
ORIE 6334 Bridging Continuous and Discrete Optimization Sept. 16, 2019

Lecture 4

Lecturer: David P. Williamson Scribe: Yicheng Bai

1 Recap

1.1 The Multiplicative Weights Algorithm

Assume there are N possible different decisions that could be made at each time. Let
vt(i) ∈ [0, 1] denote the value of making decision i at time t. We maintain a weight wt(i)
as a weight associated with decision i at time t. Also let

Wt =

N∑
i=1

wt(i), pt(i) =
wt(i)

Wt
.

We have the multiplicative weights algorithm as follows:

Algorithm 1: Multiplicative Weights

w1(i)← 1, ∀i = 1, . . . , N
for t← 1 to T do

Pick decision i with probability pt(i) and get value vt(i)
wt+1(i)← (1 + εvt(i))wt(i), ∀i = 1, . . . , N

end

We know from last lecture that the expected revenue gained by Algorithm 1 is close
enough to the value one can gain from the best fixed decision in hindsight. Specifically, we
have the following theorem.

Theorem 1 Assume ε ≤ 1/2, then for all j,

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnN.

1.2 Application: Finding ε-Feasible Solution

We showed how to apply the multiplicative weights algorithm to finding ε-feasible solutions
to the following system:

Ax ≤ e, x ∈ Q. (1)

where A ∈ Rm×n, e ∈ Rm is the vector of all ones, and Q ⊆ Rn is a convex set. Assume
Ax ≥ 0 for each x ∈ Q.

We also assume that we have an oracle such that given vector p ∈ Rm≥0, finds x ∈ Q

such that pTAx ≤ pT e, if such an x exists.

4-1

Define width of oracle to be:

ρ := max
i=1,...,m

max
x∈Q

returned
by oracle

(Ax)(i).

By building on the multiplicative weights algorithm, there is an algorithm for this prob-
lem (Algorithm 2 in the last lecture) and we have the following theorem:

Theorem 2 The algorithm (Algorithm 2 in the last lecture) finds x ∈ Q s.t. Ax ≤ (1+4ε)e
in time

O
(mρ
ε2

lnm
)

+O
(ρ
ε2

lnm
)

(oracle calls + matrix multiplication).

2 Application: Max Flow in Unit Capability Graphs

To see an application of the result of the last section, we consider the maximum flow problem
in directed graps. Let G = (V,E) be a directed graph, let s ∈ V be the source and t ∈ V
be the sink. The capacities are u(i, j) = 1, ∀(i, j) ∈ E . The goal is to find the maximum
flow from source s to sink t in this directed graph G.

A maximum flow is an optimization problem, and the results of the previous section only
check feasibility of a system. How can we reduce this optimization problem to a feasibility
problem? The idea is to check if there is a feasible flow of value k. Specifically, we can
use binary search to find max flow value, since the value is at most m = |E|, we only need
dlog2me calls checking for a feasible flow.

Now we show how to reduce the problem of determining whether there exists a feasible
flow of value k to the framework given above. We let A be capacity constraints such that
x(i, j) ≤ 1 for all (i, j) ∈ E, hence A is the identity matrix. We let Q be flow conservation
constraints, and the flow value. We have that:

Q =

x ≥ 0 :
∑

j:(i,j)∈E

x(i, j)−
∑

j:(j,i)∈E

x(j, i) = 0, ∀i 6= s, t;
∑

j:(s,j)∈E

x(s, j)−
∑

j:(j,s)∈E

x(j, s) = k

 .

So there exists x ∈ Q such that Ax ≤ e iff a feasible flow of value k exists.
We now need an oracle that checks if ∃x ∈ Q s.t. pTAx ≤ pT e for p ≥ 0. Note that in

this case pTAx =
∑

(i,j)∈E p(i, j)x(i, j). Then we can directly find x ∈ Q that minimizes

pTAx =
∑

(i,j)∈E p(i, j)x(i, j) by finding shortest s−t path when using p(i, j) ≥ 0 as lengths,
and sending k units of flow on this path. Since all the lengths p(i, j) are non-negative, we
can use Dijkstra’s algorithm in O(m+ nlogn) time to find the shortest path.

Here, the oracle width is ρ ≤ k ≤ m.
So the running time would be (by Theorem 2):

O
(
m2

ε2
lnm+

m

ε2
(m+ n log n)

)
= Õ

(
m2

ε2

)
.

This running time is not very good for this problem. There are classical flow algorithms find-
ing exact solutions (rather than approximate ones) in O(m3/2) time (and faster algorithms
have been found recently). However, the point was to illustrate a use for the algorithm of
the previous section.

4-2

3 Application: Max Multicommodity Flow

We now turn to another application of the multiplicative weight algorithm, now to the
maximum multicommodity flow problem. Let G = (V,E) be a directed graph. There are
K source-sink pairs s1 − t1, s2 − t2, · · · , sK − tK . u(i, j) ≥ 0 represents the capacity of an
edge. The goal is to find si − ti flow fi for each i that maximizes

∑K
k=1(value of flow fi)

subject to the constraints that
∑K

k=1 fk(i, j) ≤ u(i, j), for all (i, j) ∈ E.
Note that there is nothing similar to integrality property or max-flow min-cut theorem

for this problem.
Let Pk = set of all sk − tk paths and P = ∪Kk=1Pk.
We can formulate this problem in terms of linear programming, in which we have a

variable x(P) representing the amount of flow sent on path P ∈ P.

max
∑
P∈P

x(P)

s.t.
∑

P∈P:(i,j)∈P

x(P) ≤ u(i, j)

x(P) ≥ 0

(P)

