ORIE 6334 Bridging Continuous and Discrete Optimization September 18, 2019 Lecture 5

Lecturer: David P. Williamson Scribe: Haici Tan

1 Definitions and Eigenvalue Basics

Let $x=a+i b \in \mathbb{C}$ be a complex number, then we define $\bar{x}=a-i b$ to be its conjugate. For a matrix of complex numbers $A=\left(x_{i j}\right) \in \mathbb{C}^{m \times n}$, we define $A^{*}=\left(z_{i j}\right) \in \mathbb{C}^{n \times m}$ where $z_{i j}=\bar{x}_{j i}$ for all $i \leq n$ and $j \leq m . A^{*}$ is then called the conjugate transpose of A.

For $x, y \in \mathbb{C}^{n}$, their inner product is defined as

$$
\langle x, y\rangle \equiv x^{*} y=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

For $A \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}$ and $x \neq 0 \in \mathbb{C}^{n}$, if $A x=\lambda x$, then x is an eigenvector of A and λ is the associated eigenvalue.

Note that $A x=\lambda x$ if and only if $A x-\lambda I x=0$, which is equivalent to $(\lambda I-A) x=0$. For $x \neq 0$, we have

$$
\operatorname{det}(\lambda I-A)=0
$$

$\operatorname{det}(\lambda I-A)$ for fixed A is a polynomial of degree n in λ. We call it the characteristic polynomial of A. There are exactly n solutions to $\operatorname{det}(\lambda I-A)=0$ (with multiplicity). Each solution is an eigenvalue.

A matrix A is Hermitian if $A=A^{*}$. If $A \in \mathbb{R}^{n \times n}$, then A is symmetric. $\left(A=A^{T}\right)$
Hermitian matrices have the following two nice properties.
Lemma 1 If A is Hermitian, then all its eigenvalues are real.
Proof: \quad Suppose λ and $x \neq 0$ satisfy $A x=\lambda x$. Then,

$$
\begin{aligned}
\langle A x, x\rangle=(A x)^{*} x & =x^{*} A^{*} x \\
& =x^{*} A x \\
& =\langle x, A x\rangle .
\end{aligned}
$$

Also, we have

$$
\langle A x, x\rangle=\langle\lambda x, x\rangle=\bar{\lambda}\langle x, x\rangle=\bar{\lambda}\|x\|^{2}
$$

and

$$
\langle x, A x\rangle=\langle x, \lambda x\rangle=\lambda\langle x, x\rangle=\lambda\|x\|^{2} .
$$

Since $x \neq 0, \lambda=\bar{\lambda}$, which means that λ is real.

[^0]Lemma 2 Let A be a Hermitian matrix. Suppose x and y are eigenvectors of A with different eigenvalues λ and $\lambda^{\prime}\left(\lambda \neq \lambda^{\prime}\right)$. Then, x and y are orthogonal.

Proof: Since A is Hermitian, we have

$$
\langle A x, y\rangle=(A x)^{*} y=x^{*} A^{*} y=x^{*} A y=\langle x, A y\rangle
$$

By Lemma 1, λ and λ^{\prime} are real, so

$$
\langle A x, y\rangle=\langle\lambda x, y\rangle=\lambda\langle x, y\rangle
$$

and

$$
\langle x, A y\rangle=\left\langle x, \lambda^{\prime} y\right\rangle=\lambda^{\prime}\langle x, y\rangle .
$$

Then,

$$
\left(\lambda-\lambda^{\prime}\right)\langle x, y\rangle=0 .
$$

Because $\lambda \neq \lambda^{\prime}, x$ and y must be orthogonal.

2 Rayleigh Quotients and the Spectral Theorem

For the rest of the class, we are going to focus on real symmetric matrices. We assume that all matrices A that appear in this section are symmetric and $n \times n$. Our goal is to prove the following theorem, which will be extremely useful for the rest of the semester.

Theorem 3 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be its eigenvalues (all real by Lemma 1) and $x_{1}, x_{2}, \cdots, x_{n}$ be orthonormal vectors (e.g. $\left\|x_{i}\right\|^{2}=$ $\left.1,\left\langle x_{i}, x_{j}\right\rangle=0 \forall i \neq j\right)$ such that $A x_{i}=\lambda_{i} x_{i}$ for $i=1,2, \cdots, n$. Then, for all $0 \leq k \leq n-1$,

$$
\lambda_{k+1}=\min _{x \in \mathbb{R}^{n}: x \perp \operatorname{span}\left(x_{1}, \cdots, x_{k}\right)} \frac{x^{T} A x}{x^{T} x}
$$

and any minimizer is the associated eigenvector.
The expression $\frac{x^{T} A x}{x^{T} x}$ is called the Rayleigh quotient. One reason this theorem is very useful is that it allows us to get an upper bound on λ_{k+1} : the Rayleigh quotient of x for any $x \perp \operatorname{span}\left(x_{1}, \cdots, x_{k}\right)$ yields an upper bound. We will be using this technique for bounding eigenvalues ad nauseum.

