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1 Definitions and Eigenvalue Basics

Let x = a + ib ∈ C be a complex number, then we define x = a − ib to be its conjugate.
For a matrix of complex numbers A = (xij) ∈ Cm×n, we define A∗ = (zij) ∈ Cn×m where
zij = xji for all i ≤ n and j ≤ m. A∗ is then called the conjugate transpose of A.

For x, y ∈ Cn, their inner product is defined as

〈x, y〉 ≡ x∗y =
n∑
i=1

xiyi

For A ∈ Cn×n, λ ∈ C and x 6= 0 ∈ Cn, if Ax = λx, then x is an eigenvector of A and λ
is the associated eigenvalue.

Note that Ax = λx if and only if Ax− λIx = 0, which is equivalent to (λI − A)x = 0.
For x 6= 0, we have

det(λI −A) = 0.

det(λI − A) for fixed A is a polynomial of degree n in λ. We call it the characteristic
polynomial of A. There are exactly n solutions to det(λI−A) = 0 (with multiplicity). Each
solution is an eigenvalue.

A matrix A is Hermitian if A = A∗. If A ∈ Rn×n, then A is symmetric. (A = AT )
Hermitian matrices have the following two nice properties.

Lemma 1 If A is Hermitian, then all its eigenvalues are real.

Proof: Suppose λ and x 6= 0 satisfy Ax = λx. Then,

〈Ax, x〉 = (Ax)∗x = x∗A∗x

= x∗Ax

= 〈x,Ax〉.

Also, we have
〈Ax, x〉 = 〈λx, x〉 = λ〈x, x〉 = λ‖x‖2

and
〈x,Ax〉 = 〈x, λx〉 = λ〈x, x〉 = λ‖x‖2.

Since x 6= 0, λ = λ, which means that λ is real. 2

0This lecture was drawn from Trevisan, Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph
Theory, Chapter 1, and Lau’s 2015 lecture notes, Lecture 1:https://cs.uwaterloo.ca/~lapchi/cs798/
notes/L01.pdf.
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Lemma 2 Let A be a Hermitian matrix. Suppose x and y are eigenvectors of A with
different eigenvalues λ and λ′ (λ 6= λ′). Then, x and y are orthogonal.

Proof: Since A is Hermitian, we have

〈Ax, y〉 = (Ax)∗y = x∗A∗y = x∗Ay = 〈x,Ay〉

By Lemma 1, λ and λ′ are real, so

〈Ax, y〉 = 〈λx, y〉 = λ〈x, y〉

and
〈x,Ay〉 = 〈x, λ′y〉 = λ′〈x, y〉.

Then,
(λ− λ′)〈x, y〉 = 0.

Because λ 6= λ′, x and y must be orthogonal. 2

2 Rayleigh Quotients and the Spectral Theorem

For the rest of the class, we are going to focus on real symmetric matrices. We assume that
all matrices A that appear in this section are symmetric and n × n. Our goal is to prove
the following theorem, which will be extremely useful for the rest of the semester.

Theorem 3 Let A ∈ Rn×n be a symmetric matrix. Let λ1 ≤ λ2 ≤ · · · ≤ λn be its
eigenvalues (all real by Lemma 1) and x1, x2, · · · , xn be orthonormal vectors (e.g. ‖xi‖2 =
1, 〈xi, xj〉 = 0 ∀i 6= j) such that Axi = λixi for i = 1, 2, · · · , n. Then, for all 0 ≤ k ≤ n−1,

λk+1 = min
x∈Rn:x⊥span(x1,··· ,xk)

xTAx

xTx

and any minimizer is the associated eigenvector.

The expression xTAx
xT x

is called the Rayleigh quotient. One reason this theorem is very
useful is that it allows us to get an upper bound on λk+1: the Rayleigh quotient of x for any
x ⊥ span(x1, · · · , xk) yields an upper bound. We will be using this technique for bounding
eigenvalues ad nauseum.

In order to prove the theorem, we first prove the following lemma.

Lemma 4 Let A ∈ Rn×n be symmetric and k ≤ n − 1. Let x1, · · · , xk be orthogonal
eigenvectors of A. Then there exists an eigenvector xk+1 orthogonal to x1, · · · , xk.

Proof: Let V be a (n − k)-dimensional subspace of Rn that contains all x ∈ Rn such
that x ⊥ span(x1, · · · , xk). For any x ∈ V , Ax ∈ V since for all i = 1, · · · , k,

〈xi, Ax〉 = xTi Ax = (ATxi)
Tx = (Axi)

Tx = (λxi)
Tx = λ〈xi, x〉 = 0.
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Let b1, · · · , bn−k be an orthonormal basis of V . Define

B =

 | | |
b1 b2 · · · bn−k
| | |

 ∈ Rn×(n−k).

For any z ∈ Rn−k, Bz ∈ V since Bz is a linear combination of vectors in V .
Also, for all z ∈ V ,

BBT z = B


bT1 z
bT2 z

...
bTn−kz

 = 〈b1, z〉b1 + · · ·+ 〈bn−k, z〉bn−k = z (1)

since B is a orthonormal basis of V .
Let λ be an eigenvalue of A′ = BTAB ∈ R(n−k)×(n−k) with associated eigenvector y.

