposes, the third column shows the CPU seconds for DR to obtain the

optimal solution to the Choice Based linear program. Thus, the entries of the third column are

21

CPU
Test Problem CPU Secs. for Secs. Red. Dim.

(m, n, P0, ξ, κ) CG DR Ratio Lin. Red.

(25, 250, 0.1, 0.02, 0.8) 162 0.23 722 0.18 0.05
(25, 250, 0.1, 0.02, 0.6) 200 0.35 571 0.27 0.08
(25, 250, 0.1, 0.2, 0.8) 112 0.25 447 0.20 0.05
(25, 250, 0.1, 0.2, 0.6) 170 0.22 772 0.18 0.04

(25, 250, 0.3, 0.02, 0.8) 59 0.22 270 0.17 0.05
(25, 250, 0.3, 0.02, 0.6) 137 0.19 722 0.15 0.04
(25, 250, 0.3, 0.2, 0.8) 36 0.26 139 0.22 0.04
(25, 250, 0.3, 0.2, 0.6) 104 0.27 384 0.23 0.04

(25, 500, 0.1, 0.02, 0.8) 1,575 1.58 997 1.22 0.36
(25, 500, 0.1, 0.02, 0.6) 1,957 1.36 1,439 0.98 0.38
(25, 500, 0.1, 0.2, 0.8) 1,772 2.00 886 1.63 0.37
(25, 500, 0.1, 0.2, 0.6) 2,487 1.63 1,526 1.24 0.39

(25, 500, 0.3, 0.02, 0.8) 556 1.61 345 1.31 0.30
(25, 500, 0.3, 0.02, 0.6) 1,174 1.52 772 1.18 0.34
(25, 500, 0.3, 0.2, 0.8) 559 1.99 281 1.67 0.32
(25, 500, 0.3, 0.2, 0.6) 1,383 2.01 688 1.66 0.35

(50, 250, 0.1, 0.02, 0.8) 410 0.22 1,831 0.18 0.05
(50, 250, 0.1, 0.02, 0.6) 926 0.22 4,208 0.16 0.06
(50, 250, 0.1, 0.2, 0.8) 398 0.29 1,374 0.24 0.05
(50, 250, 0.1, 0.2, 0.6) 468 0.25 1,901 0.20 0.05

(50, 250, 0.3, 0.02, 0.8) 213 0.26 820 0.22 0.04
(50, 250, 0.3, 0.02, 0.6) 387 0.22 1,758 0.18 0.04
(50, 250, 0.3, 0.2, 0.8) 155 0.28 552 0.24 0.04
(50, 250, 0.3, 0.2, 0.6) 389 0.26 1,495 0.21 0.05

(50, 500, 0.1, 0.02, 0.8) 6,628 1.75 3,788 1.40 0.35
(50, 500, 0.1, 0.02, 0.6) 15,500 1.50 10,333 1.11 0.39
(50, 500, 0.1, 0.2, 0.8) 7,739 2.12 3,651 1.74 0.38
(50, 500, 0.1, 0.2, 0.6) 10,659 1.90 5,610 1.50 0.40

(50, 500, 0.3, 0.02, 0.8) 3,008 1.84 1,635 1.54 0.30
(50, 500, 0.3, 0.02, 0.6) 6,780 1.64 4,134 1.29 0.35
(50, 500, 0.3, 0.2, 0.8) 2,392 2.32 1,031 1.99 0.33
(50, 500, 0.3, 0.2, 0.6) 7,600 2.08 3,654 1.71 0.37

Average 2,378 1.03 1,836 0.87 0.16

Table 1: CPU seconds for CG and DR.

identical to those of the third column of Table 1. The fourth column in Table 2 shows the ratios

of the CPU seconds in the second and third columns. The results indicate that DR continues

to provide substantial performance improvements over CG even when we terminate CG once it

obtains a solution within 1% of the optimal objective value. There are problem instances, where

DR improves the CPU seconds for CG by factors exceeding 1,000. Over all of our test problems,

DR improves the performance of CG by an average factor of 286. Similar to the trends in Table

1, the results in Table 2 indicate that the performance improvements provided by DR become

more pronounced as the size of the problem, measured by the number of resources and products,

increases, or as the capacities on the flight legs become tighter.

