
ORIE 6334 Bridging Continuous and Discrete Optimization Oct. 2, 2019

Lecture 9
Lecturer: David P. Williamson Scribe: Yilun Chen

In this lecture, we introduce normalized adjacency and Laplacian matrices. We
state and begin to prove Cheeger’s inequality, which relates the second eigenvalue
of the normalized Laplacian matrix to a graph’s connectivity. Before stating the
inequality, we will also define three related measures of expansion properties of a
graph: conductance, (edge) expansion, and sparsity.

1 Normalized Adjacency and Laplacian Matrices

We use notation from Lap Chi Lau.

Definition 1 The normalized adjacency matrix is

A
∆
= D−1/2AD−1/2,

where A is the adjacency matrix of G and D = diag{d(i)} is the degree matrix.

For a graph G (with no isolated vertices)

D−1/2 =


1√
d(1)

0 · · · 0

0 1√
d(2)

· · · 0

...
...

. . .
...

0 0 · · · 1√
d(n)

 .

Definition 2 The normalized Laplacian matrix is

L
∆
= I −A .

Notice that L = I −A = D−1/2(D−A)D−1/2 = D−1/2LGD
−1/2, for LG the (unnor-

malized) Laplacian.
We now give simple bounds on the eigenvalues of A and L . Recall that for the

largest eigenvalue λ of A, davg ≤ λ ≤ ∆(the maximum degree). “Normalizing” the
adjacency matrix makes its largest eigenvalue 1, so the analogous result for normalized
matrices is the following:

0This lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/
csc5160/notes/L02.pdf.
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Claim 1 Let α1 ≥ · · · ≥ αn be the eigenvalues of A and let λ1 ≤ · · · ≤ λn be the
eigenvalues of L . Then

1 = α1 ≥ · · · ≥ αn ≥ −1, 0 = λ1 ≤ · · · ≤ λn ≤ 2.

Proof: First, we show that 0 is an eigenvalue of L using the vector x = D−1/2e.
Then

L (D1/2e) = D−1/2LGD
−1/2D1/2e = D−1/2LGe = 0,

since e is a eigenvector of LG corresponding to eigenvalue 0. This shows that D1/2e is
an eigenvector of L of eigenvalue 0. To show that it’s the smallest eigenvalue, notice
that L is positive semidefinite1, as for any x ∈ Rn:

xTL x = xT (I −A )x

=
∑
i∈V

x(i)2 −
∑

(i,j)∈E

2x(i)x(j)√
d(i)d(j)

=
∑

(i,j)∈E

(
x(i)√
d(i)
− x(j)√

d(j)

)2

≥ 0.

The last equality can be seen “in reverse” by expanding

(
x(i)√
d(i)
− x(j)√

d(j)

)2

. We have

now shown that L has nonnegative eigenvalues, so indeed λ1 = 0.
To show that α1 ≤ 1, we make use of the positive semidefiniteness of L = I−A .

This gives us that, for all x ∈ Rn:

xT (I −A )x ≥ 0 =⇒ xTx− xTA x ≥ 0 =⇒ 1 ≥ xTA x

xTx
. (1)

This Rayleigh quotient gives us the upper bound that α1 ≤ 1. To get equality, consider
again x = D1/2e. Since, for this x,

xTL x = 0 =⇒ xT (I −A )x = 0.

The exact same steps as in Equation 1 yield xT A x
xT x

= 1, as we now have equality.

1A slick proof that does not make use of this quadratic is to use the fact that LG is positive
semidefinite. Thus LG = BBT for some B, so that L = V V T for V = D−1/2B.
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To get a similar lower bound on αn, we can show that I+A is positive semidefinite
using a similar sum expansion2. Then

xT (I + A )x ≥ 0 =⇒ xTx+ xTA x ≥ 0 =⇒ xTA x

xTx
≥ −1 =⇒ αn ≥ −1.

Finally, notice that xT (I + A )x ≥ 0 implies the following chain:

−xTA x ≤ xTx =⇒ xT Ix− xTA x ≤ 2xTx =⇒ xTL x

xTx
≤ 2 =⇒ λn ≤ 2,

using the same Rayleigh quotient trick and that λn is the maximizer of that quotient.
�

Remark 1 Notice that, given the spectrum of A , we have the following: −A has
spectrum negatives of A , and I − A adds one to each eigenvalue of −A . Hence,
0 = λ1 ≤ · · · ≤ λn ≤ 2 follows directly from 1 = α1 ≥ · · · ≥ αn ≥ −1.

