ORIE 6334 Bridging Continuous and Discrete Optimization Dec 4, 2019

Lecture 22

Lecturer: David P. Williamson

Scribe: Renee Mirka

1 Discrepancy Minimization Problem and History

Given a collection of sets $S_1, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$, the goal of the minimum discrepancy problem is to find $\chi : \{1, \ldots, n\} \to \{\pm 1\}$ to minimize

$$\max_{i=1,\dots,m} \left| \chi\left(S_{i}\right) \right| \equiv \left| \sum_{j \in S_{i}} \chi(j) \right|.$$

In 1985, Spencer gave a nonconstructive proof that there exists χ such that $\max_{i=1,\dots,m} |\chi(S_i)| \leq O(\sqrt{n \log(2m/n)})$ when $m \geq n$. This was followed by an SDP-based randomized polytime algorithm achieving Spencer's bound by Bansal in 2010. Our focus of today's lecture will be the following result from Lovett and Meka in 2012:

Theorem 1 Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be vectors with $||v_i|| \leq 1$ for all $i, x_0 \in [-1, 1]^n$ and $\lambda_1, \ldots, \lambda_m \geq 0$ be parameters such that $\sum_{i=1}^m \exp(-\lambda_i^2/16) \leq n/32$. Then we can compute $x \in [-1, 1]^n$ such that $\langle v_i, x - x_0 \rangle \leq 11\lambda_i$ for all i and $|\{j : x(j) = \pm 1\}| \geq n/2$.

We will show how this result implies Spencer. But first, consider a polytope $P = \{x \in [-1, 1]^n : |\langle v_i, x - x_0 \rangle| \leq \lambda_i\}$. Lovett and Meka's procedure was to start at x_0 and take a random walk in P. Once the walk hits a face (i.e. $\chi(j) = 1, \chi(j) = -1$, or $|\langle v_i, x - x_0 \rangle| = \lambda_i$) the walk 'sticks' to it, and will eventually reach the desired point. Rothvoss modified this idea slightly in 2014. Instead of choosing a random walk, start at x_0 , go in a random direction, and find where this direction intersects P. This intersection point is the desired point with some constant probability.

Today: we will see a deterministic, multiplicative weight style algorithm by Levy, Ramadas, Rothvoss (2017).

2 Theorem 1 Implies Spencer's result

First we show how the theorem implies Spencer's result. Consider the following algorithm.

Observations:

Algorithm 1: Spencer Bound

 $\begin{array}{l} x_{0} \leftarrow \overrightarrow{0} \,; \\ \textbf{for } s \leftarrow 1, \dots, \log_{2} n \ \textbf{do} \\ & \left| \begin{array}{c} A_{s} \leftarrow \{j \in [n] : -1 < x_{s}(j) < 1\}; \\ v_{i} \leftarrow \frac{1}{\sqrt{|A_{s}|}} \mathbbm{1}_{S_{i} \cap A_{s}} \ (\text{i.e. 1s in } j \ \text{s.t. } j \in S_{i} \cap A_{s}, 0 \ \text{otherwise}); \\ \lambda_{i} \leftarrow c \sqrt{\ln \frac{2m}{|A_{s}|}}, i = 1, \dots, m; \\ \text{Run alg to get } x_{s} \in [-1, 1]^{n} \ \text{s.t.} \\ x_{s}(j) = x_{s-1}(j) \forall j \notin A_{s}, \langle v_{i}, x_{s} - x_{s-1} \rangle \leq 11\lambda_{i}; \\ \textbf{end} \\ \textbf{return } \overline{x} = x_{\log_{2} n} \end{array}$

- $\overline{x} \in \{\pm 1\}^n$.
- $||v_i|| \leq 1$ for all i.
- The theorem applies since $\sum_{k=1}^{m} e^{-\lambda_i^2/16} = \sum_{i=1}^{m} e^{-\frac{c^2}{16} \ln \frac{2m}{|A_s|}} \leq \frac{|A_s|}{32}$ for good choice of c.
- $|A_s| \le n/2^{s-1}$ for all s.
- If we have that $\langle v_i, x_s x_{s-1} \rangle \leq 11\lambda_i$, then

$$\sum_{j \in S_i} \left[x_s(j) - x_{s-1}(j) \right] \leqslant O\left(\sqrt{|A_s| \ln\left(\frac{2m}{|A_s|}\right)} \right)$$

for all s. By summing over all s, we get that

$$\sum_{j\in S_i} \bar{x}(j) \leqslant \sum_{s=1}^{\log_2 n} O\left(\sqrt{2^{-(s-1)}n \ln\left(\frac{2m}{2^{-(s-1)}n}\right)}\right) = O\left(\sqrt{n \ln\left(\frac{2m}{n}\right)}\right),$$

since the first term dominates.

