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Lecture 6
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1 More eigenvalue identities

In the first half of this lecture, we will present a few more useful eigenvalue identities.

1.1 Recap of last lecture

We first recall some concepts and properties from last lecture.

General Setting: Let A ∈ Rn×n be a symmetric matrix with real eigenvalues λ1 ≥ λ2 ≥
... ≥ λn with corresponding eigenvectors x1, x2, . . . , xn such that xi are orthonormal.

Rayleigh quotient: We have

λk = min
x⊥span(x1,··· ,xk−1)

x>Ax

x>x
= min

x∈span(xk,··· ,xn)

x>Ax

x>x
= max

x∈span(x1,··· ,xk)

x>Ax

x>x

Representaion of matrix and its inverse via eigenvalues and eigenvectors:

A = λ1x1x
>
1 + λ2x2x

>
2 + · · ·+ λnxnx

>
n

I = x1x
>
1 + x2x

>
2 + · · ·+ xnx

>
n

A−1 =
1

λ1
x1x

>
1 +

1

λ2
x2x

>
2 + · · ·+ 1

λn
xnx

>
n

Diagonalization of a matrix: Let X =

 | · · · |
x1 · · · xn
| · · · |

 and D =

λ1 0 0

0
. . . 0

0 0 λn

.

Since xi are orthonormal to each other, we have X>X = I, X> = X−1. Moreover, from
definition of eigenvalues we have AX = XD, so multiplying by X−1 = X> on the right
gives A = XDX−1 = XDX>.

1.2 More simple eigenvalue properties

We first investigate properties of eigenvalues and eigenvectors for matrix powers Ak, where
Ak is A multiplied by itself k times.

Lemma 1 The eigenvectors of Ak are x1, . . . , xn with corresponding eigenvalues λk1, . . . , λ
k
n.
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Proof: From the observations above, we can write Ak = (XDX−1)k = XDkX−1. Thus,
we have AkX = XDk. By analyzing corresponding columns of both sides of the equation,
we can see that Akxi = λki xi for any i ∈ {1, · · · , n}, and thus x1, · · · , xn are eigenvalues of
Ak with eigenvalues λk1, · · · , λkn. 2

For our next few identities, we will assume the following fact without proof:

Fact 1 det(AB) = det(A) det(B)

A simple corollary of this fact is as follows:

Corollary 2 det(A−1) = det(A) det(A−1)
det(A) = det(AA−1)

det(A) = det(I)
det(A) = 1

det(A)

We now derive eigenvalue representations of the determinant:

Lemma 3 det(A) =
n∏
i=1

λi

Proof:

det(A) = det(XDX−1) = det(X) det(D) det(X−1)

= det(D) det(XX−1) = det(D) =
n∏
i=1

λi.

2

Recall that in the first lecture, we defined the trace of A to be tr(A) =
n∑
i=1

aii.

Lemma 4 tr(A) =
n∑
i=1

λi.

Proof: Consider the characteristic polynomial of A, which we defined in the first lecture
to be det(λI −A). This is a degree n polynomial in λ. The idea of the proof is to consider
the coefficient of λn−1 and represent it in two different ways using aii and λi, and then
equating these two representations.

We first write det(λI −A) in terms of eigenvalues λi:

det(λI −A) = det(λXXT −XDXT ) = det(X(λI −D)XT )

= det(X) det(λI −D) det(XT ) = det(λI −D) =

n∏
i=1

(λ− λi).

In this case, the coefficient of λn−1 is −
n∑
i=1

λi.

We then write det(λI − A) in terms of the entries aii. Recall that we can represent
the determinant of a matrix Z as a sum of multiplied entries with indices in the set of
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permutations Sn: det(Z) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i). We then look at our determinant:

det(λI −A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣ .
We see that only permutation that can produce a λn−1 term in the above sum is the identity
(λ− a11)(λ− a22) · · · (λ− ann). (Every other permutation would choose at least two terms
not on the diagonal, thus have highest power λn−2 or lower.)

Thus, we know that the coefficient of λn−1 term can also be represented as −
n∑
i=1

aii.

Equating the two cases above, we know that

tr(A) =

n∑
i=1

aii =

n∑
i=1

λi.

2

1.3 Eigenvalue Interlacing Theorem

With the above lemmas, we are able to prove the eigenvalue interlacing theorem, which
we have already used without proof in Lecture 2 on proving Wilf’s theorem on chromatic
numbers and Huang’s theorem on the sensitivity conjecture.

Theorem 5 (Eigenvalue Interlacing Theorem) Suppose A ∈ Rn×n is symmetric. Let
B ∈ Rm×m with m < n be a principal submatrix (obtained by deleting both i-th row and
i-th column for some values of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has
eigenvalues β1 ≤ · · · ≤ βm. Then

λk ≤ βk ≤ λk+n−m for k = 1, · · · ,m

And if m = n− 1,
λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn

Proof: WLOG, we can assume A =

[
B X>

X Z

]
. To see why this is WLOG, suppose

we switch the i-th and j-th row and the i-th and j-th column of A at the same time to
obtain A′. Then A′ will have the same eigenvalues as A, with corresponding eigenvectors
also switching the i-th and j-th entry. Thus, if the principal submatrix is not in the first
m rows/columns, we can exchange its row/columns with the first m rows/columns without
changing the eigenvalues.)

