ORIE 6334 Bridging Continuous and Discrete Optimization Sept. 16, 2019
 Lecture 4
 Lecturer: David P. Williamson
 Scribe: Yicheng Bai

1 Recap

1.1 The Multiplicative Weights Algorithm

Assume there are N possible different decisions that could be made at each time. Let $v_{t}(i) \in[0,1]$ denote the value of making decision i at time t. We maintain a weight $w_{t}(i)$ as a weight associated with decision i at time t. Also let

$$
W_{t}=\sum_{i=1}^{N} w_{t}(i), \quad p_{t}(i)=\frac{w_{t}(i)}{W_{t}} .
$$

We have the multiplicative weights algorithm as follows:

```
Algorithm 1: Multiplicative Weights
    \(w_{1}(i) \leftarrow 1, \forall i=1, \ldots, N\)
    for \(t \leftarrow 1\) to \(T\) do
        Pick decision \(i\) with probability \(p_{t}(i)\) and get value \(v_{t}(i)\)
        \(w_{t+1}(i) \leftarrow\left(1+\epsilon v_{t}(i)\right) w_{t}(i), \forall i=1, \ldots, N\)
    end
```

We know from last lecture that the expected revenue gained by Algorithm 1 is close enough to the value one can gain from the best fixed decision in hindsight. Specifically, we have the following theorem.

Theorem 1 Assume $\epsilon \leq 1 / 2$, then for all j,

$$
\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t}(i) v_{t}(i) \geq(1-\epsilon) \sum_{t=1}^{T} v_{t}(j)-\frac{1}{\epsilon} \ln N .
$$

1.2 Application: Finding ϵ-Feasible Solution

We showed how to apply the multiplicative weights algorithm to finding ϵ-feasible solutions to the following system:

$$
\begin{equation*}
A x \leq e, \quad x \in Q \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, e \in \mathbb{R}^{m}$ is the vector of all ones, and $Q \subseteq \mathbb{R}^{n}$ is a convex set. Assume $A x \geq 0$ for each $x \in Q$.

We also assume that we have an oracle such that given vector $p \in \mathbb{R}_{\geq 0}^{m}$, finds $x \in Q$ such that $p^{T} A x \leq p^{T} e$, if such an x exists.

Define width of oracle to be:

$$
\rho:=\max _{i=1, \ldots, m} \max _{\substack{x \in Q \\ \text { returned } \\ \text { by oracle }}}(A x)(i)
$$

By building on the multiplicative weights algorithm, there is an algorithm for this problem (Algorithm 2 in the last lecture) and we have the following theorem:

Theorem 2 The algorithm (Algorithm 2 in the last lecture) finds $\bar{x} \in Q$ s.t. $A \bar{x} \leq(1+4 \epsilon) e$ in time

$$
O\left(\frac{m \rho}{\epsilon^{2}} \ln m\right)+O\left(\frac{\rho}{\epsilon^{2}} \ln m\right)(\text { oracle calls }+ \text { matrix multiplication }) .
$$

2 Application: Max Flow in Unit Capability Graphs

To see an application of the result of the last section, we consider the maximum flow problem in directed graps. Let $G=(V, E)$ be a directed graph, let $s \in V$ be the source and $t \in V$ be the sink. The capacities are $u(i, j)=1, \forall(i, j) \in E$. The goal is to find the maximum flow from source s to sink t in this directed graph G.

A maximum flow is an optimization problem, and the results of the previous section only check feasibility of a system. How can we reduce this optimization problem to a feasibility problem? The idea is to check if there is a feasible flow of value k. Specifically, we can use binary search to find max flow value, since the value is at most $m=|E|$, we only need $\left\lceil\log _{2} m\right\rceil$ calls checking for a feasible flow.

Now we show how to reduce the problem of determining whether there exists a feasible flow of value k to the framework given above. We let A be capacity constraints such that $x(i, j) \leq 1$ for all $(i, j) \in E$, hence A is the identity matrix. We let Q be flow conservation constraints, and the flow value. We have that:
$Q=\left\{x \geq 0: \sum_{j:(i, j) \in E} x(i, j)-\sum_{j:(j, i) \in E} x(j, i)=0, \forall i \neq s, t ; \sum_{j:(s, j) \in E} x(s, j)-\sum_{j:(j, s) \in E} x(j, s)=k\right\}$.
So there exists $x \in Q$ such that $A x \leq e$ iff a feasible flow of value k exists.
We now need an oracle that checks if $\exists x \in Q$ s.t. $p^{T} A x \leq p^{T} e$ for $p \geq 0$. Note that in this case $p^{T} A x=\sum_{(i, j) \in E} p(i, j) x(i, j)$. Then we can directly find $x \in Q$ that minimizes $p^{T} A x=\sum_{(i, j) \in E} p(i, j) x(i, j)$ by finding shortest $s-t$ path when using $p(i, j) \geq 0$ as lengths, and sending k units of flow on this path. Since all the lengths $p(i, j)$ are non-negative, we can use Dijkstra's algorithm in $\mathcal{O}(m+n \operatorname{logn})$ time to find the shortest path.

