
ORIE 6334 Bridging Continuous and Discrete Optimization Sep 11th, 2019

Lecture 3

Lecturer: David P. Williamson Scribe: Shengbo Wang

1 The Multiplicative Weight Update Algorithm

Assume there are N possible different decisions that could be made at every time. Let
vt(i) ∈ [0, 1] denote the value resulting from making decision i at time t. Assume that vt(·)
is not known before one makes the decision at time t, and after making decision i, one
observes vt(j) for all j. Let the time horizon be T .

Our goal is to show that over time one can make decision to obtain a total value which
is almost the value one gets by using the best fixed decision, without any assumption on
how vt evolves in time. That is, the total value is almost

max
1≤j≤N

T∑
t=1

vt(j).

The randomized Algorithm 1 which we will define later is based on the idea that each
decision i at time t will be associated with a weight wt(i). At each time t, i is chosen with
probability pt(i) ∝ wt(i). Formally, let

Wt =
N∑
i=1

wt(i), pt(i) =
wt(i)

Wt
.

Therefore, the expected total value under Algorithm 1 is

T∑
t=1

N∑
i=1

pt(i)vt(i).

Algorithm 1: Multiplicative Weights

w1(i)← 1, ∀i = 1, . . . , N
for t← 1 to T do

Pick decision i with probability pt(i) and get value vt(i)
wt+1(i)← (1 + εvt(i))wt(i), ∀i = 1, . . . , N

end

Observe decision i is given higher weight at time t+ 1 if it gives higher value.
Note that the expected value gained by the algorithm is

∑T
t=1

∑N
i=1 pt(i)vt(i).

Now we prove that Algorithm 1 indeed achieves our goal.

0This lecture is based on a survey by Arora, Hazan, and Kale 2012 http://theoryofcomputing.org/

articles/v008a006/v008a006.pdf.

3-1

http://theoryofcomputing.org/articles/v008a006/v008a006.pdf
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf

Theorem 1 Assume ε ≤ 1/2, then for all j,

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnN.

Proof: We try to bridge the expectation that we care about and the optimal fixed
decision by finding an upper and a lower bound on WT+1. First, consider

Wt+1 =

N∑
i=1

wt+1(i)

=
N∑
i=1

wt(i)(1 + εvt(i))

= Wt + εWt

N∑
i=1

pt(i)vt(i)

= Wt

(
1 + ε

N∑
i=1

pt(i)vt(i)

)

≤Wt exp

(
ε
N∑
i=1

pt(i)vt(i)

)
.

where the last inequality follows from 1 + x ≤ ex for x ≥ 0. Therefore,

WT+1 ≤WT exp

(
ε
N∑
i=1

pT (i)vT (i)

)

≤WT−1 exp

(
ε

T∑
t=T−1

N∑
i=1

pt(i)vt(i)

)
≤ · · ·

≤W1 exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)

= N exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)
.

where W1 = N since w1(i) = 1 for all i.
On the other hand, for any given j,

WT+1 ≥ wT+1(j) = wT (j)(1 + εvT (j)) =
T∏
t=1

(1 + εvt(j)) ≥ (1 + ε)
∑T

t=1 vt(j),

using the result 1 + εx ≥ (1 + ε)x for x ∈ [0, 1].

3-2

Combining the above two inequalities,

(1 + ε)
∑T

t=1 vt(j) ≤ N exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)
.

Taking the logarithm of each side we get

ln(1 + ε)

T∑
t=1

vt(j) ≤ lnN + ε

T∑
t=1

N∑
i=1

pt(i)vt(i),

which implies

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥
ln(1 + ε)

ε

T∑
t=1

vt(j)−
1

ε
lnN ≥ (1− ε)

T∑
t=1

vt(j)−
1

ε
lnN.

Here the last step follows from the inequality ln(1 + x) ≥ x− x2 for x ≤ 1/2. �

2 Application: Finding ε-Feasible Solution

We now apply the multiplicative weights method to find ε-feasible solutions to the system:

Ax ≤ e, x ∈ Q. (1)

Here A ∈ Rm×n, e ∈ Rm is the vector of all ones, and Q ⊆ Rn is a convex set. Assume
Ax ≥ 0 for each x ∈ Q. By ε-feasible, it means that x ∈ Q, Ax ≤ (1 + ε)e.

We also assume that it is easy to optimize over Q, i.e., we have an oracle, given any
p ∈ Rm+ , it will find x ∈ Q such that pTAx ≤ pT e, if such an x exists. If no such x ∈ Q exists,
then we can conclude that the system (1) is infeasible. Since pTAx is a linear function in
x, we have an oracle as long as we can optimize linear functions over Q.

