ORIE 6334 Bridging Continuous and Discrete Optimization Sept. 16, 2019

Lecture 4

Lecturer: David P. Williamson

Scribe: Yicheng Bai

1 Recap

1.1 The Multiplicative Weights Algorithm

Assume there are N possible different decisions that could be made at each time. Let $v_t(i) \in [0, 1]$ denote the value of making decision *i* at time *t*. We maintain a weight $w_t(i)$ as a weight associated with decision *i* at time *t*. Also let

$$W_t = \sum_{i=1}^{N} w_t(i), \qquad p_t(i) = \frac{w_t(i)}{W_t}.$$

We have the multiplicative weights algorithm as follows:

Algorithm 1: Multiplicative Weights	
$w_1(i) \leftarrow 1, \ \forall i = 1, \dots, N$	
for $t \leftarrow 1$ to T do	
Pick decision i with probability $p_t(i)$ and get value $v_t(i)$	
$w_{t+1}(i) \leftarrow (1 + \epsilon v_t(i)) w_t(i), \ \forall i = 1, \dots, N$	
end	

We know from last lecture that the expected revenue gained by Algorithm 1 is close enough to the value one can gain from the best fixed decision in hindsight. Specifically, we have the following theorem.

Theorem 1 Assume $\epsilon \leq 1/2$, then for all j,

$$\sum_{t=1}^{T} \sum_{i=1}^{N} p_t(i) v_t(i) \ge (1-\epsilon) \sum_{t=1}^{T} v_t(j) - \frac{1}{\epsilon} \ln N.$$

1.2 Application: Finding ϵ -Feasible Solution

We showed how to apply the multiplicative weights algorithm to finding ϵ -feasible solutions to the following system:

$$Ax \le e, \quad x \in Q. \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $e \in \mathbb{R}^m$ is the vector of all ones, and $Q \subseteq \mathbb{R}^n$ is a convex set. Assume $Ax \ge 0$ for each $x \in Q$.

We also assume that we have an oracle such that given vector $p \in \mathbb{R}^m_{\geq 0}$, finds $x \in Q$ such that $p^T A x \leq p^T e$, if such an x exists.

Define width of oracle to be:

$$\rho := \max_{\substack{i=1,\dots,m \\ \text{returned} \\ \text{by oracle}}} \max_{\substack{x \in Q \\ \text{returned} \\ \text{by oracle}}} (Ax)(i).$$

By building on the multiplicative weights algorithm, there is an algorithm for this problem (Algorithm 2 in the last lecture) and we have the following theorem:

Theorem 2 The algorithm (Algorithm 2 in the last lecture) finds $\overline{x} \in Q$ s.t. $A\overline{x} \leq (1+4\epsilon)e$ in time

 $O\left(\frac{m\rho}{\epsilon^2}\ln m\right) + O\left(\frac{\rho}{\epsilon^2}\ln m\right)$ (oracle calls + matrix multiplication).

2 Application: Max Flow in Unit Capability Graphs

To see an application of the result of the last section, we consider the maximum flow problem in directed graps. Let G = (V, E) be a directed graph, let $s \in V$ be the source and $t \in V$ be the sink. The capacities are u(i, j) = 1, $\forall (i, j) \in E$. The goal is to find the maximum flow from source s to sink t in this directed graph G.

A maximum flow is an optimization problem, and the results of the previous section only check feasibility of a system. How can we reduce this optimization problem to a feasibility problem? The idea is to check if there is a feasible flow of value k. Specifically, we can use binary search to find max flow value, since the value is at most m = |E|, we only need $\lceil \log_2 m \rceil$ calls checking for a feasible flow.

Now we show how to reduce the problem of determining whether there exists a feasible flow of value k to the framework given above. We let A be capacity constraints such that $x(i, j) \leq 1$ for all $(i, j) \in E$, hence A is the identity matrix. We let Q be flow conservation constraints, and the flow value. We have that:

$$Q = \left\{ x \ge 0 : \sum_{j:(i,j)\in E} x(i,j) - \sum_{j:(j,i)\in E} x(j,i) = 0, \forall i \neq s,t; \sum_{j:(s,j)\in E} x(s,j) - \sum_{j:(j,s)\in E} x(j,s) = k \right\}$$

So there exists $x \in Q$ such that $Ax \leq e$ iff a feasible flow of value k exists.

