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In this lecture, we consider the problem of maximizing monotone submodular
functions under cardinality constraints, and a more general class called matroid con-
straints.

1 Submodular Functions

We have a ground set of elements E = {e1, . . . , en} ≡ {1, 2, . . . , n}.

Definition 1 A function f : 2E → R+ is submodular if for all S ⊆ T ⊆ E, we have

f(T ∪ {l})− f(T ) ≤ f(S ∪ {l})− f(S)

for all l ∈ E \ T .

By Definition 1, we see that submodular functions are scalar functions defined on
subsets of E that have decreasing marginal returns. It can be shown that Definition
1 is equivalent to Definition 2:

Definition 2 A function f : 2E → R+ is submodular if for any S, T ⊆ E, we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Definition 3 A function f : 2E → R+ is monotone if for any S ⊆ T ⊆ E, we have

f(S) ≤ f(T ).

Submodular functions have many applications:

• Cuts: Consider a undirected graph G = (V,E), where each edge e ∈ E is
assigned with weight we ≥ 0. Define the weighted cut function for subsets of E:

f(S) :=
∑
e∈δ(S)

we.

We can see that f is submodular by showing any edge in the right-hand side of
Definition 2 is also in the left-hand side.

• Influence in social networks [KKT03].

• Machine learning, algorithmic game theory, etc.
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2 Maximizing Monotone Submodular Functions un-

der Cardinality Constraints

When a submodular function f : 2E → R+ is monotone, maximizing f is easy,
since the ground set E is always an optimal solution. Thus we consider maximizing
monotone submodular functions under cardinality constraints:

max f(S)
s.t. |S| ≤ k

S ⊆ E,
(1)

where k is an integer satisfying 0 ≤ k ≤ |E|.
In 1997, Cornuejols, Fisher and Nemhauser proposed a straightforward greedy

algorithm for (1):

Algorithm 1: Greedy Algorithm.

S ← ∅;
while |S| < k do

e← argmaxe∈E[f(S ∪ {e})− f(S)];
S ← S ∪ {e};

end
return S.

Theorem 1 ([CFN77]) The greedy algorithm is a (1−1/e)-approximation algorithm
for (1).

Remark 1 1− 1/e ≈ 0.632.

We prove Theorem 1 by lower bounding the improvement of f(S) at each iteration.

Lemma 2 Pick any S ⊆ E such that |S| < k. Let O denote an optimal solution to
(1), then

max
e∈E

[f(S ∪ {e})− f(S)] ≥ 1

k
[f(O)− f(S)]. (2)
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Proof: Let O \ S = {i1 . . . , ip}, so that p ≤ k. Then we have

f(O) ≤ f(O ∪ S) (3)

= f(S) +

p∑
j=1

[f(S ∪ {i1, . . . , ij})− f(S ∪ {i1, . . . , ij−1})]

≤ f(S) +

p∑
j=1

[f(S ∪ {ij})− f(S)] (4)

≤ f(S) +

p∑
j=1

max
e∈E

[f(S ∪ {e})− f(S)] (5)

= f(S) + kmax
e∈E

[f(S ∪ {e})− f(S)], (6)

where (3) is by the monotonicity of f , (4) and (5) are by the submodularity of f , and
(6) is by p ≤ k. 2
Proof of Theorem 1: Let St denote the solution of the greedy algorithm at the
end of iteration t. Then by Lemma 2,

f(Sk) ≥ 1

k
f(O) +

(
1− 1

k

)
f(Sk−1)

≥ 1

k
f(O) +

(
1− 1

k

)[
1

k
f(O) +

(
1− 1

k

)
f(Sk−2)

]
≥ · · ·

≥ f(O)

k

[
1 +

(
1− 1

k

)
+

(
1− 1

k

)2

+ · · ·+
(

1− 1

k

)k]
+ f(∅)

≥
(1− 1

k
)k

k(1− (1− 1
k
))
f(O) (7)

=

(
1− 1

k

)k
f(O)

≥
(

1− 1

e

)
f(O), (8)

where (7) is by f(∅) ≥ 0, and (8) is by the inequality 1− x ≤ e−x for all x ∈ R.
As simplistic as Algorithm 1 seems, as Feige [Fei98] pointed out, for any ε > 0,

there is no (1− 1/e+ ε)-approximation algorithm for maximizing monotone submod-
ular functions under cardinality constraints, unless P = NP .
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3 Maximizing Monotone Submodular Functions un-

der Matroid Constraints

A cardinality constraint is a special case of matroid constraints :

Definition 4 Given a ground set E, a matroid I is a collection of subsets of E such
that

• if S ∈ I, then S ′ ⊆ S ⇒ S ′ ∈ I;

• if S, T ∈ I and |S| < |T |, then there exists e ∈ T \ S such that S ∪ {e} ∈ I.

The elements of a matroid are called independent sets, whose name alludes the par-
allelism between independent sets and the set of linearly independent vectors in a
vector space. It easy to check the set

{S ⊆ E | |S| ≤ k}

is a matroid.
An independent set S is called a base of a matroid I if @S ′ ⊇ S such that S ′ ∈ I.

By the second part of Definition 4, all bases of a matroid I have the same cardinality.
Matroids have a favorable computational property.

Fact 1 A greedy algorithm finds a maximum weighted base of a matroid.

An important example of matroids is the collection of edge set of the forests in a
graph. The bases of this matroid are the spanning trees.

We consider maximizing monotone submodular functions under matroid con-
straints:

max f(S)
s.t. S ∈ I

S ⊆ E,
(9)

where I is a matroid of E. In 1978, Nemhauser, Wolsey, and Fisher proposed a
local-search based algorithm [NWF78]:

Theorem 3 A local search algorithm gives a (1/2 − ε)-approximation algorithm for
maximizing monotone submodular functions subject to matroid constraints.