Table 3 provides computational experiments for test problems with 100 resources and 2,000

products. For these test problems, we vary (P0, ξ, κ) over
{
0.1, 0.3

}
×
{
0.02, 0.2

}
×
{
0.6, 0.8

}
. We

22

CPU Secs. for CPU
Test Problem CG DR Secs.

(m, n, P0, ξ, κ) 1% Opt. Ratio

(25, 250, 0.1, 0.02, 0.8) 25 0.23 110
(25, 250, 0.1, 0.02, 0.6) 48 0.35 137
(25, 250, 0.1, 0.2, 0.8) 17 0.25 68
(25, 250, 0.1, 0.2, 0.6) 34 0.22 153

(25, 250, 0.3, 0.02, 0.8) 12 0.22 53
(25, 250, 0.3, 0.02, 0.6) 32 0.19 171
(25, 250, 0.3, 0.2, 0.8) 7 0.26 26
(25, 250, 0.3, 0.2, 0.6) 16 0.27 59

(25, 500, 0.1, 0.02, 0.8) 228 1.58 144
(25, 500, 0.1, 0.02, 0.6) 447 1.36 329
(25, 500, 0.1, 0.2, 0.8) 123 2.00 62
(25, 500, 0.1, 0.2, 0.6) 334 1.63 205

(25, 500, 0.3, 0.02, 0.8) 86 1.61 53
(25, 500, 0.3, 0.02, 0.6) 228 1.52 150
(25, 500, 0.3, 0.2, 0.8) 63 1.99 32
(25, 500, 0.3, 0.2, 0.6) 146 2.01 73

Average 115 0.98 114

CPU Secs. for CPU
Test Problem CG DR Secs.

(m, n, P0, ξ, κ) 1% Opt. Ratio

(50, 250, 0.1, 0.02, 0.8) 60 0.22 269
(50, 250, 0.1, 0.02, 0.6) 231 0.22 1,050
(50, 250, 0.1, 0.2, 0.8) 64 0.29 220
(50, 250, 0.1, 0.2, 0.6) 96 0.25 389

(50, 250, 0.3, 0.02, 0.8) 40 0.26 154
(50, 250, 0.3, 0.02, 0.6) 91 0.22 413
(50, 250, 0.3, 0.2, 0.8) 18 0.28 65
(50, 250, 0.3, 0.2, 0.6) 70 0.26 268

(50, 500, 0.1, 0.02, 0.8) 805 1.75 460
(50, 500, 0.1, 0.02, 0.6) 2,601 1.50 1,734
(50, 500, 0.1, 0.2, 0.8) 715 2.12 337
(50, 500, 0.1, 0.2, 0.6) 1,326 1.90 698

(50, 500, 0.3, 0.02, 0.8) 390 1.84 212
(50, 500, 0.3, 0.02, 0.6) 1,065 1.64 649
(50, 500, 0.3, 0.2, 0.8) 176 2.32 76
(50, 500, 0.3, 0.2, 0.6) 705 2.08 339

Average 528 1.07 458

Table 2: CPU seconds for CG and DR when we terminate CG once it obtains a solution within 1%
of the optimal objective value.

note that these test problems are significantly larger than the earlier ones. For these test problems,

two hours of run time is not enough for CG to provide a solution within 1% of the optimal objective

value of the Choice Based linear program. The first column in Table 3 lists the test problems by

using the tuple (m,n, P0, ξ, κ). The second column shows the optimality gaps obtained by CG after

two hours of run time. The third column shows the CPU seconds for DR to obtain the optimal

solution to the Choice Based linear program. On average, DR obtains the optimal solution to

the Choice Based linear program in less than three minutes. The average optimality gap of

the solutions obtained by CG even after two hours of run time is 7.2%. There are test problems

where CG terminates with more than 10% optimality gap after two hours of run time. In contrast,

the largest CPU seconds for DR is about 225. Our results indicate that DR continues to provide

dramatic improvements over CG for larger test problems.

7 Conclusions

In this paper, we studied three classes of revenue management problems when customers choose

according to the Markov chain choice model. For the assortment optimization setting, we showed

that the choice probabilities under the Markov chain model can be associated with the extreme

points of a polyhedron. Using this result, we showed that the assortment optimization problem

can be formulated as a linear program. Also, we derived a structural property that shows that

the optimal assortment becomes smaller as we decrease the product revenues by the same positive

amount. For the single resource revenue management setting, we showed that the optimal policy

can be implemented by associating a protection level with each product so that it is optimal

23

CG DR
Test Problem % Opt. CPU

(m, n, P0, ξ, κ) Gap Secs.