We now need an oracle that checks if $\exists x \in Q$ s.t. $p^T Ax \leq p^T e$ for $p \geq 0$. Note that in this case $p^T Ax = \sum_{(i,j)\in E} p(i,j)x(i,j)$. Then we can directly find $x \in Q$ that minimizes $p^T Ax = \sum_{(i,j)\in E} p(i,j)x(i,j)$ by finding shortest s-t path when using $p(i,j) \geq 0$ as lengths, and sending k units of flow on this path. Since all the lengths p(i,j) are non-negative, we can use Dijkstra's algorithm in $\mathcal{O}(m + nlogn)$ time to find the shortest path.

Here, the oracle width is $\rho \leq k \leq m$.

So the running time would be (by Theorem 2):

$$\mathcal{O}\left(\frac{m^2}{\epsilon^2}\ln m + \frac{m}{\epsilon^2}(m+n\log n)\right) = \tilde{\mathcal{O}}\left(\frac{m^2}{\epsilon^2}\right).$$

This running time is not very good for this problem. There are classical flow algorithms finding exact solutions (rather than approximate ones) in $O(m^{3/2})$ time (and faster algorithms have been found recently). However, the point was to illustrate a use for the algorithm of the previous section.

3 Application: Max Multicommodity Flow

We now turn to another application of the multiplicative weight algorithm, now to the maximum multicommodity flow problem. Let G = (V, E) be a directed graph. There are K source-sink pairs $s_1 - t_1, s_2 - t_2, \dots, s_K - t_K$. $u(i, j) \ge 0$ represents the capacity of an edge. The goal is to find $s_i - t_i$ flow f_i for each i that maximizes $\sum_{k=1}^{K} (value of flow f_i)$ subject to the constraints that $\sum_{k=1}^{K} f_k(i, j) \le u(i, j)$, for all $(i, j) \in E$.

Note that there is nothing similar to integrality property or max-flow min-cut theorem for this problem.

Let \mathcal{P}_k = set of all $s_k - t_k$ paths and $\mathcal{P} = \bigcup_{k=1}^K \mathcal{P}_k$.

We can formulate this problem in terms of linear programming, in which we have a variable x(P) representing the amount of flow sent on path $P \in \mathcal{P}$.

$$\max \sum_{P \in \mathcal{P}} x(P)$$

s.t.
$$\sum_{P \in \mathcal{P}: (i,j) \in P} x(P) \le u(i,j)$$

$$x(P) \ge 0$$
 (P)

Its dual can be written as:

$$\min \quad \sum_{(i,j)\in E} u(i,j)\ell(i,j)$$
s.t.
$$\sum_{(i,j)\in P} \ell(i,j) \ge 1 \quad \text{for any } P \in \mathcal{P}$$

$$\ell(i,j) \ge 0$$

$$(D)$$

Then we have the following algorithm¹ for this problem as follows:

Let P_t be path chosen in iteration t, $w_t(i, j)$ be weights in iteration t, u_t be u in iteration t, $w_t = \sum_{(i,j)\in E} w_t(i,j)$, and T be number of iterations. Let X be the value of flow we compute, which is $\sum_{t=1}^{T} u_t = \sum_{P \in \mathcal{P}} x(P)$. Let X^* = value of max flow.

First observe that this algorithm does not compute a feasible flow; the value of flows on edges can and will be larger than the capacity of the edges. We will explain later how to find a feasible solution by scaling all the flows down by the same value.

Next observe that Algorithm 2 looks like multiplicative weights algorithm when

$$\begin{aligned} v_t(i,j) &= \begin{cases} \frac{u_t}{u(i,j)}, & \forall \ (i,j) \in P_t\\ 0, & otherwise \end{cases}\\ p_t(i,j) &= \frac{w_t(i,j)}{W_t} \end{aligned}$$

¹This algorithm was first proposed by Garg and Könemann 1998 http://pure.mpg.de/rest/items/ item_1819555/component/file_2574820/content and then restated by Arora, Hazan, and Kale 2012 http: //theoryofcomputing.org/articles/v008a006/v008a006.pdf.

Algorithm 2: Find Max Multicommodity Flow

$$\begin{split} x(P) &\leftarrow 0, \ \forall P \in \mathcal{P} \\ f(i,j) \leftarrow 0, \ w(i,j) \leftarrow 1, \ \forall (i,j) \in E \\ \textbf{while} \ \frac{f(i,j)}{u(i,j)} < \frac{\ln m}{\epsilon^2}, \ \forall (i,j) \in E \ \textbf{do} \\ \text{Find} \ P \in \mathcal{P} \ \text{that minimizes} \ \sum_{(i,j) \in P} \frac{w(i,j)}{u(i,j)} \ (which \ can \ be \ done \ by \ computing \\ s_k - t_k \ shortest \ path \ for \ all \ k \ using \ lengths \ \frac{w(i,j)}{u(i,j)}) \\ u \leftarrow \min_{(i,j) \in P} u(i,j) \\ x(P) \leftarrow x(P) + u \\ f(i,j) \leftarrow f(i,j) + u, \ \forall (i,j) \in P \\ w(i,j) \leftarrow (1 + \epsilon \frac{u}{u(i,j)})w(i,j), \ \forall (i,j) \in P \\ \textbf{end} \end{split}$$

