ORIE 6334 Bridging Continuous and Discrete Optimization Sept 25, 2019 Lecture 7
Lecturer: David P. Williamson
Scribe: Chengrun Yang

1 Graph Laplacians

Let's let $e_{i} \in\{0,1\}^{n}$ be the standard basis vectors (1 in the i-th coordinate, 0 's else where).

A Laplacian of an undirected graph $G=(V, E)$,

$$
L_{G}=\sum_{(i, j) \in E}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}
$$

Each term $\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}$ is an $|V| \times|V|$ matrix that has +1 in the (i, i) and (j, j) coordinate, -1 in the (i, j) and (j, i) coordinate and the rest of the entries are all zero. Now, we define the following notation:

- $d(i)$: degree of i in G.
- $D: \operatorname{diag}(d(i))$ is the $|V| \times|V|$ diagonal matrix where $D(i, i)=d(i)$.
- A: Adjacency matrix of graph A.

With this notation we can write $L_{G}=D-A$.
If G has weights $w(i, j), \forall(i, j) \in E$, then the weighted Laplacian,

$$
L_{G}=\sum_{(i, j) \in E} w(i, j)\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}
$$

Define $W=(w(i, j)) \in \mathbb{R}^{n \times n}$ where $w(i, j)=0$ if $(i, j) \notin E$ and $D=\operatorname{diag}(d(i))$, where $d(i)=\sum_{(i, j) \in E} w(i, j)$. Then $L_{G}=D-W$. We will sometimes denote this matrix by $L_{G, w}$.

An interesting and useful fact is that the Laplacian L_{G} is positive semidefinite. Let's briefly remember what this means, as well as some useful facts about such matrices.

[^0]Definition $1 A$ matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite, if $x^{\top} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. If A is positive semidefinite we write $A \succeq 0$.

Here are some relevant properties:
Fact 1 For a symmetric matrix A the following are equivalent:
(i) $A \succeq 0$.
(ii) $A=V V^{\top}$ for some matrix V.
(iii) A has all non-negative eigenvalues.

We can now show that L_{G} is positive semidefinite, which we will do in two different ways.

Claim $1 L_{G} \succeq 0$.
Proof:
First proof: Note L_{G} is symmetric. We observe that if $A \succeq 0$ and $B \succeq 0$ then $A+B \succeq 0$, since

$$
x^{\top}(A+B) x=x^{\top} A x+x^{\top} B x \geq 0
$$

for all $x \in \mathbb{R}^{n}$. Note that by $(i i),\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top} \succeq 0$. So, by summing up all these terms we will get L_{G} and based on the observation above we can say $L_{G} \succeq 0$.
Second proof: Also we know that for any $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
x^{\top} L_{G} x & =x^{\top}\left(\sum_{(i, j) \in E}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}\right) x \\
& =\sum_{(i, j) \in E} x^{\top}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top} x \\
& =\sum_{(i, j) \in E}(x(i)-x(j))(x(i)-x(j)) \\
& =\sum_{(i, j) \in E}(x(i)-x(j))^{2}
\end{aligned} \geq 0 .
$$

We will usually write the eigenvalues of $L_{G}, \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and since we know that L_{G} is positive semi-definite we can write $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.

What is the spectrum of L_{G} ? We observe that e (all 1s vector) is an eigenvector of eigenvalue 0 for L_{G}, since:

$$
L_{G} e=\sum_{(i, j) \in E}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top} e=\sum_{(i, j) \in E}\left(e_{i}-e_{j}\right) \cdot 0=0 .
$$

Thus $\lambda_{1}=0$.

2 Graph Laplacians and Connectivity

Now we switch our focus to λ_{2}, which is much more interesting. We will see a very close connection between λ_{2} and various notions of the connectivity of the graph.