Let {x1, · · · , xn} be orthonormal eigenvectors of A, and {y1, · · · , ym} be orthonormal
eigenvectors of B.
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We first show λk ≤ βk. We define the following vector spaces:

V = span(xk, · · · , xn), W = span(y1 · · · , yk), W̃ =

{[
w
0

]
∈ Rn, w ∈W

}
Since dim(V ) = n − k + 1 and dim(W̃ ) = dim(W ) = k, there exists w̃ ∈ V

⋂
W̃ and

w̃ =

[
w
0

]
for some w ∈W . Then

w̃TAw̃ =
[
w> 0

] [B X>

X Z

] [
w
0

]
= wTBw

Recall λk = min
x∈V

xTAx

xTx
and βk = max

x∈W

xTBx

xTx
. Then we see that

λk ≤
w̃TAw̃

w̃T w̃
=
wTBw

wTw
≤ βk.

We then show βk ≤ λk+n−m. Similarly, we define the vector spaces

V = span(x1, · · · , xk+n−m), W = span(yk · · · , ym), W̃ =

{[
w
0

]
∈ Rn, w ∈W

}
Since dim(V ) = k + n−m, dim(W̃ ) = dim(W ) = m− k + 1, there exists w̃ ∈ V

⋂
W and

w̃ =

[
w
0

]
for some w ∈W . As before, we have w̃TAw̃ = wTBw. It follows that

λk+n−m = max
x∈V

xTAx

xTx
≥ w̃TAw̃

w̃T w̃
=
wTBw

wTw
≥ min

x∈W

xTBx

xTx
= βk,

completing the proof. 2

2 Bipartite Graphs

In the second half of the lecture, we will show how all the various eigenvalue identities
we’ve proven over this lecture and the last can be applied to showing something about the
structure of graphs. In particular, we show that the spectrum of the adjacency matrix tells
us whether the graph is bipartite or not.

Lemma 6 If G is bipartite, and λ is an eigenvalue of adjacency matrix A, then so is −λ.

Proof: If G is bipartite, we can re-index the nodes such that

A =

[
0 B
BT 0

]
.

Let v =

[
x
y

]
be an eigenvector of A with eigenvalue λ. Then we have

A

[
x
y

]
=

[
0 B
BT 0

] [
x
y

]
= λ

[
x
y

]
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Hence we have By = λx and BTx = λy. From this, we have[
0 B
BT 0

] [
x
−y

]
=

[
−By
BTx

]
=

[
−λx
λy

]
= −λ

[
x
−y

]

So, −λ is an eigenvalue corresponding to the eigenvector

[
x
−y

]
. 2

We can now show that this statement can be made an “if and only if”: that is the
graph G is bipartite if and only if for each eigenvalue λ there is another eigenvalue −λ with
multiplicity; that is, if the multiplicity of λ is k, then so is the multiplicity of −λ.

Theorem 7 If for each eigenvalue λ 6= 0 there is another eigenvalue λ′ = −λ (with multi-
plicity), then G is bipartite.

Proof: Let k be any odd positive integer. Recall from Lemma 1 that if A has eigenvalues
λ1, · · · , λn, then Ak has eigenvalues λk1, · · · , λkn. From our assumption, we have

tr(Ak) =
n∑
i=1

λki = 0

Also recall that (Ak)ij is the number of walks from i to j of length exactly k. So if there
is an odd cycle of length k, then it must be the case that (Ak)ii > 0, so that tr(Ak) > 0, a
contradiction to tr(Ak) = 0. Thus, there are no odd cycles of length k. Since this is true for
any odd positive integer k, there are no odd cycles in G, which implies that G is bipartite.

2

Now we can show something even stronger than the previous statement: we only need
to look at the smallest and largest eigenvalue to know whether or not the graph is bipartite.

Theorem 8 Suppose G is connected. Then, λ1 = −λn if and only if G is bipartite.

Proof: We have already seen in Lemma 6 that if G is bipartite, then A must have
λn = −λ1 (as they must form a pair of eigenvalues with largest absolute value). We now
assume that λ1 = −λn. Let x1 be the eigenvector corresponding to λ1 with xT1 x1 = 1. Let
z ∈ Rn with z(i) = |x1(i)|, then we have the following:

|λ1| = |xT1Ax1| ≤
∑
i,j

aij |x1(i)||x1(j)| =
∑
i,j

aijz(i)z(j) = zTAz ≤ max
x

x>Ax

x>x
= λn.

Since λ1 = −λn, equality holds for all inequalities in the above expression, so (a) it
must be that z is the eigenvector associated with λn; and (b) ∀i, j, aijx1(i)x1(j) ≤ 0, so
x1(i)x1(j) ≤ 0 for every edge (i, j).

If we can assume that z > 0, then from (b) we know that every edge (i, j) has one of
x1(i), x1(j) positive, the other negative. This implies the following partition

V = {i : x1(i) < 0}, W = {i : x1(i) > 0},
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which shows that G is a bipartite graph.
We finally go back and show that z > 0. We know that z ≥ 0, and we assume that there

exists some entry of z that is 0. Since G is connected and z 6= 0, there exists some edge
(i, k) such that z(i) = 0 and z(k) 6= 0. (If no such edge exists, then {i : z(i) = 0} and {k :
z(k) 6= 0} would be two nonempty, disconnected components of G, a contradiction.) Then
we have (Az)(i) =

∑
j:(i,j)∈E z(j) > 0. But from (a) we also have (Az)(i) = λnz(i) = 0,

and this gives a contradiction. Thus, we must have z > 0. This completes our proof. 2
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