ORIE 6334 Bridging Continuous and Discrete Optimization Dec 9, 2019

Lecture 23

Lecturer: David P. Williamson

Scribe: Sam Zhou

In this lecture, we consider the problem of maximizing monotone submodular functions under cardinality constraints, and a more general class called matroid constraints.

1 Submodular Functions

We have a ground set of elements $E = \{e_1, \ldots, e_n\} \equiv \{1, 2, \ldots, n\}.$

Definition 1 A function $f: 2^E \to \mathbf{R}_+$ is submodular if for all $S \subseteq T \subseteq E$, we have

 $f(T \cup \{l\}) - f(T) \le f(S \cup \{l\}) - f(S)$

for all $l \in E \setminus T$.

By Definition 1, we see that submodular functions are scalar functions defined on subsets of E that have *decreasing marginal returns*. It can be shown that Definition 1 is equivalent to Definition 2:

Definition 2 A function $f: 2^E \to \mathbf{R}_+$ is submodular if for any $S, T \subseteq E$, we have

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T).$$

Definition 3 A function $f: 2^E \to \mathbf{R}_+$ is monotone if for any $S \subseteq T \subseteq E$, we have

$$f(S) \le f(T).$$

Submodular functions have many applications:

• Cuts: Consider a undirected graph G = (V, E), where each edge $e \in E$ is assigned with weight $w_e \ge 0$. Define the weighted cut function for subsets of E:

$$f(S) := \sum_{e \in \delta(S)} w_e.$$

We can see that f is submodular by showing any edge in the right-hand side of Definition 2 is also in the left-hand side.

- Influence in social networks [KKT03].
- Machine learning, algorithmic game theory, etc.

2 Maximizing Monotone Submodular Functions under Cardinality Constraints

When a submodular function $f : 2^E \to \mathbb{R}_+$ is monotone, maximizing f is easy, since the ground set E is always an optimal solution. Thus we consider maximizing monotone submodular functions under cardinality constraints:

$$\begin{array}{l} \max \quad f(S) \\ s.t. \quad |S| \le k \\ \quad S \subseteq E, \end{array}$$
(1)

where k is an integer satisfying $0 \le k \le |E|$.

In 1997, Cornuejols, Fisher and Nemhauser proposed a straightforward greedy algorithm for (1):

Algorithm 1: Greedy Algorithm. $S \leftarrow \emptyset;$ while |S| < k do $e \leftarrow \operatorname{argmax}_{e \in E}[f(S \cup \{e\}) - f(S)];$ $S \leftarrow S \cup \{e\};$ end return S.

Theorem 1 ([CFN77]) The greedy algorithm is a (1-1/e)-approximation algorithm for (1).

Remark 1 $1 - 1/e \approx 0.632$.

We prove Theorem 1 by lower bounding the improvement of f(S) at each iteration.

Lemma 2 Pick any $S \subseteq E$ such that |S| < k. Let \mathcal{O} denote an optimal solution to (1), then

$$\max_{e \in E} [f(S \cup \{e\}) - f(S)] \ge \frac{1}{k} [f(\mathcal{O}) - f(S)].$$
(2)

Proof: Let $\mathcal{O} \setminus S = \{i_1, \ldots, i_p\}$, so that $p \leq k$. Then we have

$$f(\mathcal{O}) \le f(\mathcal{O} \cup S)$$

$$= f(S) + \sum_{j=1}^{p} [f(S \cup \{i_1, \dots, i_j\}) - f(S \cup \{i_1, \dots, i_{j-1}\})]$$
(3)

$$\leq f(S) + \sum_{j=1}^{i} [f(S \cup \{i_j\}) - f(S)]$$
(4)

$$\leq f(S) + \sum_{j=1}^{p} \max_{e \in E} [f(S \cup \{e\}) - f(S)]$$
(5)

$$= f(S) + k \max_{e \in E} [f(S \cup \{e\}) - f(S)],$$
(6)

where (3) is by the monotonicity of f, (4) and (5) are by the submodularity of f, and (6) is by $p \leq k$.

Proof of Theorem 1: Let S^t denote the solution of the greedy algorithm at the end of iteration t. Then by Lemma 2,

$$f(S^{k}) \geq \frac{1}{k}f(\mathcal{O}) + \left(1 - \frac{1}{k}\right)f(S^{k-1})$$

$$\geq \frac{1}{k}f(\mathcal{O}) + \left(1 - \frac{1}{k}\right)\left[\frac{1}{k}f(\mathcal{O}) + \left(1 - \frac{1}{k}\right)f(S^{k-2})\right]$$

$$\geq \cdots$$

$$\geq \frac{f(\mathcal{O})}{k}\left[1 + \left(1 - \frac{1}{k}\right) + \left(1 - \frac{1}{k}\right)^{2} + \cdots + \left(1 - \frac{1}{k}\right)^{k}\right] + f(\emptyset)$$

$$\geq \frac{(1 - \frac{1}{k})^{k}}{k(1 - (1 - \frac{1}{k}))}f(\mathcal{O})$$

$$= \left(1 - \frac{1}{k}\right)^{k}f(\mathcal{O})$$

$$\geq \left(1 - \frac{1}{e}\right)f(\mathcal{O}),$$
(8)

where (7) is by $f(\emptyset) \ge 0$, and (8) is by the inequality $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$.