Theorem $2 \lambda_{2}=0$ iff G is disconnected.
Proof: If G is disconnected then, we can partition it into G_{1} and G_{2} such that there are no edges between G_{1} and G_{2}. Furthermore, we can re-index the nodes so that

$$
L_{G}=\left[\begin{array}{cc}
L_{G_{1}} & 0 \\
0 & L_{G_{2}}
\end{array}\right] .
$$

Then both vectors

$$
\left[\begin{array}{c}
1 \\
1 \\
\cdot \\
\cdot \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
1 \\
1
\end{array}\right]
$$

(where first $\left|V_{G_{1}}\right|$ entries of the first vector is 1 and the rest are zero and the opposite for the second vector) will be eigenvectors of L_{G} and orthogonal to each other. Since the eigenvalues associated with both vectors are 0 , this implies that $\lambda_{2}=0$.

To see the other direction, let x_{2} be an eigenvector of eigenvalue λ_{2}. We can assume $\left\langle x_{2}, e\right\rangle=0$ and $x_{2} \neq 0$. If $\lambda_{2}=0$, then $x_{2}^{\top} G x_{2}=x_{2}^{\top}\left(\lambda_{2} x_{2}\right)=0$. So then,

$$
x_{2}^{\top} L_{G} x_{2}=\sum_{(i, j) \in E}\left(x_{2}(i)-x_{2}(j)\right)^{2}=0 .
$$

The summation of squared real values is 0 , therefore each of them is equal to zero. Therefore, $x_{2}(i)=x_{2}(j)$ for all $(i, j) \in E$. Consider $V_{1}=\left\{i \in V: x_{2}(i) \geq 0\right\}$ and $V_{2}=\left\{i \in V: x_{2}(i)<0\right\}$. It's clear there are no edges between V_{1} and V_{2}. Since $\left\langle x_{2}, e\right\rangle=0$ and $x_{2} \neq 0$, there should be both positive and negative entries in x_{2} which proves that $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$, and hence G has at least two components.

The eigenvalue λ_{2} is sometimes called the algebraic connectivity of G. The proof above easily extends to prove the followng.

Claim $3 \quad \lambda_{k}=0$ iff G has at least k components.
We now show another connection between λ_{2} and the connectivity of the graph G.

Definition $2 \kappa(G)$ is the vertex connectivity of G; it is the smallest nonnegative integer such that we can remove up to $\kappa(G)-1$ vertices and associated edges from G and G is still connected.

We will show the following shortly. Let $G-S$ be the graph that results from removing the vertices in S from the graph, as well as all edges incident on the vertices in S.

Lemma $4 \lambda_{2}\left(L_{G}\right) \leq \lambda_{2}\left(L_{G-S}\right)+|S|$, for all $S \subseteq V$.
Note that we easily get the following corollary.
Corollary $5 \quad \lambda_{2}\left(L_{G}\right) \leq \kappa(G)$.
Proof: Let S be a set of vertices of size $\kappa(G)$ that disconnects G, thus $|S|=\kappa(G)$. Then

$$
\lambda_{2}\left(L_{G-S}\right)=0 \Rightarrow \lambda_{2}(G) \leq 0+\kappa(G) .
$$

Proof of Lemma 4: Let x_{2} be the eigenvector of L_{G-S} corresponding to $\lambda_{2}\left(L_{G-S}\right)$, with $x_{2}^{\top} x_{2}=1,\left\langle x_{2}, e\right\rangle=0$.

Then we know

$$
x_{2}^{T} L_{G} x_{2}=\sum_{(i, j) \in E}\left(x_{2}(i)-x_{2}(j)\right)^{2}=\lambda_{2}\left(L_{G-S}\right)
$$

for $G-S=\left(V^{\prime}, E^{\prime}\right)$. Note that $x_{2} \in \mathbb{R}^{\left|V^{\prime}\right|}$. We want a vector $x \in \mathbb{R}^{|V|}$, so we let

$$
x(i)=\left\{\begin{array}{ll}
x_{2}(i), & \text { if } i \in V^{\prime} \\
0, & \text { otherwise }
\end{array} .\right.
$$