Here, the oracle width is $\rho \leq k \leq m$.
So the running time would be (by Theorem 2):

$$
\mathcal{O}\left(\frac{m^{2}}{\epsilon^{2}} \ln m+\frac{m}{\epsilon^{2}}(m+n \log n)\right)=\tilde{\mathcal{O}}\left(\frac{m^{2}}{\epsilon^{2}}\right)
$$

This running time is not very good for this problem. There are classical flow algorithms finding exact solutions (rather than approximate ones) in $O\left(m^{3 / 2}\right)$ time (and faster algorithms have been found recently). However, the point was to illustrate a use for the algorithm of the previous section.

3 Application: Max Multicommodity Flow

We now turn to another application of the multiplicative weight algorithm, now to the maximum multicommodity flow problem. Let $G=(V, E)$ be a directed graph. There are K source-sink pairs $s_{1}-t_{1}, s_{2}-t_{2}, \cdots, s_{K}-t_{K} . u(i, j) \geq 0$ represents the capacity of an edge. The goal is to find $s_{i}-t_{i}$ flow f_{i} for each i that maximizes $\sum_{k=1}^{K}$ (value of flow f_{i}) subject to the constraints that $\sum_{k=1}^{K} f_{k}(i, j) \leq u(i, j)$, for all $(i, j) \in E$.

Note that there is nothing similar to integrality property or max-flow min-cut theorem for this problem.

Let $\mathcal{P}_{k}=$ set of all $s_{k}-t_{k}$ paths and $\mathcal{P}=\cup_{k=1}^{K} \mathcal{P}_{k}$.
We can formulate this problem in terms of linear programming, in which we have a variable $x(P)$ representing the amount of flow sent on path $P \in \mathcal{P}$.

$$
\begin{array}{ll}
\max & \sum_{P \in \mathcal{P}} x(P) \\
\text { s.t. } & \sum \tag{P}\\
& P \in \mathcal{P}:(i, j) \in P \\
& x(P) \geq 0
\end{array}
$$

Its dual can be written as:

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in E} u(i, j) \ell(i, j) \\
\text { s.t. } & \sum^{(i, j) \in P} \tag{D}\\
& \ell(i, j) \geq 0
\end{array}
$$

Then we have the following algorithm ${ }^{11}$ for this problem as follows:
Let P_{t} be path chosen in iteration $t, w_{t}(i, j)$ be weights in iteration t, u_{t} be u in iteration $t, w_{t}=\sum_{(i, j) \in E} w_{t}(i, j)$, and T be number of iterations. Let X be the value of flow we compute, which is $\sum_{t=1}^{T} u_{t}=\sum_{P \in \mathcal{P}} x(P)$. Let $X^{*}=$ value of max flow.

First observe that this algorithm does not compute a feasible flow; the value of flows on edges can and will be larger than the capacity of the edges. We will explain later how to find a feasible solution by scaling all the flows down by the same value.

Next observe that Algorithm 2 looks like multiplicative weights algorithm when

$$
\begin{aligned}
& v_{t}(i, j)= \begin{cases}\frac{u_{t}}{u(i, j)}, & \forall(i, j) \in P_{t} \\
0, & \text { otherwise }\end{cases} \\
& p_{t}(i, j)=\frac{w_{t}(i, j)}{W_{t}}
\end{aligned}
$$