As simplistic as Algorithm 1 seems, as Feige [Fei98] pointed out, for any $\epsilon > 0$, there is no $(1 - 1/e + \epsilon)$ -approximation algorithm for maximizing monotone submodular functions under cardinality constraints, unless P = NP.

3 Maximizing Monotone Submodular Functions under Matroid Constraints

A cardinality constraint is a special case of *matroid constraints*:

Definition 4 Given a ground set E, a matroid \mathcal{I} is a collection of subsets of E such that

- if $S \in \mathcal{I}$, then $S' \subseteq S \Rightarrow S' \in \mathcal{I}$;
- if $S, T \in \mathcal{I}$ and |S| < |T|, then there exists $e \in T \setminus S$ such that $S \cup \{e\} \in \mathcal{I}$.

The elements of a matroid are called *independent sets*, whose name alludes the parallelism between independent sets and the set of linearly independent vectors in a vector space. It easy to check the set

$$\{S \subseteq E \mid |S| \le k\}$$

is a matroid.

An independent set S is called a *base* of a matroid \mathcal{I} if $\nexists S' \supseteq S$ such that $S' \in \mathcal{I}$. By the second part of Definition 4, all bases of a matroid \mathcal{I} have the same cardinality. Matroids have a favorable computational property.

Fact 1 A greedy algorithm finds a maximum weighted base of a matroid.

An important example of matroids is the collection of edge set of the forests in a graph. The bases of this matroid are the spanning trees.

We consider maximizing monotone submodular functions under matroid constraints:

$$\begin{array}{l} \max \quad f(S) \\ s.t. \quad S \in \mathcal{I} \\ \quad S \subseteq E, \end{array}$$

$$(9)$$

where \mathcal{I} is a matroid of E. In 1978, Nemhauser, Wolsey, and Fisher proposed a local-search based algorithm [NWF78]:

Theorem 3 A local search algorithm gives a $(1/2 - \epsilon)$ -approximation algorithm for maximizing monotone submodular functions subject to matroid constraints.

Before talking about another algorithm for (9), for a matroid S, define a polytope

$$\mathcal{P} := \{ x \in \mathbb{R}^n \mid x \in \mathbb{R}^n_+, \sum_{i \in S} x_i \le r(S), \ \forall S \subseteq E \},$$
(10)

where the rank function $r: 2^E \to \mathbb{R}$ is defined as

$$r(S) = \max_{S' \subseteq S, \ S' \in \mathcal{I}} |S'|.$$

$$(11)$$

A useful property of \mathcal{P} is that the extreme points of \mathcal{P} correspond to the independent sets of \mathcal{I} . The algorithm we are about to present traces a continuous path in \mathcal{P} . To specify the algorithm, we define a *multilinear* function $F : [0,1]^n \to \mathbb{R}$, which is a continuous version of f:

$$F(x) := \sum_{S \in E} f(S) \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i).$$
(12)

Let $1_S \in [0,1]^n$ denote the vector that corresponds to S. It is easy to check that $F(1_S) = f(S)$. F(x) is a multilinear function since it is linear in each x_i . It should be noted that in general, F is hard to evaluate, since the evaluation of F involves all the subsets of E. However, we have the following fact:

Fact 2 We can evaluate F(x) within given error by sampling.

Lastly, for notational brevity, given $x, y \in \mathbb{R}^n$, define $x \vee y$ such that

$$(x \lor y)_i := \max\{x_i, y_i\}. \tag{13}$$

Now we are ready to present an algorithm for maximizing monotone submodular functions under cardinality constraints:

Algorithm 2: Continuous Greedy Algorithm.

 $y \leftarrow 0 \in \mathbb{R}^{n};$ **for** $t \in [0, 1]$ **do** $\begin{vmatrix} w_{i} \leftarrow F(y(t) \lor e_{i}) - F(y(t)) \text{ for each } i \in E; \\ x(t) \leftarrow \operatorname{argmax}_{x \in \mathcal{P}} \langle w(t), x \rangle; \\ \text{Increase } y(t) \text{ at rate } \frac{\mathrm{d}y(t)}{\mathrm{d}t} = x(t); \\ \text{end} \\ \text{return } y(1) = \int_{0}^{1} x(t) \mathrm{d}t. \end{aligned}$

Here the computation of x(t) uses Fact 1, the correspondence between the extreme points of \mathcal{P} and the bases of \mathcal{I} , and the fact that there always exists an extreme point solution to a linear optimization problem over a polytope. We can obtain a polynomial time algorithm by discretizing the time steps of y(t) in Algorithm 2.