With this definition x is a unit vector since, $x^{\top} x=x_{2}^{\top} x_{2}=1$ and $\langle x, e\rangle=\left\langle x_{2}, e\right\rangle=0$. Then we have that

$$
\begin{aligned}
\lambda_{2}\left(L_{G}\right)=\min _{z \in \mathbb{R}^{n}:(z, e)=0} \frac{z^{\top} L_{G} z}{z^{\top} z} & \leq \frac{x^{\top} L_{G} x}{x^{\top} x} \\
& =x^{\top} L_{G} x \\
& =\sum_{(i, j) \in E}(x(i)-x(j))^{2} \\
& =\sum_{(i, j) \in E^{\prime}}(x(i)-x(j))^{2}+\sum_{i \in S} \sum_{j:(i, j) \in E}(x(i)-x(j))^{2} \\
& =\sum_{(i, j) \in E^{\prime}}\left(x_{2}(i)-x_{2}(j)\right)^{2}+\sum_{i \in S} \sum_{j:(i, j) \in E}\left(x_{2}(j)\right)^{2} \\
& \leq \sum_{(i, j) \in E^{\prime}}\left(x_{2}(i)-x_{2}(j)\right)^{2}+\sum_{i \in S} 1\left(x_{2} \text { has unit norm }\right) \\
& =\lambda_{2}\left(L_{G-S}\right)+|S| .
\end{aligned}
$$

3 Graph Laplacians and Cuts

We now see that we can get some easy bounds on various types of cuts in graphs by using the eigenvalues of the Laplacian.

Definition 3 If $|V|$ is even, let $b(G)$ be the smallest bisection of G; that is

$$
b(G)=\min _{S \subset V:|S|=|V-S|}|\delta(S)|,
$$

where $\delta(S)$ is the set of edges with one endpoint in S and the other endpoint in $V-S$.

Claim 6

$$
\frac{n}{4} \lambda_{2}(G) \leq b(G)
$$

Proof: Let \bar{S} be an optimal bisection. Let $x \in\{-1,+1\}^{n}$ s.t.

$$
x(i)= \begin{cases}-1, & \text { if } i \in \bar{S} \\ +1, & \text { otherwise }\end{cases}
$$

Recall that

$$
\lambda_{2}=\min _{z \in \mathbb{R}^{n},\langle z, e\rangle=0} \frac{z^{\top} L_{G} z}{z^{\top} z} .
$$

Note that $\langle x, e\rangle=0$ since half of the entries of x are -1 and half are +1 . Therefore,

$$
\lambda_{2} \leq \frac{x^{\top} L_{G} x}{x^{\top} x}=\sum_{(i, j) \in E} \frac{(x(i)-x(j))^{2}}{n}=\frac{1}{n} \cdot 4|\delta(\bar{S})|=\frac{4}{n} b(G) .
$$

To conclude the lecture, we turn to the largest eigenvalue of the Laplacian, and show that it has a connection to large cuts in the graph.

Definition 4 Let $\operatorname{mc}(G)$ be the maximum cut in the graph, so that

$$
m c(G)=\max _{S \subseteq V}|\delta(S)|
$$

Then using the same idea as the proof above, we can show the following.

Claim 7

$$
m c(G) \leq \frac{n}{4} \lambda_{n}\left(L_{G}\right)
$$

Proof: Let \bar{S} be a maximum cut and

$$
x(i)= \begin{cases}-1, & \text { if } i \in \bar{S} \\ +1, & \text { otherwise }\end{cases}
$$

Then,

$$
\lambda_{n}=\max _{z \in \mathbb{R}^{n}} \frac{z^{\top} L_{G} z}{z^{\top} z} \geq \frac{x^{\top} L_{G} x}{x^{\top} x}=\sum_{(i, j) \in E} \frac{(x(i)-x(j))^{2}}{n}=\frac{4|\delta(\bar{S})|}{n}=\frac{4 m c(G)}{n} .
$$

In fact, we can modify the bound above to give a tighter bound on the maximum cut.