3 Algorithm to Prove Theorem 1

Assume WLOG $\lambda_i \leq 2\sqrt{n}$, since if $\lambda_i > 2\sqrt{n}$, $\langle v_i, x - x_0 \rangle \leq \lambda_i$ does not intersect $[-1, 1]^n$. (In other words, the constraint doesn't do anything.)

Definition 1 Let $\delta \equiv 1/\lambda_1$ be the step size and $\rho_i \equiv \exp(-\frac{4\delta^2 \lambda_i^2}{n}) \leq 1$ be the discount factor.

The algorithm will run for $O(n/\delta^2)$ iterations $\implies O(n^2)$ iterations.

Algorithm 2: Lovett-Meka

 $\begin{array}{l} w_{0}(i) \leftarrow e^{-\lambda_{i}^{2}}, \forall i (\Longrightarrow \sum_{i=1}^{m} w_{0}(i) \leq n/32); \\ \text{for } t \leftarrow 1 \text{ to } \infty \text{ do} \\ \\ | \text{ Pick unit vector } z_{t} \text{ in the span of } \{e_{j}: -1 < x_{t}(j) < 1\}, \\ \text{ of eigenvectors of } \frac{15}{16}n \text{ largest eigenvalues of } M_{t} \equiv \sum_{i=1}^{m} w_{t}(i)v_{i}v_{i}^{T} \\ \text{ and } \bot \text{ to } x_{t}, \\ \text{ to } v_{i} \text{ for } \frac{n}{16}i \text{ that have largest weights } w_{t}(i), \\ \text{ to } v_{i} \text{ for } i \text{ with } \lambda_{i} \leq 1, \text{ to } \sum_{i=1}^{m} \lambda_{i}w_{t}(i)\rho_{i}v_{i}; \\ \text{ Choose max } \alpha_{t} \in (0, 1] \text{ s.t. } x_{t+1} = x_{t} + \alpha_{t}\delta z_{t} \in [-1, 1]^{n}; \\ w_{t+1}(i) \leftarrow w_{t}(i) \exp(\lambda_{i}\delta\langle v_{i}, \alpha_{t}z_{t}\rangle)\rho_{i}; \\ \text{ if } |\{j: -1 < x_{t+1}(j) < 1\}| < \frac{n}{2} \text{ then} \\ | \text{ stop;} \\ \text{ end} \\ \end{array}$

Note: $w_t(i) = \exp(\lambda_i \langle v_i, x_t - x_0 \rangle) \cdot \rho_i^t \cdot e^{-\lambda_i^2}$ so the weights are exponentially large in the amount by which a constraint is violated, but with discount factor.

Lemma 2 For all iterations t, we can always pick z_t .

Proof: We are picking z_t from a space of dimension $\geq n/2 - n/16$ and orthogonal to a space of dimension $\leq 1 + n/16 + n/16 + 1$ since $\sum_{i=1}^{n} e^{-\lambda_i^2/16} \leq \frac{n}{32}$ and $e^{-1/16} \geq 1/2$ implies that $|\{i : \lambda_i \leq 1\}| \leq n/16$. Therefore, we pick z_t from a space of dimension $\geq n/2 - n/16 - n/16 - n/16 - 2 \geq \frac{5}{16}n - 2 \geq 1$ for $n \geq 10$.

Lemma 3 The algorithm terminates after $O(n/\delta^2)$ iterations.

Proof: $||x_{t+1}||^2 = ||x_t + \delta \alpha_t z_t||^2 = ||x_t||^2 + 2\delta \alpha_t \langle x_t, z_t \rangle + \delta^2 \alpha_t^2 ||z_t||^2 = ||x_t||^2 + \delta^2 \alpha_t^2$, since z_t is orthogonal to z_t . If $\alpha_t = 1$, $||x_{t+1}||^2 = ||x_t||^2 + \delta^2$. We can have $\alpha_t < 1$ at most n times, since each such time $x_{t+1}(j) \in \{\pm 1\}$ for some new index j. Since $x_t \in [-1, 1]^n$, $||x_t||^2 \le n$. Therefore, the total number of iterations is at most $n + n/\delta^2$.

Let $W_t \equiv \sum_{i=1}^m w_t(i)$. The following is the Main Lemma.

Lemma 4 $W_{t+1} \leq W_t$ for all t.

Note this lemma all says $W_t \leq n/32$ for all t. Let T denote the final iteration.

Lemma 5 $w_T(i) \leq 2$ for all *i*.