(100, 2000, 0.1, 0.02, 0.8) 5.87 158.58
(100, 2000, 0.1, 0.02, 0.6) 12.53 144.50
(100, 2000, 0.1, 0.2, 0.8) 5.38 194.69
(100, 2000, 0.1, 0.2, 0.6) 10.27 165.95

(100, 2000, 0.3, 0.02, 0.8) 4.89 194.75
(100, 2000, 0.3, 0.02, 0.6) 9.69 224.79
(100, 2000, 0.3, 0.2, 0.8) 2.83 173.70
(100, 2000, 0.3, 0.2, 0.6) 6.13 178.08

Average 7.20 179.38

Table 3: Optimality gaps for CG when we terminate it after two hours of run time and CPU
seconds for DR to obtain the optimal solution.

to offer a product only when the remaining resource capacity exceeds the protection level for

the product. For the network revenue management setting, we considered a deterministic linear

program that is formulated under the assumption that the customer choices take on their expected

values. The number of decision variables in this linear program grows exponentially with the number

of products, but we showed how to reduce this linear program into an equivalent one with a much

smaller size. Furthermore, we gave an algorithm to recover the optimal solution to the original linear

program by using the optimal solution to the reduced linear program. Computational experiments

indicates that the reduced linear program is remarkably effective, improving the solution times for

the original linear program by factors exceeding 10,000.

There are a number of research directions for future work. First, it is interesting to incorporate

constraints on the offered subsets of products. When there is limited space availability to display

products, one may be interested in limiting the total number of offered products. Similarly, if each

product occupies a different amount of space, then one may be interested in limiting the total

amount of space consumed by the offered products. Second, the Markov chain choice model is rich

in parameters and it can potentially capture a variety of customer choice patterns. A systematic

study of when the Markov chain choice model is a better approach to capture customer choices is

likely to enhance our understanding of this choice model.

References

Blanchet, J., Gallego, G. and Goyal, V. (2013), A Markov chain approximation to choice modeling,
Technical report, Columbia University, New York, NY.

Bront, J. J. M., Diaz, I. M. and Vulcano, G. (2009), ‘A column generation algorithm for choice-based
network revenue management’, Operations Research 57(3), 769–784.

Davis, J., Gallego, G. and Topaloglu, H. (2013), ‘Assortment optimization under variants of the
nested logit model’, Operations Research (to appear).

Desir, A. and Goyal, V. (2013), An FPTAS for capacity constrained assortment optimization,
Technical report, Columbia University, School of Industrial Engineering and Operations Research.

24

Farias, V. F., Jagabathula, S. and Shah, D. (2013), ‘A non-parametric approach to modeling choice
with limited data’, Management Science 59(2), 305–322.

Gallego, G., Iyengar, G., Phillips, R. and Dubey, A. (2004), Managing flexible products on a
network, Computational Optimization Research Center Technical Report TR-2004-01, Columbia
University.

Gallego, G., Ratliff, R. and Shebalov, S. (2011), A general attraction model and an efficient
formulation for the network revenue management problem, Technical report, Columbia
University, New York, NY.

Gallego, G. and Topaloglu, H. (2014), ‘Constrained assortment optimization for the nested logit
model’, Management Science (to appear).

Gallego, G. and Wang, R. (2011), Multi-product price optimization and competition under the
nested attraction model, Technical report, Columbia University.

Jagabathula, S. (2008), Nonparametric Choice Modeling: Applications to Operations Management,
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

Kunnumkal, S. and Talluri, K. (2012), A new compact linear programming formulation for choice
network revenue management, Technical report, Universitat Pompeu Fabra, Barcelona, Spain.

Kunnumkal, S. and Topaloglu, H. (2008), ‘A refined deterministic linear program for the network
revenue management problem with customer choice behavior’, Naval Research Logistics Quarterly
55(6), 563–580.

Li, G. and Rusmevichientong, P. (2012), Technical note: A simple greedy algorithm for assortment
optimization in the two-level nested logit model, Technical report, University of Southern
California, Marshall School of Business.