We will base our Algorithm 2 on the multiplicative weights algorithm 1 defined above.
For convenience, define the width of the oracle to be

ρ := max
i=1,...,m

max
x∈Q

returned
by oracle

(Ax)(i);

i.e. the furthest coordinate of Ax that the oracle will produce.
The idea in Algorithm 2 is to run multiplicative weights algorithm in which each decision

corresponds to a row of A and its value is 1
ρ(Axt)(i), where xt is a vector returned by the

oracle.
Note that we didn’t specify T ; T depends on ε in the sense that to achieve ε-feasible,

T iterations are needed; the relationship will be given below. The running time is O(Tm)
time plus O(T) oracle calls and additional matrix-vector multiplications Axt which will be
dependent on properties of the matrix; e.g. sparsity.

The intuition of Algorithm 2 is to increase the probability on the more violated coor-
dinates, so in later iterations the oracle will produce more xt satisfying the constraint on
these particular coordinate.

3-3

Algorithm 2: Finding Feasible Solution to (1)

w1(i)← 1, ∀i = 1, . . . ,m
for t← 1 to T do

Wt ←
∑m

i=1wt(i), pt(i)← wt(i)/Wt

Run oracle and obtain xt ∈ Q such that pTt Axt ≤ pTt e
vt(i)← (Axt)(i)/ρ (observe the value is in [0, 1] by the definition of width ρ)
wt+1(i)← (1 + εvt(i))wt(i), ∀i = 1, . . . ,m

end

return x̄ := 1
T

∑T
t=1 xt

Also note that the returned value x̄ is always in Q by the convexity of Q. To show that
the algorithm works, we would like to apply the theorem. First, by the algorithm, for all t

m∑
i=1

pt(i)vt(i) =
1

ρ
pTt Axt ≤

1

ρ
pTt e =

1

ρ
,

since pt gives a probability distribution.
By Theorem 1, for any j,

T

ρ
≥

T∑
t=1

N∑
i=1

pt(i)vt(i)

≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnm

= (1− ε)
T∑
t=1

1

ρ
(Axt)(j)−

1

ε
lnm

= (1− ε)T
ρ

(Ax̄)(j)− 1

ε
lnm.

Hence

(1− ε)T
ρ

(Ax̄)(j) ≤ T

ρ
+

1

ε
lnm.

If we set T = ρ lnm/ε2, then

(Ax̄)(j) ≤ 1

1− ε

(
1 +

ρ lnm

εT

)
=

1 + ε

1− ε
≤ 1 + 4ε

for ε ≤ 1/3, which gives Ax̄ ≤ (1 + 4ε)e. The running time is

O
(mρ
ε2

lnm
)

+O
(ρ
ε2

lnm
)

(oracle calls + matrix multiplication).

2.1 Application: Max Flow in Unit Capability Graphs

As a quick illustration, let’s see how to apply the framework above to the maximum flow
problem in unit capacity graphs. It won’t give a very fast algorithm, but it will help us

3-4

understand what is going on. Let G = (V,E) be a graph, and u(i, j) = 1 the capacity,
∀(i, j) ∈ E. Let s ∈ V be the source and t ∈ V be the sink. Our goal is to find a max flow
from s to t.

The framework above is to decide if there is a feasible solution to a system, whereas the
max flow problem is an optimization problem. In order to use the feasibility checker to find
an optimal flow, we use the feasibility checker to check if there exists a flow of value k, and
use a binary search for the max k that is feasible. Define |m| = |E|. Then an easy upper
bound on the value of the maximum flow is m, and we need dlog2(m)e checks of feasibility.

We set up this feasibility checking problem. The A matrix in algorithm 2 checks the
capacity constraints x(i, j) ≤ 1, and hence is the identity matrix, where the variable x ∈ Rm
is the flow vector; i.e. x(i, j).

The convex set Q will encode the flow conservation and flow value constraints, and so is

Q =

x ≥ 0 :
∑

j:(i,j)∈E

x(i, j)−
∑

j:(j,i)∈E

x(j, i) = 0,∀i 6= s, t;
∑

j:(s,j)∈E

x(s, j)−
∑

j:(j,s)∈E

x(j, s) = k

 .

For any p ≥ 0 and ‖p‖1 = 1, we can let the oracle to return x ∈ Q that minimize
pTAx = pTx; if this is greater than pT e such k is not feasible. Observe that the minimum
achieved on the shortest path with d(i, j) = p(i, j), ∀(i, j) ∈ E. Because we can always shift
the flow on longer path to the shortest one as there is no capacity imposed.

3-5

	The Multiplicative Weight Update Algorithm
	Application: Finding -Feasible Solution
	Application: Max Flow in Unit Capability Graphs