Before talking about another algorithm for (9), for a matroid S, define a polytope

P := {x ∈ Rn | x ∈ Rn
+,
∑
i∈S

xi ≤ r(S), ∀S ⊆ E}, (10)

where the rank function r : 2E → R is defined as

r(S) = max
S′⊆S, S′∈I

|S ′|. (11)
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A useful property of P is that the extreme points of P correspond to the independent
sets of I. The algorithm we are about to present traces a continuous path in P . To
specify the algorithm, we define a multilinear function F : [0, 1]n → R, which is a
continuous version of f :

F (x) :=
∑
S∈E

f(S)
∏
i∈S

xi
∏
i 6∈S

(1− xi). (12)

Let 1S ∈ [0, 1]n denote the vector that corresponds to S. It is easy to check that
F (1S) = f(S). F (x) is a multilinear function since it is linear in each xi. It should
be noted that in general, F is hard to evaluate, since the evaluation of F involves all
the subsets of E. However, we have the following fact:

Fact 2 We can evaluate F (x) within given error by sampling.

Lastly, for notational brevity, given x, y ∈ Rn, define x ∨ y such that

(x ∨ y)i := max{xi, yi}. (13)

Now we are ready to present an algorithm for maximizing monotone submodular
functions under cardinality constraints:

Algorithm 2: Continuous Greedy Algorithm.

y ← 0 ∈ Rn;
for t ∈ [0, 1] do

wi ← F (y(t) ∨ ei)− F (y(t)) for each i ∈ E;
x(t)← argmaxx∈P〈w(t), x〉;
Increase y(t) at rate dy(t)

dt
= x(t);

end

return y(1) =
∫ 1

0
x(t)dt.

Here the computation of x(t) uses Fact 1, the correspondence between the extreme
points of P and the bases of I, and the fact that there always exists an extreme
point solution to a linear optimization problem over a polytope. We can obtain a
polynomial time algorithm by discretizing the time steps of y(t) in Algorithm 2.

Theorem 4 ([CCPV11]) Let O denote an optimal solution to (9), the continuous
greedy algorithm returns y(1) ∈ P such that

F (y(1)) ≥ (1− 1

e
)f(O).

Remark 2 We can obtain an (1 − 1/e)-approximation solution to (9) by checking
the extreme points of the face of P that y(1) lies in.
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As for Theorem 1, to prove Theorem 4, we first present a result that is useful to
lower bounding the growth rate of f(y(t)):

Lemma 5 For all y ∈ [0, 1]n,

f(O) ≤ F (y) +
∑
i∈O

[F (y ∨ ei)− F (y)].

Proof: For all R ⊆ E, let O \R = {i1, . . . , ip}, then we have

f(O) ≤ f(O ∪R) (14)

= f(R) +

p∑
j=1

[f(R ∪ {i1, . . . , ij})− f(R ∪ {i1, . . . , ij−1})]

≤ f(R) +

p∑
j=1

[f(R ∪ {ij})− f(R)] (15)

= f(R) +
∑
i∈O

[f(R ∪ {i})− f(R)], (16)

where (14) is by the monotonicity of f , (15) is by the submodularity of f and (16)
is by the observation that f(R ∪ {i}) − f(S) = 0 when i ∈ R. For given y ∈ [0, 1]n,
consider drawing R by random sampling: i ∈ R with probability yi. Then each S ⊆ E
has probability

∏
i∈S xi

∏
i 6∈S(1− xi) to be chosen, which gives

E[f(R)] =
∑
S∈E

f(S)
∏
i∈S

yi
∏
i 6∈S

(1− yi) = F (y).

By the same argument, we have

E[f(R ∪ {i})] = F (y ∨ ei),
and (14)-(16) shows the Lemma is true. 2
Proof of Theorem 4: Since x(t) ∈ P for any t ∈ [0, 1], we have

y(1) =

∫ 1

0

x(t)dt ∈ P

by the convexity of P . Compute

dF (y(t))

dt
=
∑
i∈E

(
dyi(t)

dt
· ∂F (y)

∂yi

∣∣
y=y(t)

)
=
∑
i∈E

(
xi(t) ·

∂F (y)

∂yi

∣∣
y=y(t)

)
=
∑
i∈E

(
xi(t) ·

F (y(t) ∨ ei)− F (y(t))

1− yi(t)

)
(17)

≥
∑
i∈E

(xi(t)wi(t)) , (18)
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where (17) is by the linearity of F (y) in yi, and (18) is by the definition of w(t).
Let 1O ∈ [0, 1]n denote the vector that corresponds to an optimal solution O, then

by the definition of x(t) and Lemma 5,

〈w(t), x(t)〉 ≥ 〈w(t), 1O〉

=
∑
i∈O

[F (y(t) ∨ ei)− F (y(t))]

≥ f(O)− F (y(t)).

Hence
dF (y(t))

dt
≥ f(O)− F (y(t)).

This implies that F (y(t)) dominates φ(t) : [0, 1]→ Rn subject to

dφ(t)

dt
= f(O)− φ(y(t)). (19)

Solve (19), we get
φ(t) = (1− e−t)f(O),

and
F (y(1)) ≥ φ(1) = (1− e−1)f(O).

Remark 3 Buchbinder, Feldman and Schwartz gives a nice summary of maximizing
submodular functions in [BFS16]. In 2012, Filmus and Ward [FW12] proposed a local
search based (1−1/e)-approximation algorithm for maximizing monotone submodular
functions under matroid constraints.
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