Recall that λ2(LG) = 0 if and only if G is disconnected. The same is true for λ2(L ).
In today (and next time)’s lecture, we demonstrate that λ2(L ) actually shows how
well G is connected.

2 Measures of Connectivity

We introduce three related measures of connectivity of a graph G. Let S ⊂ V. Recall
that δ(S) denotes the set of edges with exactly one endpoint in S, and define vol(S) ≡∑

i∈S d(i).

Definition 3 The conductance of S ⊂ V is

φ(S) ≡ |δ(S)|
min{vol(S), vol(V − S)}

.

The edge expansion of S is

α(S) ≡ |δ(S)|
|S|

, for |S| ≤ n

2
.

The sparsity of S is

ρ(S) ≡ |δ(S)|
|S||V − S|

.

2This time, use

xT (I + A )x =
∑
i∈V

x(i)2 +
∑

(i,j)∈E

2x(i)x(j)√
d(i)d(j)

=
∑

(i,j)∈E

(
x(i)√
d(i)

+
x(j)√
d(j)

)2

≥ 0.
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Some direct observations that relate the above three measures of connectivity:

• n
2
ρ(S) ≤ α(S) ≤ nρ(S).

• If G is d-regular ( i.e. d(i) = d for all i ∈ V ), then α(S) = dφ(S).

• 0 ≤ φ(S) ≤ 1 for all S ⊂ V.

We’re usually interested in finding the sets S that minimize these quantities over the
entire graph.

Definition 4 We define

φ(G) ≡ min
S⊂V

φ(S), α(G) ≡ min
S⊂V :|S|≤n

2

α(S), ρ(G) ≡ min
S⊂V

ρ(S).

We call a graph G an expander if φ(G) (or α(G)) is “large” (i.e. a constant3).
Otherwise, we say that G has a sparse cut.

One algorithm for finding a sparse cut that works well in practice, but that lacks
strong theoretical guarantees is called spectral partitioning.

Algorithm 1: Spectral Partitioning

1 Compute x2 of L (the eigenvector corresponding to λ2(L ));
2 Sort V such that x2(1) ≤ · · · ≤ x2(n).;
3 Define the sweep cuts for i = 1, ..., n− 1 by Si ≡ {1, ..., i}.;
4 Return mini∈{1,...,n−1} φ(Si).;

The following picture illustrates the idea of the algorithm; sweep cuts correspond
to cuts between consecutive bars:

x2(1) x2(2) x2(3) · · · x2(n− 1)x2(n)

Cheeger’s inequality provides some insight into why this algorithm works well.

3 Connectivity and λ2(L ): Cheeger’s Inequality

We now work towards proving the following Cheeger’s inequality, which links the
second eigenvalue of L with the connectivity of the graph. For simplicity, we here
only consider d-regular graphs. For a proof in the general case one may check the
scribe notes from three years ago4.

3One should then ask “A constant with respect to what?” Usually one defines families of graphs
of increasing size as families of expanders, in which case we want the conductance or expansion to
be constant with respect to the number of vertices.

4https://people.orie.cornell.edu/dpw/orie6334/Fall2016/
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Theorem 2 (Cheeger’s Inequality) 5 Let λ2 be the second smallest eigenvalue of
L . Then:

λ2

2
≤ φ(G) ≤

√
2λ2.

Remark 2 Typically, people think of the lower bound being “easy” and the upper
bound being “hard.” We’ll prove the lower bound, and start the proof of the upper
bound (continued next time).

Let’s first prove the easier one of the inequalities, namely λ2
2
≤ φ(G).

Proof: Since the graph is assumed to be d-regular, L = 1
d
LG. Therefore, L e =

1
d
LGe = 0, where e, the all ones vector, is an eigenvector of LG associated with the

eigenvalue 0. (recall from the previous lectures.) We thus conclude that e is also an
eigenvector of L associated with the eigenvalue 0. Now with the Raleigh quotient
representation of eigenvalues:

λ2 = min
z:<z,e>=0

zᵀL z

zᵀz
≤ xᵀL x

xᵀx
, for any x : 〈x, e〉 = 0.

