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1 Discrepancy Minimization Problem and History

Given a collection of sets S1, . . . , Sm ⊆ {1, 2, . . . , n}, the goal of the minimum dis-
crepancy problem is to find χ : {1, . . . , n} → {±1} to minimize

max
i=1,...,m

|χ (Si)| ≡

∣∣∣∣∣∑
j∈Si

χ(j)

∣∣∣∣∣ .
In 1985, Spencer gave a nonconstructive proof that there exists χ such that
maxi=1,...,m |χ (Si)| ≤ O(

√
n log(2m/n)) when m ≥ n. This was followed by an SDP-

based randomized polytime algorithm achieving Spencer’s bound by Bansal in 2010.
Our focus of today’s lecture will be the following result from Lovett and Meka in
2012:

Theorem 1 Let v1, . . . , vm ∈ Rn be vectors with ‖vi‖ ≤ 1 for all i, x0 ∈ [−1, 1]n

and λ1, . . . , λm ≥ 0 be parameters such that
∑m

i=1 exp (−λ2i /16) ≤ n/32. Then we can
compute x ∈ [−1, 1]n such that 〈vi, x − x0〉 ≤ 11λi for all i and |{j : x(j) = ±1}| ≥
n/2.

We will show how this result implies Spencer. But first, consider a polytope
P = {x ∈ [−1, 1]n : |〈vi, x− x0〉| ≤ λi}. Lovett and Meka’s procedure was to start at
x0 and take a random walk in P . Once the walk hits a face (i.e. χ(j) = 1, χ(j) = −1,
or |〈vi, x − x0〉| = λi) the walk ‘sticks’ to it, and will eventually reach the desired
point. Rothvoss modified this idea slightly in 2014. Instead of choosing a random
walk, start at x0, go in a random direction, and find where this direction intersects
P . This intersection point is the desired point with some constant probability.

Today: we will see a deterministic, multiplicative weight style algorithm by Levy,
Ramadas, Rothvoss (2017).

2 Theorem 1 Implies Spencer’s result

First we show how the theorem implies Spencer’s result. Consider the following
algorithm.

Observations:
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Algorithm 1: Spencer Bound

x0 ←
−→
0 ;

for s← 1, . . . , log2 n do
As ← {j ∈ [n] : −1 < xs(j) < 1};
vi ← 1√

|As|
1Si∩As (i.e. 1s in j s.t. j ∈ Si ∩ As, 0 otherwise);

λi ← c
√

ln 2m
|As| , i = 1, . . . ,m;

Run alg to get xs ∈ [−1, 1]n s.t.
xs(j) = xs−1(j)∀j /∈ As, 〈vi, xs − xs−1〉 ≤ 11λi;

end
return x = xlog2 n

• x ∈ {±1}n.

• ‖vi‖ ≤ 1 for all i.

• The theorem applies since
∑m

k=1 e
−λ2i /16 =

∑m
i=1 e

− c2

16
ln 2m
|As| 6 |As|

32
for good choice

of c.

• |As| ≤ n/2s−1 for all s.

• If we have that 〈vi, xs − xs−1〉 ≤ 11λi, then

∑
j∈Si

[xs(j)− xs−1(j)] 6 O

(√
|As| ln

(
2m

|As|

))

for all s. By summing over all s, we get that

∑
j∈Si

x̄(j) 6
log2 n∑
s=1

O

(√
2−(s−1)n ln

(
2m

2−(s−1)n

))
= O

(√
n ln

(
2m

n

))
,

since the first term dominates.

3 Algorithm to Prove Theorem 1

Assume WLOG λi ≤ 2
√
n, since if λi > 2

√
n, 〈vi, x − x0〉 ≤ λi does not intersect

[−1, 1]n. (In other words, the constraint doesn’t do anything.)

Definition 1 Let δ ≡ 1/λ1 be the step size and ρi ≡ exp(−4δ2λ2i
n

) ≤ 1 be the discount
factor.
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The algorithm will run for O(n/δ2) iterations =⇒ O(n2) iterations.

Algorithm 2: Lovett-Meka

w0(i)← e−λ
2
i ,∀i( =⇒

∑m
i=1w0(i) ≤ n/32);

for t← 1 to ∞ do
Pick unit vector zt in the span of {ej : −1 < xt(j) < 1},
of eigenvectors of 15

16
n largest eigenvalues of Mt ≡

∑m
i=1wt(i)viv

T
i

and ⊥ to xt,
to vi for n

16
i that have largest weights wt(i),

to vi for i with λi ≤ 1, to
∑m

i=1 λiwt(i)ρivi;
Choose max αt ∈ (0, 1] s.t. xt+1 = xt + αtδzt ∈ [−1, 1]n;
wt+1(i)← wt(i) exp(λiδ〈vi, αtzt〉)ρi;
if |{j : −1 < xt+1(j) < 1}| < n

2
then

stop;
end

end

Note: wt(i) = exp (λi〈vi, xt − x0〉) · ρti · e−λ
2
i so the weights are exponentially large

in the amount by which a constraint is violated, but with discount factor.