In order to prove the theorem, we first prove the following lemma.
Lemma 4 Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $k \leq n-1$. Let x_{1}, \cdots, x_{k} be orthogonal eigenvectors of A. Then there exists an eigenvector x_{k+1} orthogonal to x_{1}, \cdots, x_{k}.

Proof: Let V be a $(n-k)$-dimensional subspace of \mathbb{R}^{n} that contains all $x \in \mathbb{R}^{n}$ such that $x \perp \operatorname{span}\left(x_{1}, \cdots, x_{k}\right)$. For any $x \in V, A x \in V$ since for all $i=1, \cdots, k$,

$$
\left\langle x_{i}, A x\right\rangle=x_{i}^{T} A x=\left(A^{T} x_{i}\right)^{T} x=\left(A x_{i}\right)^{T} x=\left(\lambda x_{i}\right)^{T} x=\lambda\left\langle x_{i}, x\right\rangle=0 .
$$

Let b_{1}, \cdots, b_{n-k} be an orthonormal basis of V. Define

$$
B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{n-k} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{R}^{n \times(n-k)} .
$$

For any $z \in \mathbb{R}^{n-k}, B z \in V$ since $B z$ is a linear combination of vectors in V.
Also, for all $z \in V$,

$$
B B^{T} z=B\left[\begin{array}{c}
b_{1}^{T} z \tag{1}\\
b_{2}^{T} z \\
\vdots \\
b_{n-k}^{T} z
\end{array}\right]=\left\langle b_{1}, z\right\rangle b_{1}+\cdots+\left\langle b_{n-k}, z\right\rangle b_{n-k}=z
$$

since B is a orthonormal basis of V.
Let λ be an eigenvalue of $A^{\prime}=B^{T} A B \in \mathbb{R}^{(n-k) \times(n-k)}$ with associated eigenvector y. Then,

$$
B^{T} A B y=\lambda y
$$

We know $B y \in V$, so $A(B y) \in V$. By (1),

$$
B B^{T}(A B y)=A B y
$$

On the other hand,

$$
B B^{T} A B y=B\left(B^{T} A B y\right)=\lambda B y
$$

so

$$
A B y=\lambda B y .
$$

Since B is non-singular and $y \neq 0, B y \neq 0$, so $B y$ is an eigenvector of A. Note that $B y$ is orthogonal to x_{1}, \cdots, x_{k} because $B y \in V$.

An easy corollary of Lemma 4 is the Spectral Theorem.
Corollary 5 (Spectral Theorem) For a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with (real) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, there exist orthonormal vectors x_{1}, \cdots, x_{n} such that x_{i} is the eigenvector associated with λ_{i}.

Now we can prove our main theorem.
Proof of Theorem 3: Given eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$ and associated vectors x_{1}, \cdots, x_{k}, we can use Lemma 4 repeatedly to find orthonormal eigenvectors x_{k+1}, \cdots, x_{n}. We sort the remaining eigenvalues so that $\lambda_{k+1} \leq \cdots \leq \lambda_{n}$. Note that

$$
\frac{x_{k+1}^{T} A x_{k+1}}{x_{k+1}^{T} x_{k+1}}=\frac{\lambda_{k+1}\left(x_{k+1}^{T} x_{k+1}\right)}{x_{k+1}^{T} x_{k+1}}=\lambda_{k+1} .
$$

Consider any other feasible solution x . Let V be the subspace containing all $y \in \mathbb{R}^{n}$ such that $y \perp \operatorname{span}\left(x_{1}, x_{2}, \cdots, x_{k}\right)$. Then x_{k+1}, \cdots, x_{n} is a basis of V. Assume that
$x=\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n}$. We have

$$
\begin{aligned}
\frac{x^{T} A x}{x^{T} x} & =\frac{x^{T}\left(\alpha_{k+1} \lambda_{k+1} x_{k+1}+\cdots+\alpha_{n} \lambda_{n} x_{n}\right)}{x^{T} x} \\
& =\frac{\left(\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n}\right)^{T}\left(\alpha_{k+1} \lambda_{k+1} x_{k+1}+\cdots+\alpha_{n} \lambda_{n} x_{n}\right)}{\left(\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n}\right)^{T}\left(\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n}\right)} \\
& =\frac{\alpha_{k+1}^{2} \lambda_{k+1}+\cdots+\alpha_{n}^{2} \lambda_{n}}{\alpha_{k+1}^{2}+\cdots+\alpha_{n}^{2}} \\
& \geq \lambda_{k+1} \frac{\alpha_{k+1}^{2}+\cdots+\alpha_{n}^{2}}{\alpha_{k+1}^{2}+\cdots+\alpha_{n}^{2}} \\
& =\lambda_{k+1} .
\end{aligned}
$$

