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Lecture 23
Lecturer: David P. Williamson Scribe: Sam Zhou

In this lecture, we consider the problem of maximizing monotone submodular
functions under cardinality constraints, and a more general class called matroid con-
straints.

1 Submodular Functions

We have a ground set of elements E = {ey,...,e,} ={1,2,...,n}.

Definition 1 A function f :2F — Ry is submodular if for all S CT C E, we have
FTU{l}) — (1) < fF(SU{T}) = f(5)

foralll e E\T.

By Definition [I| we see that submodular functions are scalar functions defined on
subsets of F that have decreasing marginal returns. It can be shown that Definition
is equivalent to Definition [2}

Definition 2 A function f :2F — R, is submodular if for any S, T C E, we have
fS)+ f(T) = f(SUT) + f(SNT).
Definition 3 A function f : 2% — R is monotone if for any S C T C E, we have
f(8) < f(T).
Submodular functions have many applications:

e Cuts: Consider a undirected graph G = (V, E), where each edge e € F is
assigned with weight w, > 0. Define the weighted cut function for subsets of E:

f(S) = Z We.
)

e€d(S

We can see that f is submodular by showing any edge in the right-hand side of
Definition 2 is also in the left-hand side.

e Influence in social networks [KKT03].

e Machine learning, algorithmic game theory, etc.
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2 Maximizing Monotone Submodular Functions un-
der Cardinality Constraints

When a submodular function f : 2 — R, is monotone, maximizing f is easy,
since the ground set F is always an optimal solution. Thus we consider maximizing
monotone submodular functions under cardinality constraints:

max f(9)
st. |S| <k (1)
SCE,

where k is an integer satisfying 0 < k < |E].
In 1997, Cornuejols, Fisher and Nemhauser proposed a straightforward greedy
algorithm for (T):

Algorithm 1: Greedy Algorithm.
S <+ 0;
while |S| < k do
e  argmax,cglf(S U {e}) — F(S)];
S« Su{el;
end
return S.

Theorem 1 ([CENTT?]) The greedy algorithm is a (1—1/e)-approzimation algorithm

for ().
Remark 1 1 —1/e ~ 0.632.

We prove Theorem [I| by lower bounding the improvement of f(S) at each iteration.

Lemma 2 Pick any S C E such that |S| < k. Let O denote an optimal solution to

, then

max|[f(S U {e}) — f(9)] = %[f(o) - f(9)]. (2)
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Proof:  Let O\ S = {i1...,i,}, so that p < k. Then we have

f(O) < f(OUS) (3)

=f@%+§]ﬂ5Uﬁh~w%D—f@U{%~w%49]

§ﬂ$+§]ﬂSU%ﬂ—fwﬂ (4)
<)+ Y max[f(SU{e}) = £(9) (5)
= f(S) + kmax[f(S U {e}) - £(3)]. (6)

where (3)) is by the monotonicity of f, and are by the submodularity of f, and
(6) is by p < k. O
Proof of Theorem Let S* denote the solution of the greedy algorithm at the
end of iteration ¢. Then by Lemma [2]

0
N
Vv

F85) 2 15O+ (1= 1) 18+

s+ (1-3) [pror+ (1= 1) sest2)

AV
= =

Vv
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where (7)) is by f(0) > 0, and (8] is by the inequality 1 — x < e™* for all x € R.

As simplistic as Algorithm [1] seems, as Feige [Fei98] pointed out, for any € > 0,
there is no (1 — 1/e + €)-approximation algorithm for maximizing monotone submod-
ular functions under cardinality constraints, unless P = N P.
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3 Maximizing Monotone Submodular Functions un-
der Matroid Constraints

A cardinality constraint is a special case of matroid constraints:

Definition 4 Given a ground set E, a matroid L is a collection of subsets of E such
that

e ifSeZ, thenS CS=S5¢€T;
o if S, T €Z and |S| < |T|, then there exists e € T'\ S such that S U{e} € T.

The elements of a matroid are called independent sets, whose name alludes the par-
allelism between independent sets and the set of linearly independent vectors in a
vector space. It easy to check the set

{SCE[|S| <k}

is a matroid.

An independent set S is called a base of a matroid Z if #S’ D S such that S’ € 7.
By the second part of Definition [4] all bases of a matroid Z have the same cardinality.
Matroids have a favorable computational property.

Fact 1 A greedy algorithm finds a maximum weighted base of a matroid.

An important example of matroids is the collection of edge set of the forests in a
graph. The bases of this matroid are the spanning trees.