Li, G., Rusmevichientong, P. and Topaloglu, H. (2013), The d-level nested logit model: Assortment
and price optimization problems, Technical report, Cornell University, School of Operations
Research and Information Engineering. Available at
http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Li, H. and Huh, W. T. (2011), ‘Pricing multiple products with the multinomial logit and
nested models: Concavity and implications’, Manufacturing & Service Operations Management
13(4), 549–563.

Liu, Q. and van Ryzin, G. (2008), ‘On the choice-based linear programming model for network
revenue management’, Manufacturing & Service Operations Management 10(2), 288–310.

Meissner, J. and Strauss, A. K. (2012), ‘Network revenue management with inventory-sensitive bid
prices and customer choice’, European Journal of Operational Research 216, 459–468.

Meissner, J., Strauss, A. and Talluri, K. (2012), ‘An enhanced concave program relaxation for
choice network revenue management’, Production and Operations Management 22(1), 71–87.

Mendez-Diaz, I., Bront, J. J. M., Vulcano, G. and Zabala, P. (2010), ‘A branch-and-cut algorithm
for the latent-class logit assortment problem’, Discrete Applied Mathematics 36, 383–390.

Rusmevichientong, P., Shen, Z.-J. M. and Shmoys, D. B. (2010), ‘Dynamic assortment optimization
with a multinomial logit choice model and capacity constraint’, Operations Research 58(6), 1666–
1680.

Rusmevichientong, P., Shmoys, D. B., Tong, C. and Topaloglu, H. (2013), ‘Assortment optimization
under the multinomial logit model with random choice parameters’, Production and Operations
Management (to appear).

25

Talluri, K. (2011), A randomized concave programming method for choice network revenue
management, Technical report, Universitat Pompeu Fabra, Barcelona, Spain.

Talluri, K. and van Ryzin, G. (2004), ‘Revenue management under a general discrete choice model
of consumer behavior’, Management Science 50(1), 15–33.

Vossen, T. W. M. and Zhang, D. (2013), Reductions of approximate linear programs for network
revenue management, Technical report, University of Colorado at Boulder, Boulder, CO.

Wang, R. (2012), ‘Capacitated assortment and price optimization under the multinomial logit
model’, Operations Research Letters 40, 492–497.

Wang, R. (2013), ‘Assortment management under the generalized attraction model with a capacity
constraint’, Journal of Revenue and Pricing Management 12(3), 254–270.

Zhang, D. and Adelman, D. (2009), ‘An approximate dynamic programming approach to network
revenue management with customer choice’, Transportation Science 42(3), 381–394.

26

A Appendix: Omitted Results

For (x̂, ẑ) ∈ H, we define Sx̂ =
{
j ∈ N : x̂j > 0

}
. In this section, our objective is to show that we

have ẑj ≥ Rj,Sx̂
for all j ∈ N . This result is used in several places throughout Section 5. In the

next lemma, we give a preliminary result that shows that if we offer a larger subset of products,

then the probability that a customer considers purchasing a product during the course of her choice

process and does not purchase this product becomes smaller. This result becomes useful when we

show that ẑj ≥ Rj,Sx̂
for all j ∈ N later in this section.

Lemma 9 For Ŝ ⊂ S, we have Rj,Ŝ ≥ Rj,S for all j ∈ N .

Proof. We define q = (q1, . . . , qn) as qj = 0 for all j ∈ S and qj = min
{
Rj,Ŝ, Rj,S

}
for all j ̸∈ S. By

the definition of q, we have qj ≤ Rj,S and qj ≤ Rj,Ŝ for all j ∈ N . By the Balance equations,

noting that Pj,S = 0 for all j ̸∈ S, we have Rj,S = λj +
∑

i∈N ρi,j Ri,S for all j ̸∈ S. Similarly,

the Balance equations imply that Rj,Ŝ = λj +
∑

i∈N ρi,j Ri,Ŝ for all j ̸∈ Ŝ. Since Ŝ ⊂ S and

the last equality holds for all j ̸∈ Ŝ, the last equality also yields Rj,Ŝ = λj +
∑