The high level idea behind the proof is to find a proper x, so that xᵀL x
xᵀx

is related
in some way to the conductance φ(G) and that the chains of inequalities will then
lead to the desired result. For simplicity, let S̄ be such that φ(G) = φ(S̄). We set
x(i) = 1

|S̄| for i ∈ S̄ and x(i) = − 1
|V−S̄| otherwise. Then it’s not hard to verify that

〈x, e〉 = |S̄|
|S̄| −

|V−S̄|
|V−S̄| = 0. We thus have

λ2 ≤
xᵀL x

xᵀx
=

1
d
xᵀLGx

xᵀx
=

1
d

∑
(i,j)∈E(x(i)− x(j))2∑

i∈V x
2(i)

.

Recall the definition of x, we have that the above right hand side equals

1
d
|δ(S̄)|

(
1
|S̄| + 1

|V−S̄|

)2∑
i∈S̄

1
|S̄|2 +

∑
i∈V−S̄

1
|V−S̄|2

=
1

d
|δ(S̄)|

(
1

|S̄|
+

1

|V − S̄|

)
=

n|δ(S̄)|
d|S̄||V − S̄|

We notice that the above right hand side can be upper bounded by

n|δ(S̄)|
d|S̄||V − S̄|

≤ 2|δ(S̄)|
min(vol(S̄), vol(V − S̄))

= 2φ(S̄),

where the bound follows from the facts:

5The theorem proved by Jeff Cheeger actually has to do with manifolds and hypersurfaces; the
theorem above is considered to be a discrete analog of Cheeger’s original inequality. But the name
has stuck.
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• min(vol(S̄), vol(V − S̄)) = dmin(|S̄|, |V − S̄|) (since G is d-regular.)

• max(|S̄|, |V − S̄|) ≥ n/2.

• |S̄||V − S̄| = max(|S̄|, |V − S̄|)×min(|S̄|, |V − S̄|).

Combining the chains of inequalities, we finally conclude that

λ2

2
≤ φ(S̄).

�
This completes the proof of the lower bound. To get the upper bound, the idea is

to find a subset S, such that the following bounds hold:

• |S| ≤ n
2
.

• |δ(S)|
d|S| ≤

√
2λ2.

By definition of conductance φ(G), the existence of such subset S immediately implies
the upper bound. Let’s formalize the above high level idea. To begin with, we
introduce some additional notation.

Definition 5 For any vector x ∈ Rn, we define

supp(x)
∆
= {i : x(i) 6= 0}, supp+(x)

∆
= {i : x(i) > 0}, supp−(x)

∆
= {i : x(i) < 0}.

Definition 6 For any vector x ∈ Rn, we define

R(x)
∆
=
xᵀL x

xᵀx
.

Let x2 be the eigenvector associated with λ2, thenR(x2) = λ2.Without loss of general-
ity, we may assume |supp+(x2)| ≤ |supp−(x2)| (for otherwise just setting x2 ← −x2),

then |supp+(x2)| ≤ n/2. We introduce an auxiliary vector y
∆
= x+

2 , or equivalently
y(i) = max(0, x2(i)) for all i ∈ [n]. The vector y shall serve as a bridge as we march

towards the bound |δ(S)|
d|S| ≤

√
2λ2. More specifically, we seek to prove |δ(S)|

d|S| ≤
√

2R(y)

for some |S| ≤ n/2, and R(y) ≤ R(x2) = λ2.

Claim 3 R(y) ≤ R(x2).

Proof: For all i such that y(i) > 0, we have

(L y)(i) = (Iy − 1

d
Ay)(i) = y(i)− 1

d

∑
j:(i,j)∈E

y(j) ≤ x2(i)− 1

d

∑
j:(i,j)∈E

x2(j),

9-6



where the last inequality follows from the definition of y. The above right-hand side
is equal to

(Ix2 −
1

d
Ax2)(i) = (L x2)(i) = λ2x2(i)

since x2 is the eigenvector. We thus have

yᵀL y =
∑
i∈[n]

y(i)(L y)(i) ≤
∑

i:y(i)>0

λ2(x2(i))2 = λ2

∑
i:y(i)>0

(y(i))2.

As a result

R(y) =
yᵀL y

yᵀy
≤ λ2

∑
i:y(i)>0(y(i))2∑
i∈[n](y(i))2

= λ2 = R(x2).

�
Next time we are going to prove the following

Lemma 4 For any x ∈ Rn, there exists S̄ ⊆ supp(x) such that

|δ(S̄)|
d|S̄|

≤
√

2R(x).

Notice that if we apply the above Lemma with y defined previously, the set S̄ found
must satisfy |S̄| ≤ |supp(y)| ≤ n/2. Combining with the claim R(y) ≤ λ2 and the
definition of φ(G), we will have proved the desired upper bound.
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