[^0]```
Algorithm 2: Find Max Multicommodity Flow
 \(x(P) \leftarrow 0, \forall P \in \mathcal{P}\)
 \(f(i, j) \leftarrow 0, w(i, j) \leftarrow 1, \forall(i, j) \in E\)
 while \(\frac{f(i, j)}{u(i, j)}<\frac{\ln m}{\epsilon^{2}}, \forall(i, j) \in E\) do
 Find \(P \in \mathcal{P}\) that minimizes \(\sum_{(i, j) \in P} \frac{w(i, j)}{u(i, j)}\) (which can be done by computing
 \(s_{k}-t_{k}\) shortest path for all \(k\) using lengths \(\left.\frac{w(i, j)}{u(i, j)}\right)\)
 \(u \leftarrow \min _{(i, j) \in P} u(i, j)\)
 \(x(P) \leftarrow x(P)+u\)
 \(f(i, j) \leftarrow f(i, j)+u, \forall(i, j) \in P\)
 \(w(i, j) \leftarrow\left(1+\epsilon \frac{u}{u(i, j)}\right) w(i, j), \forall(i, j) \in P\)
 end
```

Given that this is the case, we can simply apply Theorem 1, and obtain that for all edges $(h, k) \in E$ :

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{(i, j) \in P_{t}} \frac{u_{t}}{u(i, j)} \frac{w_{t}(i, j)}{w_{t}} & \geq(1-\epsilon) \sum_{t=1}^{T} \frac{u_{t}}{u(h, k)} \mathbb{1}_{(h, k) \in P_{t}}-\frac{1}{\epsilon} \ln m \\
& =(1-\epsilon) \frac{f(h, k)}{u(h, k)}-\frac{1}{\epsilon} \ln m \tag{1}
\end{align*}
$$

Now consider the dual solution for iteration $t$ :

$$
\ell_{t}(i, j)=\frac{\frac{w_{t}(i, j)}{u(i, j)}}{\sum_{(a, b) \in P_{t}} \frac{w_{t}(a, b)}{u(a, b)}}
$$

The solution is feasible, since for any path $P \in \mathcal{P}$ :

$$
\sum_{(i, j) \in P} \ell_{t}(i, j)=\frac{\sum_{(i, j) \in P} \frac{w_{t}(i, j)}{u(i, j)}}{\sum_{(a, b) \in P_{t}} \frac{w_{t}(a, b)}{u(a, b)}} \geq 1 .
$$

where the inequality holds since $P_{t}$ is the shortest path at iteration $t$. Since the dual objective function value is always an upper bound of the primal value, we have:

$$
\begin{align*}
X^{*} & \leq \sum_{(i, j) \in E} u(i, j) \ell_{t}(i, j) \\
& =\frac{\sum_{(i, j) \in E} w_{t}(i, j)}{\sum_{(a, b) \in P_{t}} \frac{w_{t}(a, b)}{u(a, b)}} \\
& =\frac{W_{t}}{\sum_{(a, b) \in P_{t}} \frac{w_{t}(a, b)}{u(a, b)}} . \tag{2}
\end{align*}
$$

Thus, the left hand side of inequality (1) can be written as:

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{(i, j) \in P_{t}} \frac{u_{t}}{u(i, j)} \frac{w_{t}(i, j)}{W_{t}} & =\sum_{t=1}^{T} \frac{u_{t}}{W_{t}} \sum_{(i, j) \in P_{t}} \frac{w_{t}(i, j)}{u(i, j)} \\
& \leq \frac{1}{X^{*}} \sum_{t=1}^{T} u_{t} \\
& =\frac{X}{X^{*}} \tag{3}
\end{align*}
$$

where the inequality follows from (2).
Combining (1) and (3), we have that for all $(h, k) \in E$ :

$$
\frac{X}{X^{*}} \geq(1-\epsilon) \frac{f(h, k)}{u(h, k)}-\frac{1}{\epsilon} \ln m .
$$

Let $C=\max _{(h, k) \in E} \frac{f(h, k)}{u(h, k)}$, we have that $C \geq \frac{\ln m}{\epsilon^{2}}$ by the termination criterion of the while loop in algorithm (2)

Let $\tilde{x}(P)=\frac{x(P)}{C}$ for all $P \in \mathcal{P}$; we claim that then $\tilde{x}$ is a feasible solution to the primal problem. With the notion of $C$, we can further have:

$$
\begin{aligned}
\frac{X}{X^{*}} & \geq(1-\epsilon) C-\frac{1}{\epsilon} \ln m \\
& \geq(1-\epsilon) C-\epsilon C \\
& =(1-2 \epsilon) C .
\end{aligned}
$$

So our feasible flow has value $\frac{X}{C} \geq(1-2 \epsilon) X^{*}$.
For running time analysis of Algorithm 2 ,

1. Each edge can be the edge s.t. $u(i, j)=u$ at most $\frac{1}{\epsilon^{2}} \ln m$ times. Thus there are at most $\mathcal{O}\left(\frac{m \ln m}{\epsilon^{2}}\right)$ iterations.
2. Within each iteration, we need to find $K$ shortest paths.
3. Thus, the total running time is $\mathcal{O}\left(\frac{K m}{\epsilon^{2}}(m+n \log n)\right)$. Fleishcher (2000) eliminated the dependency on $K$ and improved the running time to be $\mathcal{O}\left(\frac{m}{\epsilon^{2}}(m+n \log n)\right)$ http: //epubs.siam.org/doi/pdf/10.1137/S0895480199355754.

[^0]:    ${ }^{1}$ This algorithm was first proposed by Garg and Könemann 1998 http://pure.mpg.de/rest/items/ item_1819555/component/file_2574820/content and then restated by Arora, Hazan, and Kale 2012 http: //theoryofcomputing.org/articles/v008a006/v008a006.pdf.