Then,
BTABy = λy.

We know By ∈ V , so A(By) ∈ V . By (1),

BBT (ABy) = ABy.

On the other hand,
BBTABy = B(BTABy) = λBy,

so
ABy = λBy.

Since B is non-singular and y 6= 0, By 6= 0, so By is an eigenvector of A. Note that By is
orthogonal to x1, · · · , xk because By ∈ V . 2

An easy corollary of Lemma 4 is the Spectral Theorem.

Corollary 5 (Spectral Theorem) For a symmetric matrix A ∈ Rn×n with (real) eigenval-
ues λ1, · · · , λn, there exist orthonormal vectors x1, · · · , xn such that xi is the eigenvector
associated with λi.

Now we can prove our main theorem.
Proof of Theorem 3: Given eigenvalues λ1, · · · , λk and associated vectors x1, · · · , xk,
we can use Lemma 4 repeatedly to find orthonormal eigenvectors xk+1, · · · , xn. We sort the
remaining eigenvalues so that λk+1 ≤ · · · ≤ λn. Note that

xTk+1Axk+1

xTk+1xk+1
=
λk+1(x

T
k+1xk+1)

xTk+1xk+1
= λk+1.

Consider any other feasible solution x. Let V be the subspace containing all y ∈ Rn
such that y ⊥ span(x1, x2, · · · , xk). Then xk+1, · · · , xn is a basis of V . Assume that
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x = αk+1xk+1 + · · ·+ αnxn. We have

xTAx

xTx
=
xT (αk+1λk+1xk+1 + · · ·+ αnλnxn)

xTx

=
(αk+1xk+1 + · · ·+ αnxn)T (αk+1λk+1xk+1 + · · ·+ αnλnxn)

(αk+1xk+1 + · · ·+ αnxn)T (αk+1xk+1 + · · ·+ αnxn)

=
α2
k+1λk+1 + · · ·+ α2

nλn

α2
k+1 + · · ·+ α2

n

≥ λk+1

α2
k+1 + · · ·+ α2

n

α2
k+1 + · · ·+ α2

n

= λk+1.

Hence,

λk+1 = min
x∈Rn:x⊥span(x1,··· ,xk)

xTAx

xTx
.

2

In fact, we can further extend Theorem 3 and reach the following conclusion.

Theorem 6 Let A ∈ Rn×n be a symmetric matrix. Let λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenval-
ues and x1, x2, · · · , xn be associated orthonormal eigenvectors. Then,

λk = min
x∈Rn:x⊥span(x1,··· ,xk−1)

xTAx

xTx

= min
x∈Rn:x∈span(xk,··· ,xn)

xTAx

xTx

= max
x∈Rn:x⊥span(xk+1,··· ,xn)

xTAx

xTx

= max
x∈Rn:x∈span(x1,··· ,xk)

xTAx

xTx
.

We omit the proof of Theorem 6 since it is similar to the proof of Theorem 3.
Some special cases of the theorem are

λn = max
x∈Rn

xTAx

xTx

and

λ1 = min
x∈Rn

xTAx

xTx
.

3 Inverse and Pseudo-inverse

Since x1, · · · , xn are orthonormal, for any x ∈ Rn, we can write x as

x = α1x1 + α2x2 + · · ·+ αnxn.
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Then,
〈x, xi〉 = 〈α1x1 + · · ·+ αnxn, xi〉 = αi〈xi, xi〉 = αi.

Therefore,

x = 〈x, x1〉x1 + · · · 〈x, xn〉xn
= x1(x

T
1 x) + · · ·+ xn(xTnx)

= (x1x
T
1 + · · ·+ xnx

T
n )x

for all x ∈ Rn. Hence,
x1x

T
1 + · · ·+ xnx

T
n = I. (2)

By (2),
Ax = AIx = A(x1x

T
1 + · · ·+ xnx

T
n )x = (λ1x1x

T
1 + · · ·+ λnxnx

T
n )x,

so
A = λ1x1x

T
1 + · · ·+ λnxnx

T
n . (3)

We know that A−1 exists iff all eigenvalues of A are non-zero. Also,

(λ1x1x
T
1 + · · ·+ λnxnx

T
n )(

1

λ1
x1x

T
1 + · · ·+ 1

λn
xnx

T
n ) = x1x

T
1 + · · ·xnxTn = I.

Thus,

A−1 =
1

λ1
x1x

T
1 + · · ·+ 1

λn
xnx

T
n .

When A is singular, we define the pseudo-inverse of A analogously:

A† ≡
∑
i:λi 6=0

1

λi
xix

T
i .

One of the reasons that spectral graph theory has become an intense area of study in
theoretical computer science in the last few years is that researchers (starting with Spielman
and Teng) have shown how to compute A†b quickly for some cases of A and b. This has led
to further research on how to solve this product quickly plus additional research on what
can be done with a quick solver of this type. We will hear more about this later in the term.
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