i∈N ρi,j Ri,Ŝ for all

j ̸∈ S. Therefore, for all j ̸∈ S, we can use the definition of qj to obtain

qj = min
{
Rj,Ŝ, Rj,S

}
= min

{
λj +

∑
i∈N

ρi,j Ri,Ŝ, λj +
∑
i∈N

ρi,j Ri,S

}
≥ λj +

∑
i∈N

ρi,j qi,

where the inequality follows from the fact that qj ≤ Rj,S and qj ≤ Rj,Ŝ for all j ∈ N . Using 1(·)
to denote the indicator function and adding the inequality above over all j ̸∈ S, it follows that∑

j∈N qj =
∑

j∈N 1(j ̸∈ S) qj ≥
∑

j∈N 1(j ̸∈ S)λj +
∑

j∈N
∑

i∈N 1(j ̸∈ S) ρi,j qi, where the first

equality is by the fact that qj = 0 for all j ∈ S. Focusing on the first and last expressions in the

last chain of inequalities and arranging the terms, we obtain
∑

j∈N (1−
∑

i∈N 1(i ̸∈ S) ρj,i) qj ≥∑
j∈N 1(j ̸∈ S)λj . Earlier in the proof, we observe that we have Rj,S = λj +

∑
i∈N ρi,j Ri,S for all

j ̸∈ S. In this case, if we add these equalities over all j ̸∈ S and arrange the terms, then we obtain∑
j∈N (1 −

∑
i∈N 1(i ̸∈ S) ρj,i)Rj,S =

∑
j∈N 1(j ̸∈ S)λj . Therefore, the last equality and the last

inequality yield
∑

j∈N (1−
∑

i∈N 1(i ̸∈ S) ρj,i) qj ≥
∑

j∈N (1−
∑

i∈N 1(i ̸∈ S) ρj,i)Rj,S . Noting that

qj ≤ Rj,S for all j ∈ N and using the assumption that
∑

i∈N ρj,i < 1, this inequality implies that

qj = Rj,S for all j ∈ N . By the definition of q, we have qj = 0 for all j ∈ S, but since qj = Rj,S ,

we obtain qj = Rj,S = 0 ≤ Rj,Ŝ for all j ∈ S. We also have qj = min
{
Rj,Ŝ, Rj,S

}
for all j ̸∈ S, but

since qj = Rj,S , it must be the case that Rj,S ≤ Rj,Ŝ for all j ̸∈ S. �

In the next lemma, we give the main result of this section.

Lemma 10 For (x̂, ẑ) ∈ H, define Sx̂ =
{
j ∈ N : x̂j > 0

}
. Then, we have ẑj ≥ Rj,Sx̂

for all j ∈ N .

Proof. Since (x̂, ẑ) ∈ H, there exist extreme points (x1, z1), . . . , (xK , zK) of H and positive scalars

γ1, . . . , γK summing to one such that x̂ =
∑K

k=1 γ
k xk and ẑ =

∑K
k=1 γ

k zk. Without loss of

27

generality, we assume that the scalars γ1, . . . , γK are strictly positive. Otherwise, we can drop the

scalars that are equal to zero. In this case, if we define the subset Sk =
{
j ∈ N : xkj > 0

}
,

then Lemma 1 implies that Pj,Sk = xkj and Rj,Sk = zkj for all j ∈ N . Thus, we have

x̂j =
∑K

k=1 γ
k xkj =

∑K
k=1 γ

k Pj,Sk and ẑj =
∑K

k=1 γ
k zkj =

∑K
k=1 γ

k Rj,Sk for all j ∈ N . We consider

one of the subsets S1, . . . , SK . If j ∈ Sk, then we have Pj,Sk > 0, but since x̂j =
∑K

k=1 γ
k Pj,Sk , we

obtain x̂j > 0. Therefore, having j ∈ Sk implies that x̂j > 0, in which case, by the definition of Sx̂,

we obtain j ∈ Sx̂. Thus, we have S
k ⊂ Sx̂. In this case, since we have Sk ⊂ Sx̂ for all k = 1, . . . ,K,

by Lemma 9, it follows that Rj,Sk ≥ Rj,Sx̂
for all j ∈ N , k = 1, . . . ,K. Using the last inequality,

we obtain ẑj =
∑K

k=1 γ
k Rj,Sk ≥

∑K
k=1 γ

k Rj,Sx̂
= Rj,Sx̂

for all j ∈ N . �

28