Claim 8

$$
m c(G) \leq \frac{n}{4} \min _{u:\{u, e\rangle=0} \lambda_{n}\left(L_{G}+\operatorname{diag}(u)\right)
$$

where $\operatorname{diag}(u)$ is a diagonal matrix that $\operatorname{diag}(u)(i, i)=u(i)$.
Proof: Following the same definition of x as above, we get that

$$
\begin{aligned}
\lambda_{n}\left(L_{G}+\operatorname{diag}(u)\right) & =\max _{z \in \mathbb{R}^{n}} \frac{z^{\top}\left(L_{G}+\operatorname{diag}(u)\right) z}{z^{\top} z} \\
& \geq \frac{\left.x^{\top} L_{G} x+x^{\top} \operatorname{diag}(u)\right) x}{x^{\top} x} \\
& =\frac{4 m c(G)+\sum_{i \in V} u(i) x(i)^{2}}{n} \\
& =\frac{4 m c(G)}{n},
\end{aligned}
$$

since $x^{2}(i)=1$ for all $i \in V$, and $\sum_{i \in V} u(i)=\langle u, e\rangle=0$.
This bound on the eigenvalue has a connection to other well-known bounds on the maximum cut problem. For a given vector u such that $\langle u, e\rangle=0$, let $\lambda=\lambda_{n}\left(L_{G}+u\right)$. Define $\gamma(i)=\lambda-(u(i)+d(i))$ for all $i \in V$, where $d(i)$ is the degree of i in G. Then for adjacency matrix A, we have that

$$
A+\operatorname{diag}(\gamma)=\lambda I-\left(L_{G}+u\right)
$$

Then we can see that $A+\operatorname{diag}(\gamma) \succeq 0$ since for any $x \in \Re^{n}$,

$$
\begin{aligned}
x^{\top}(A+\operatorname{diag}(\gamma)) x & =x^{\top}\left(\lambda I-\left(L_{G}+u\right)\right) x \\
& =\lambda x^{\top} x-x^{\top}\left(L_{G}+u\right) x \\
& \geq x^{\top}\left(L_{G}+u\right) x-x^{\top}\left(L_{G}+u\right) x \\
& =0
\end{aligned}
$$

where the inequality follows since $\lambda \geq x^{\top}\left(L_{G}+u\right) x / x^{T} x$. Then we observe that

$$
\begin{aligned}
\frac{n}{4} \lambda & =\frac{1}{4} \sum_{i \in V}(\gamma(i)+u(i)+d(i)) \\
& =\frac{1}{4} \sum_{i \in V} \gamma(i)+\frac{1}{4} \sum_{i \in V} d(i) \\
& =\frac{1}{4} \sum_{i \in V} \gamma(i)+\frac{1}{2}|E|
\end{aligned}
$$

Then finding a u to minimize $\frac{n}{4} \min _{u:\{u, e\rangle=0} \lambda_{n}\left(L_{G}+\operatorname{diag}(u)\right)$ turns out to be equivalent to finding a γ to minimize

$$
\frac{1}{4} \sum_{i \in V} \gamma(i)+\frac{1}{2}|E|
$$

subject to

$$
A+\operatorname{diag}(\gamma) \succeq 0 .
$$

This is a semidefinite program, and it has a dual semidefinite program of maximizing

$$
\frac{1}{2} \sum_{(i, j) \in E}\left(1-x_{i j}\right)
$$

subject to

$$
x_{i i}=1 \text { for all } i \in V, \quad X=\left(x_{i j}\right) \succeq 0 .
$$

This semidefinite program is used in a .878-approximation algorithm for the maximum cut problem due to Goemans and W. Thus one can show that the eigenvalue bound is a strong one; we also have that

$$
m c(G) \geq .878 \cdot \frac{n}{4} \min _{u:\langle u, e\rangle=0} \lambda_{n}\left(L_{G}+\operatorname{diag}(u)\right)
$$

[^0]: ${ }^{0}$ This lecture note is a slight modification of the Fall 2016 version, scribed by Rahmtin Rotabi. The previous version is derived from Lau's 2015 lecture notes, Lecture 2 (https://cs.uwaterloo. ca/~lapchi/cs798/notes/L02.pdf), Cvetković, Rowlinson, and Simić, An Introduction to the Theory of Graph Spectra, Section 7.4, and Mohar and Poljak, Eigenvalues in Combinatorial Optimization, Sections 2.1 and 2.4.