We consider maximizing monotone submodular functions under matroid con-
straints:

max f(S)
st. SeZl (9)
SCE,

where 7 is a matroid of F. In 1978, Nemhauser, Wolsey, and Fisher proposed a
local-search based algorithm [NWETS|:

Theorem 3 A local search algorithm gives a (1/2 — €)-approximation algorithm for
mazimizing monotone submodular functions subject to matroid constraints.

Before talking about another algorithm for @, for a matroid S, define a polytope

P={reR" |z R z;<r(S), VS C E}, (10)

ics
where the rank function r : 2 — R is defined as

r(S)= max |9 (11)

S'CS, S'eT
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A useful property of P is that the extreme points of P correspond to the independent
sets of Z. The algorithm we are about to present traces a continuous path in P. To
specify the algorithm, we define a multilinear function F : [0,1]" — R, which is a
continuous version of f:

F(z) =Y fS) [ JJx =) (12)

SeE i€S ¢S

Let 1g € [0,1]" denote the vector that corresponds to S. It is easy to check that
F(1g) = f(S). F(z) is a multilinear function since it is linear in each x;. It should
be noted that in general, F' is hard to evaluate, since the evaluation of F' involves all
the subsets of E. However, we have the following fact:

Fact 2 We can evaluate F(x) within given error by sampling.
Lastly, for notational brevity, given z,y € R", define x V y such that
(x Vy); == max{z;,y}. (13)

Now we are ready to present an algorithm for maximizing monotone submodular
functions under cardinality constraints:

Algorithm 2: Continuous Greedy Algorithm.
y <+ 0eR™
for t € [0,1] do
wi = Fy(t) Ve) — Fy(t
x(t) +— argmax,p(w(t), x

)) for each i € E;
)
dy(t
Increase y(t) at rate % = x(t);
end

return y(1) = fol

I

x(t)dt.

Here the computation of x(t) uses Fact [I| the correspondence between the extreme
points of P and the bases of Z, and the fact that there always exists an extreme
point solution to a linear optimization problem over a polytope. We can obtain a
polynomial time algorithm by discretizing the time steps of y(¢) in Algorithm .

Theorem 4 ([CCPV11]) Let O denote an optimal solution to (9)), the continuous
greedy algorithm returns y(1) € P such that

Fly(1) = (1 1)5(0).

(&

Remark 2 We can obtain an (1 — 1/e)-approzimation solution to () by checking
the extreme points of the face of P that y(1) lies in.
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As for Theorem [I}, to prove Theorem [4], we first present a result that is useful to
lower bounding the growth rate of f(y(t)):

Lemma 5 For all y € [0, 1]”

f(o )+ D [FlyVe)— Fy)).
1€O
Proof: Forall RC E,let O\ R = {iy,...,i,}, then we have
f(0) < f(OUR) (14)

R)+ 2 (RO i) = FRU{in, o i5a})]

R)+ 3 _[F(RU{i;}) = F(R)] (15)
R)+ > [f(RU{i}) - f(R)], (16)
icO

where ([14)) is by the monotonicity of f, is by the submodularity of f and
is by the observation that f(RU {i}) — f(S) = 0 when ¢ € R. For given y € [0, 1]",
consider drawing R by random sampling: ¢ € R with probability y;. Then each S C E
has probability [T, ¢z Higs(l — x;) to be chosen, which gives

=S O [Iw]]0-v) =F).

SeE €S  igs

By the same argument, we have
E[f(RU{i})] = Fy Vv e),

and (14)-(16) shows the Lemma is true. a
Proof of Theorem Since x(t) € P for any ¢ € [0, 1], we have

by the convexity of P. Compute

dF(y(t))
e Z

=3 (st EOLY ) -0 -

> 3 (twit)). (18)



where (|17)) is by the linearity of F(y) in y;, and is by the definition of w(t).
Let 1o € [0, 1]™ denote the vector that corresponds to an optimal solution O, then
by the definition of #(¢) and Lemma [5)]

(w(t), z(t)) > (w(t), lo)
= [F(y(t) v e:) — F(y(t))]

€O

> [(O) = F(y(t)).

Hence
PO > 5(0) - Fium).
This implies that F'(y(t)) dominates ¢(t) : [0, 1] — R™ subject to
90— 10)~ s(ul1). (19)

Solve (19)), we get
o(t) = (1 —e)f(0),
and

F(y(1)) = ¢(1) = (1 = e 1) f(O).

Remark 3 Buchbinder, Feldman and Schwartz gives a nice summary of maximizing
submodular functions in [BES16]. In 2012, Filmus and Ward [FW12] proposed a local
search based (1 —1/e)-approzimation algorithm for mazimizing monotone submodular
functions under matroid constraints.
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