Hence,

$$
\lambda_{k+1}=\min _{x \in \mathbb{R}^{n}: x \perp \operatorname{span}\left(x_{1}, \cdots, x_{k}\right)} \frac{x^{T} A x}{x^{T} x}
$$

In fact, we can further extend Theorem 3 and reach the following conclusion.
Theorem 6 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be its eigenvalues and $x_{1}, x_{2}, \cdots, x_{n}$ be associated orthonormal eigenvectors. Then,

$$
\begin{aligned}
\lambda_{k} & =\min _{x \in \mathbb{R}^{n}: x \perp \operatorname{span}\left(x_{1}, \cdots, x_{k-1}\right)} \frac{x^{T} A x}{x^{T} x} \\
& =\min _{x \in \mathbb{R}^{n}: x \in \operatorname{span}\left(x_{k}, \cdots, x_{n}\right)} \frac{x^{T} A x}{x^{T} x} \\
& =\max _{x \in \mathbb{R}^{n}: x \perp \operatorname{span}\left(x_{k+1}, \cdots, x_{n}\right)} \frac{x^{T} A x}{x^{T} x} \\
& =\max _{x \in \mathbb{R}^{n}: x \in \operatorname{span}\left(x_{1}, \cdots, x_{k}\right)} \frac{x^{T} A x}{x^{T} x}
\end{aligned}
$$

We omit the proof of Theorem 6 since it is similar to the proof of Theorem 3 .
Some special cases of the theorem are

$$
\lambda_{n}=\max _{x \in \mathbb{R}^{n}} \frac{x^{T} A x}{x^{T} x}
$$

and

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n}} \frac{x^{T} A x}{x^{T} x}
$$

3 Inverse and Pseudo-inverse

Since x_{1}, \cdots, x_{n} are orthonormal, for any $x \in \mathbb{R}^{n}$, we can write x as

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

Then,

$$
\left\langle x, x_{i}\right\rangle=\left\langle\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}, x_{i}\right\rangle=\alpha_{i}\left\langle x_{i}, x_{i}\right\rangle=\alpha_{i} .
$$

Therefore,

$$
\begin{aligned}
x & =\left\langle x, x_{1}\right\rangle x_{1}+\cdots\left\langle x, x_{n}\right\rangle x_{n} \\
& =x_{1}\left(x_{1}^{T} x\right)+\cdots+x_{n}\left(x_{n}^{T} x\right) \\
& =\left(x_{1} x_{1}^{T}+\cdots+x_{n} x_{n}^{T}\right) x
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}$. Hence,

$$
\begin{equation*}
x_{1} x_{1}^{T}+\cdots+x_{n} x_{n}^{T}=I . \tag{2}
\end{equation*}
$$

By (2),

$$
A x=A I x=A\left(x_{1} x_{1}^{T}+\cdots+x_{n} x_{n}^{T}\right) x=\left(\lambda_{1} x_{1} x_{1}^{T}+\cdots+\lambda_{n} x_{n} x_{n}^{T}\right) x
$$

so

$$
\begin{equation*}
A=\lambda_{1} x_{1} x_{1}^{T}+\cdots+\lambda_{n} x_{n} x_{n}^{T} . \tag{3}
\end{equation*}
$$

We know that A^{-1} exists iff all eigenvalues of A are non-zero. Also,

$$
\left(\lambda_{1} x_{1} x_{1}^{T}+\cdots+\lambda_{n} x_{n} x_{n}^{T}\right)\left(\frac{1}{\lambda_{1}} x_{1} x_{1}^{T}+\cdots+\frac{1}{\lambda_{n}} x_{n} x_{n}^{T}\right)=x_{1} x_{1}^{T}+\cdots x_{n} x_{n}^{T}=I .
$$

Thus,

$$
A^{-1}=\frac{1}{\lambda_{1}} x_{1} x_{1}^{T}+\cdots+\frac{1}{\lambda_{n}} x_{n} x_{n}^{T}
$$

When A is singular, we define the pseudo-inverse of A analogously:

$$
A^{\dagger} \equiv \sum_{i: \lambda_{i} \neq 0} \frac{1}{\lambda_{i}} x_{i} x_{i}^{T} .
$$

One of the reasons that spectral graph theory has become an intense area of study in theoretical computer science in the last few years is that researchers (starting with Spielman and Teng) have shown how to compute $A^{\dagger} b$ quickly for some cases of A and b. This has led to further research on how to solve this product quickly plus additional research on what can be done with a quick solver of this type. We will hear more about this later in the term.

[^0]: ${ }^{0}$ This lecture was drawn from Trevisan, Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory, Chapter 1, and Lau's 2015 lecture notes, Lecture 1 https://cs.uwaterloo.ca/~lapchi/cs798/ notes/L01.pdf.