Its dual can be written as:

min
∑

(i,j)∈E

u(i, j)`(i, j)

s.t.
∑

(i,j)∈P

`(i, j) ≥ 1 for any P ∈ P

`(i, j) ≥ 0

(D)

Then we have the following algorithm1 for this problem as follows:
Let Pt be path chosen in iteration t, wt(i, j) be weights in iteration t, ut be u in iteration

t, wt =
∑

(i,j)∈E wt(i, j), and T be number of iterations. Let X be the value of flow we

compute, which is
∑T

t=1 ut =
∑

P∈P x(P). Let X∗ = value of max flow.
First observe that this algorithm does not compute a feasible flow; the value of flows on

edges can and will be larger than the capacity of the edges. We will explain later how to
find a feasible solution by scaling all the flows down by the same value.

Next observe that Algorithm 2 looks like multiplicative weights algorithm when

vt(i, j) =

{
ut

u(i,j) , ∀ (i, j) ∈ Pt
0, otherwise

pt(i, j) =
wt(i, j)

Wt

1This algorithm was first proposed by Garg and Könemann 1998 http://pure.mpg.de/rest/items/

item_1819555/component/file_2574820/content and then restated by Arora, Hazan, and Kale 2012 http:

//theoryofcomputing.org/articles/v008a006/v008a006.pdf.

4-3

http://pure.mpg.de/rest/items/item_1819555/component/file_2574820/content
http://pure.mpg.de/rest/items/item_1819555/component/file_2574820/content
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf

Algorithm 2: Find Max Multicommodity Flow

x(P)← 0, ∀P ∈ P
f(i, j)← 0, w(i, j)← 1, ∀(i, j) ∈ E
while f(i,j)

u(i,j) <
lnm
ε2
, ∀(i, j) ∈ E do

Find P ∈ P that minimizes
∑

(i,j)∈P

w(i,j)
u(i,j) (which can be done by computing

sk − tk shortest path for all k using lengths w(i,j)
u(i,j))

u← min(i,j)∈P u(i, j)
x(P)← x(P) + u
f(i, j)← f(i, j) + u, ∀(i, j) ∈ P
w(i, j)← (1 + ε u

u(i,j))w(i, j), ∀(i, j) ∈ P
end
.

Given that this is the case, we can simply apply Theorem 1, and obtain that for all edges
(h, k) ∈ E:

T∑
t=1

∑
(i,j)∈Pt

ut
u(i, j)

wt(i, j)

wt
≥ (1− ε)

T∑
t=1

ut
u(h, k)

1(h,k)∈Pt
− 1

ε
lnm

= (1− ε)f(h, k)

u(h, k)
− 1

ε
lnm. (1)

Now consider the dual solution for iteration t:

`t(i, j) =

wt(i,j)
u(i,j)∑

(a,b)∈Pt

wt(a,b)
u(a,b)

.

The solution is feasible, since for any path P ∈ P:

∑
(i,j)∈P

`t(i, j) =

∑
(i,j)∈P

wt(i,j)
u(i,j)∑

(a,b)∈Pt

wt(a,b)
u(a,b)

≥ 1.

where the inequality holds since Pt is the shortest path at iteration t. Since the dual
objective function value is always an upper bound of the primal value, we have:

X∗ ≤
∑

(i,j)∈E

u(i, j)`t(i, j)

=

∑
(i,j)∈E wt(i, j)∑
(a,b)∈Pt

wt(a,b)
u(a,b)

=
Wt∑

(a,b)∈Pt

wt(a,b)
u(a,b)

. (2)

4-4

Thus, the left hand side of inequality (1) can be written as:

T∑
t=1

∑
(i,j)∈Pt

ut
u(i, j)

wt(i, j)

Wt
=

T∑
t=1

ut
Wt

∑
(i,j)∈Pt

wt(i, j)

u(i, j)

≤ 1

X∗

T∑
t=1

ut

=
X

X∗
. (3)

where the inequality follows from (2).
Combining (1) and (3), we have that for all (h, k) ∈ E:

X

X∗
≥ (1− ε)f(h, k)

u(h, k)
− 1

ε
lnm.

Let C = max
(h,k)∈E

f(h,k)
u(h,k) , we have that C ≥ lnm

ε2
by the termination criterion of the while

loop in algorithm 2.
Let x̃(P) = x(P)

C for all P ∈ P; we claim that then x̃ is a feasible solution to the primal
problem. With the notion of C, we can further have:

X

X∗
≥ (1− ε)C − 1

ε
lnm

≥ (1− ε)C − εC
= (1− 2ε)C.

So our feasible flow has value X
C ≥ (1− 2ε)X∗.

For running time analysis of Algorithm 2:

1. Each edge can be the edge s.t. u(i, j) = u at most 1
ε2

lnm times. Thus there are at

most O(m lnm
ε2

) iterations.

2. Within each iteration, we need to find K shortest paths.

3. Thus, the total running time is O(Km
ε2

(m + n log n)). Fleishcher (2000) eliminated
the dependency on K and improved the running time to be O(m

ε2
(m+n log n)) http:

//epubs.siam.org/doi/pdf/10.1137/S0895480199355754.

4-5

 http://epubs.siam.org/doi/pdf/10.1137/S0895480199355754
 http://epubs.siam.org/doi/pdf/10.1137/S0895480199355754

	Recap
	The Multiplicative Weights Algorithm
	Application: Finding -Feasible Solution

	Application: Max Flow in Unit Capability Graphs
	Application: Max Multicommodity Flow