Theorem 4 ([CCPV11]) Let \mathcal{O} denote an optimal solution to (9), the continuous greedy algorithm returns $y(1) \in \mathcal{P}$ such that

$$F(y(1)) \ge (1 - \frac{1}{e})f(\mathcal{O}).$$

Remark 2 We can obtain an (1 - 1/e)-approximation solution to (9) by checking the extreme points of the face of \mathcal{P} that y(1) lies in. As for Theorem 1, to prove Theorem 4, we first present a result that is useful to lower bounding the growth rate of f(y(t)):

Lemma 5 For all $y \in [0, 1]^n$,

$$f(\mathcal{O}) \le F(y) + \sum_{i \in \mathcal{O}} [F(y \lor e_i) - F(y)].$$

Proof: For all $R \subseteq E$, let $\mathcal{O} \setminus R = \{i_1, \ldots, i_p\}$, then we have

$$f(\mathcal{O}) \leq f(\mathcal{O} \cup R)$$

$$= f(R) + \sum_{j=1}^{p} [f(R \cup \{i_1, \dots, i_j\}) - f(R \cup \{i_1, \dots, i_{j-1}\})]$$

$$\leq f(R) + \sum_{j=1}^{p} [f(R \cup \{i_j\}) - f(R)]$$
(15)

$$= f(R) + \sum_{i \in \mathcal{O}} [f(R \cup \{i\}) - f(R)],$$
(16)

where (14) is by the monotonicity of f, (15) is by the submodularity of f and (16) is by the observation that $f(R \cup \{i\}) - f(S) = 0$ when $i \in R$. For given $y \in [0, 1]^n$, consider drawing R by random sampling: $i \in R$ with probability y_i . Then each $S \subseteq E$ has probability $\prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i)$ to be chosen, which gives

$$E[f(R)] = \sum_{S \in E} f(S) \prod_{i \in S} y_i \prod_{i \notin S} (1 - y_i) = F(y).$$

By the same argument, we have

$$E[f(R \cup \{i\})] = F(y \lor e_i),$$

and (14)-(16) shows the Lemma is true. **Proof of Theorem 4:** Since $x(t) \in \mathcal{P}$ for any $t \in [0, 1]$, we have

$$y(1) = \int_0^1 x(t) \mathrm{d}t \in \mathcal{P}$$

by the convexity of \mathcal{P} . Compute

$$\frac{\mathrm{d}F(y(t))}{\mathrm{d}t} = \sum_{i\in E} \left(\frac{\mathrm{d}y_i(t)}{\mathrm{d}t} \cdot \frac{\partial F(y)}{\partial y_i} \Big|_{y=y(t)} \right)$$

$$= \sum_{i\in E} \left(x_i(t) \cdot \frac{\partial F(y)}{\partial y_i} \Big|_{y=y(t)} \right)$$

$$= \sum_{i\in E} \left(x_i(t) \cdot \frac{F(y(t) \vee e_i) - F(y(t))}{1 - y_i(t)} \right)$$
(17)

$$\geq \sum_{i \in E} \left(x_i(t) w_i(t) \right), \tag{18}$$

where (17) is by the linearity of F(y) in y_i , and (18) is by the definition of w(t).

Let $1_{\mathcal{O}} \in [0, 1]^n$ denote the vector that corresponds to an optimal solution \mathcal{O} , then by the definition of x(t) and Lemma 5,

$$\langle w(t), x(t) \rangle \geq \langle w(t), 1_{\mathcal{O}} \rangle$$

=
$$\sum_{i \in \mathcal{O}} [F(y(t) \lor e_i) - F(y(t))]$$

$$\geq f(\mathcal{O}) - F(y(t)).$$

Hence

$$\frac{\mathrm{d}F(y(t))}{\mathrm{d}t} \ge f(\mathcal{O}) - F(y(t)).$$

This implies that F(y(t)) dominates $\phi(t): [0,1] \to \mathbb{R}^n$ subject to

$$\frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = f(\mathcal{O}) - \phi(y(t)). \tag{19}$$

Solve (19), we get

$$\phi(t) = (1 - e^{-t})f(\mathcal{O}),$$

and

$$F(y(1)) \ge \phi(1) = (1 - e^{-1})f(\mathcal{O}).$$

Remark 3 Buchbinder, Feldman and Schwartz gives a nice summary of maximizing submodular functions in [BFS16]. In 2012, Filmus and Ward [FW12] proposed a local search based (1-1/e)-approximation algorithm for maximizing monotone submodular functions under matroid constraints.

References

- [BFS16] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query trade-off in submodular maximization. *Mathematics* of Operations Research, 42(2):308–329, 2016.
- [CCPV11] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.
- [CFN77] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Exceptional paper—location of bank accounts to optimize float: An analytic study of exact and approximate algorithms. *Management science*, 23(8):789–810, 1977.
- [Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634–652, 1998.

- [FW12] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 659–668. IEEE, 2012.
- [KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.
- [NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing submodular set functions—i. *Mathematical programming*, 14(1):265–294, 1978.