Given that this is the case, we can simply apply Theorem 1, and obtain that for all edges $(h, k) \in E$:

$$\sum_{t=1}^{T} \sum_{(i,j)\in P_t} \frac{u_t}{u(i,j)} \frac{w_t(i,j)}{w_t} \ge (1-\epsilon) \sum_{t=1}^{T} \frac{u_t}{u(h,k)} \mathbb{1}_{(h,k)\in P_t} - \frac{1}{\epsilon} \ln m$$
$$= (1-\epsilon) \frac{f(h,k)}{u(h,k)} - \frac{1}{\epsilon} \ln m.$$
(1)

Now consider the dual solution for iteration t:

$$\ell_t(i,j) = \frac{\frac{w_t(i,j)}{u(i,j)}}{\sum_{(a,b)\in P_t} \frac{w_t(a,b)}{u(a,b)}}.$$

The solution is feasible, since for any path $P \in \mathcal{P}$:

$$\sum_{(i,j)\in P} \ell_t(i,j) = \frac{\sum_{(i,j)\in P} \frac{w_t(i,j)}{u(i,j)}}{\sum_{(a,b)\in P_t} \frac{w_t(a,b)}{u(a,b)}} \ge 1.$$

where the inequality holds since P_t is the shortest path at iteration t. Since the dual objective function value is always an upper bound of the primal value, we have:

$$X^* \leq \sum_{(i,j)\in E} u(i,j)\ell_t(i,j)$$

$$= \frac{\sum_{(i,j)\in E} w_t(i,j)}{\sum_{(a,b)\in P_t} \frac{w_t(a,b)}{u(a,b)}}$$

$$= \frac{W_t}{\sum_{(a,b)\in P_t} \frac{w_t(a,b)}{u(a,b)}}.$$
(2)

Thus, the left hand side of inequality (1) can be written as:

$$\sum_{t=1}^{T} \sum_{(i,j)\in P_t} \frac{u_t}{u(i,j)} \frac{w_t(i,j)}{W_t} = \sum_{t=1}^{T} \frac{u_t}{W_t} \sum_{(i,j)\in P_t} \frac{w_t(i,j)}{u(i,j)}$$
$$\leq \frac{1}{X^*} \sum_{t=1}^{T} u_t$$
$$= \frac{X}{X^*}.$$
(3)

where the inequality follows from (2).

Combining (1) and (3), we have that for all $(h, k) \in E$:

$$\frac{X}{X^*} \ge (1-\epsilon)\frac{f(h,k)}{u(h,k)} - \frac{1}{\epsilon}\ln m.$$

Let $C = \max_{(h,k)\in E} \frac{f(h,k)}{u(h,k)}$, we have that $C \ge \frac{\ln m}{\epsilon^2}$ by the termination criterion of the while loop in algorithm 2.

Let $\tilde{x}(P) = \frac{x(P)}{C}$ for all $P \in \mathcal{P}$; we claim that then \tilde{x} is a feasible solution to the primal problem. With the notion of C, we can further have:

$$\frac{X}{X^*} \ge (1-\epsilon)C - \frac{1}{\epsilon}\ln m$$
$$\ge (1-\epsilon)C - \epsilon C$$
$$= (1-2\epsilon)C.$$

So our feasible flow has value $\frac{X}{C} \ge (1 - 2\epsilon)X^*$. For running time analysis of Algorithm 2:

- 1. Each edge can be the edge s.t. u(i, j) = u at most $\frac{1}{\epsilon^2} \ln m$ times. Thus there are at most $\mathcal{O}(\frac{m \ln m}{\epsilon^2})$ iterations.
- 2. Within each iteration, we need to find K shortest paths.
- 3. Thus, the total running time is $\mathcal{O}(\frac{Km}{\epsilon^2}(m+n\log n))$. Fleishcher (2000) eliminated the dependency on K and improved the running time to be $\mathcal{O}(\frac{m}{\epsilon^2}(m+n\log n))$ http://epubs.siam.org/doi/pdf/10.1137/S0895480199355754.