Proof: Suppose otherwise. Let t^* be the last iteration for which *i* is not among the n/16 highest weights. After t^* ,

$$w_{t+1}(i) = w_t(i) \exp(\lambda_i \delta \langle v_i, \alpha_t z_t \rangle) \rho_i = w_t(i) \rho_i,$$

since z_t will be chosen orthogonal to v_i when $w_t(i)$ is among the n/16 highest weights. This shows that $w_{t+1}(i) \leq w_t(i)$ for $t > t^*$. So,

$$2 < w_T(i) \le w_{t^*+1}(i) = w_{t^*}(i) \exp(\lambda_i \delta \langle v_i, \alpha_t z_t \rangle) \rho_i \le w_{t^*}(i) e,$$

since $||v_i|| \leq 1$, $\alpha_t \leq 1$, $||z_t|| = 1$, and $\lambda_i \delta \leq 1$. Therefore $w_{t^*}(i) > 2/e$; since *i* isn't among the n/16 highest weights, there exist n/16 *j* such that $w_{t^*}(j) > 2/e$. But this means $W_{t^*} > (n/16)(2/e) \geq n/32$, which contradicts the main lemma. \Box

Theorem 6 $\langle v_i, \overline{x} - x_0 \rangle \leq 11\lambda_i$.

Proof: If $\lambda_i \leq 1$, then by construction $z_t \perp v_i$ for all t, so that $\langle v_i, \overline{x} - x_0 \rangle = 0 \leq \lambda_i$. Otherwise,

$$w_T(i) = \exp(\lambda_i \langle v_i, \overline{x} - x_0 \rangle) \rho_i^T e^{-\lambda_i^2} \le 2.$$

Taking the log of both sides,

$$\lambda_i \langle v_I, \overline{x} - x_0 \rangle + T \ln \left(\exp(-\frac{4\delta^2 \lambda_i^2}{n}) \right) - \lambda_i^2 \le \ln 2.$$

From here we see

$$\langle v_i, \overline{x} - x_0 \rangle \le \frac{\ln 2}{\lambda_i} + \lambda_i \left(1 + 4T \frac{\delta^2}{n} \right) \le 2 + \lambda_i (1+8) \le 11\lambda_i.$$

For the penultimate inequality, we recall that $\lambda_i > 1$, $T \le n + n/\delta^2$, and $\delta \le 1$. \Box

The next lemma will help prove the main lemma.

Lemma 7 For any possible z_t , $z_t^T M_t z_t \leq \frac{16}{n} \sum_{i=1}^m w_t(i) \lambda_i^2$.

Proof: $\operatorname{tr}(M_t) = \sum_{i=1}^m w_t(i)\lambda_i^2 \operatorname{tr}\left(v_i v_i^T\right) = \sum_{i=1}^m w_t(i)\lambda_i^2$. Since $M_t \succeq 0$, at most n/16 eigenvalues can have value at least $\frac{16}{n}\operatorname{tr}(M_t)$. Therefore, z_t is in the span of eigenvectors of M_t of eigenvalue at most $\frac{16}{n}\operatorname{tr}(M_t)$, so $z_t^T M_t z_t \leq \frac{16}{n}\sum_{i=1}^m w_t(i)\lambda_i^2$. \Box Lastly, we provide the proof of the main lemma (Lemma 4).

Proof:

$$\begin{split} W_{t+1} &= \sum_{i=1}^{m} w_{t+1}(i) = \sum_{i=1}^{m} w_{t}(i) \exp\left(\lambda_{i}\delta\langle v_{i}, \alpha_{t}z_{t}\rangle\right) \rho_{i} \\ &\leq \sum_{i=1}^{m} w_{t}(i) \left(1 + \lambda_{i}\delta\langle v_{i}, \alpha_{t}z_{t}\rangle + \lambda_{i}^{2}\delta^{2}\langle v_{i}, \alpha_{t}z_{t}\rangle^{2}\right) \cdot \rho_{i}, \quad \text{using } e^{x} \leq 1 + x + x^{2} \text{ for } |x| \leq 1 \\ &= \sum_{i=1}^{m} w_{t}(i)\rho_{i} + \delta\langle\sum_{i=1}^{m} \lambda_{i}w_{t}(i)\rho_{i}v_{i}, \alpha_{t}z_{t}\rangle + \delta^{2}\sum_{i=1}^{m} w_{t}(i)\lambda_{i}^{2}\rho_{i}\langle v_{i}, \alpha_{t}z_{t}\rangle^{2} \\ &= \sum_{i=1}^{m} w_{t}(i) \cdot \rho_{i} + \delta^{2}\alpha_{t}^{2}z_{t}^{T}M_{t}z_{t}, \quad \text{using } z_{t} \perp \sum_{i=1}^{m} \lambda_{i}w_{t}(i)\rho_{i}v_{i} \\ &\leq \sum_{i=1}^{m} w_{t}(i)\rho_{i} + \delta^{2}\frac{16}{n}\sum_{i=1}^{m} w_{t}(i)\lambda_{i}^{2} \\ &\leq \sum_{i=1}^{m} w_{t}(i) = W_{t}, \quad \text{using } \rho_{i} = \exp(-\frac{4\delta^{2}\lambda_{i}^{2}}{n}), \text{ since } e^{-x} \leq 1 - x/2 \text{ for } 0 \leq x \leq 1. \end{split}$$