Lemma 2 For all iterations t, we can always pick zt.

Proof: We are picking zt from a space of dimension ≥ n/2−n/16 and orthogonal
to a space of dimension ≤ 1+n/16+n/16+1 since

∑n
i=1 e

−λ2i /16 ≤ n
32

and e−1/16 ≥ 1/2
implies that |{i : λi ≤ 1}| ≤ n/16. Therefore, we pick zt from a space of dimension
≥ n/2− n/16− n/16− n/16− 2 ≥ 5

16
n− 2 ≥ 1 for n ≥ 10. 2

Lemma 3 The algorithm terminates after O(n/δ2) iterations.

Proof: ‖xt+1‖2 = ‖xt + δαtzt‖2 = ‖xt‖2 +2δαt〈xt, zt〉+ δ2α2
t ||zt||2 = ||xt||2 + δ2α2

t ,
since zt is orthogonal to zt. If αt = 1, ||xt+1||2 = ||xt||2 + δ2. We can have αt < 1
at most n times, since each such time xt+1(j) ∈ {±1} for some new index j. Since
xt ∈ [−1, 1]n, ||xt||2 ≤ n. Therefore, the total number of iterations is at most n+n/δ2.

2

Let Wt ≡
∑m

i=1wt(i). The following is the Main Lemma.

Lemma 4 Wt+1 ≤ Wt for all t.

Note this lemma all says Wt ≤ n/32 for all t. Let T denote the final iteration.

Lemma 5 wT (i) ≤ 2 for all i.
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Proof: Suppose otherwise. Let t∗ be the last iteration for which i is not among
the n/16 highest weights. After t∗,

wt+1(i) = wt(i) exp(λiδ〈vi, αtzt〉)ρi = wt(i)ρi,

since zt will be chosen orthogonal to vi when wt(i) is among the n/16 highest weights.
This shows that wt+1(i) ≤ wt(i) for t > t∗. So,

2 < wT (i) ≤ wt∗+1(i) = wt∗(i) exp(λiδ〈vi, αtzt〉)ρi ≤ wt∗(i)e,

since ‖vi‖ ≤ 1, αt ≤ 1, ‖zt‖ = 1, and λiδ ≤ 1. Therefore wt∗(i) > 2/e; since i isn’t
among the n/16 highest weights, there exist n/16 j such that wt∗(j) > 2/e. But this
means Wt∗ > (n/16)(2/e) ≥ n/32, which contradicts the main lemma. 2

Theorem 6 〈vi, x− x0〉 ≤ 11λi.

Proof: If λi ≤ 1, then by construction zt ⊥ vi for all t, so that 〈vi, x−x0〉 = 0 ≤ λi.
Otherwise,

wT (i) = exp(λi〈vi, x− x0〉)ρTi e−λ
2
i ≤ 2.

Taking the log of both sides,

λi〈vI , x− x0〉+ T ln (exp(−4δ2λ2i
n

))− λ2i ≤ ln 2.

From here we see

〈vi, x− x0〉 ≤
ln 2

λi
+ λi

(
1 + 4T

δ2

n

)
≤ 2 + λi(1 + 8) ≤ 11λi.

For the penultimate inequality, we recall that λi > 1, T ≤ n+ n/δ2, and δ ≤ 1. 2
The next lemma will help prove the main lemma.

Lemma 7 For any possible zt, z
T
t Mtzt ≤ 16

n

∑m
i=1wt(i)λ

2
i .

Proof: tr(Mt) =
∑m

i=1wt(i)λ
2
i tr
(
viv

T
i

)
=
∑m

i=1wt(i)λ
2
i . Since Mt � 0, at most

n/16 eigenvalues can have value at least 16
n

tr(Mt). Therefore, zt is in the span of
eigenvectors of Mt of eigenvalue at most 16

n
tr(Mt), so zTt Mtzt ≤ 16

n

∑m
i=1wt(i)λ

2
i . 2

Lastly, we provide the proof of the main lemma (Lemma 4).
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Proof:

Wt+1 =
m∑
i=1

wt+1(i) =
m∑
i=1

wt(i) exp (λiδ〈vi, αtzt〉) ρi

≤
m∑
i=1

wt(i)
(
1 + λiδ 〈vi, αtzt〉+ λ2i δ

2 〈vi, αtzt〉2
)
· ρi, using ex ≤ 1 + x+ x2 for |x| ≤ 1

=
m∑
i=1

wt(i)ρi + δ〈
m∑
i=1

λiwt(i)ρivi, αtzt〉+ δ2
m∑
i=1

wt(i)λ
2
i ρi〈vi, αtzt〉2

=
m∑
i=1

wt(i) · ρi + δ2α2
t z
T
t Mtzt, using zt ⊥

m∑
i=1

λiwt(i)ρivi

≤
m∑
i=1

wt(i)ρi + δ2
16

n

m∑
i=1

wt(i)λ
2
i

≤
m∑
i=1

wt(i) = Wt, using ρi = exp(−4δ2λ2i
n

), since e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.

2
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