ORIE 6334 Bridging Continuous and Discrete Optimization Dec 4, 2019
Lecture 22
Lecturer: David P. Williamson
Scribe: Renee Mirka

1 Discrepancy Minimization Problem and History

Given a collection of sets $S_{1}, \ldots, S_{m} \subseteq\{1,2, \ldots, n\}$, the goal of the minimum discrepancy problem is to find $\chi:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$ to minimize

$$
\max _{i=1, \ldots, m}\left|\chi\left(S_{i}\right)\right| \equiv\left|\sum_{j \in S_{i}} \chi(j)\right|
$$

In 1985, Spencer gave a nonconstructive proof that there exists χ such that $\max _{i=1, \ldots, m}\left|\chi\left(S_{i}\right)\right| \leq O(\sqrt{n \log (2 m / n)})$ when $m \geq n$. This was followed by an SDPbased randomized polytime algorithm achieving Spencer's bound by Bansal in 2010. Our focus of today's lecture will be the following result from Lovett and Meka in 2012:

Theorem 1 Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ be vectors with $\left\|v_{i}\right\| \leq 1$ for all $i, x_{0} \in[-1,1]^{n}$ and $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ be parameters such that $\sum_{i=1}^{m} \exp \left(-\lambda_{i}^{2} / 16\right) \leq n / 32$. Then we can compute $x \in[-1,1]^{n}$ such that $\left\langle v_{i}, x-x_{0}\right\rangle \leq 11 \lambda_{i}$ for all i and $|\{j: x(j)= \pm 1\}| \geq$ $n / 2$.

We will show how this result implies Spencer. But first, consider a polytope $P=\left\{x \in[-1,1]^{n}:\left|\left\langle v_{i}, x-x_{0}\right\rangle\right| \leq \lambda_{i}\right\}$. Lovett and Meka's procedure was to start at x_{0} and take a random walk in P. Once the walk hits a face (i.e. $\chi(j)=1, \chi(j)=-1$, or $\left|\left\langle v_{i}, x-x_{0}\right\rangle\right|=\lambda_{i}$) the walk 'sticks' to it, and will eventually reach the desired point. Rothvoss modified this idea slightly in 2014. Instead of choosing a random walk, start at x_{0}, go in a random direction, and find where this direction intersects P. This intersection point is the desired point with some constant probability.

Today: we will see a deterministic, multiplicative weight style algorithm by Levy, Ramadas, Rothvoss (2017).

2 Theorem 1 Implies Spencer's result

First we show how the theorem implies Spencer's result. Consider the following algorithm.

Observations:

```
Algorithm 1: Spencer Bound
    \(x_{0} \leftarrow \overrightarrow{0}\);
    for \(s \leftarrow 1, \ldots, \log _{2} n\) do
        \(A_{s} \leftarrow\left\{j \in[n]:-1<x_{s}(j)<1\right\} ;\)
        \(v_{i} \leftarrow \frac{1}{\sqrt{\left|A_{s}\right|}} \mathbb{1}_{S_{i} \cap A_{s}}\) (i.e. 1 s in \(j\) s.t. \(j \in S_{i} \cap A_{s}, 0\) otherwise);
        \(\lambda_{i} \leftarrow c \sqrt{\ln \frac{2 m}{\left|A_{s}\right|}}, i=1, \ldots, m ;\)
        Run alg to get \(x_{s} \in[-1,1]^{n}\) s.t.
        \(x_{s}(j)=x_{s-1}(j) \forall j \notin A_{s},\left\langle v_{i}, x_{s}-x_{s-1}\right\rangle \leq 11 \lambda_{i} ;\)
    end
    return \(\bar{x}=x_{\log _{2} n}\)
```

- $\bar{x} \in\{ \pm 1\}^{n}$.
- $\left\|v_{i}\right\| \leq 1$ for all i.
- The theorem applies since $\sum_{k=1}^{m} e^{-\lambda_{i}^{2} / 16}=\sum_{i=1}^{m} e^{-\frac{c^{2}}{16} \ln \frac{2 m}{\left|A_{s}\right|}} \leqslant \frac{\left|A_{s}\right|}{32}$ for good choice of c.
- $\left|A_{s}\right| \leq n / 2^{s-1}$ for all s.
- If we have that $\left\langle v_{i}, x_{s}-x_{s-1}\right\rangle \leq 11 \lambda_{i}$, then

$$
\sum_{j \in S_{i}}\left[x_{s}(j)-x_{s-1}(j)\right] \leqslant O\left(\sqrt{\left|A_{s}\right| \ln \left(\frac{2 m}{\left|A_{s}\right|}\right)}\right)
$$

for all s. By summing over all s, we get that

$$
\sum_{j \in S_{i}} \bar{x}(j) \leqslant \sum_{s=1}^{\log _{2} n} O\left(\sqrt{2^{-(s-1)} n \ln \left(\frac{2 m}{2^{-(s-1)} n}\right)}\right)=O\left(\sqrt{n \ln \left(\frac{2 m}{n}\right)}\right),
$$

since the first term dominates.

3 Algorithm to Prove Theorem 1

Assume WLOG $\lambda_{i} \leq 2 \sqrt{n}$, since if $\lambda_{i}>2 \sqrt{n},\left\langle v_{i}, x-x_{0}\right\rangle \leq \lambda_{i}$ does not intersect $[-1,1]^{n}$. (In other words, the constraint doesn't do anything.)

Definition 1 Let $\delta \equiv 1 / \lambda_{1}$ be the step size and $\rho_{i} \equiv \exp \left(-\frac{4 \delta^{2} \lambda_{i}^{2}}{n}\right) \leq 1$ be the discount factor.

The algorithm will run for $O\left(n / \delta^{2}\right)$ iterations $\Longrightarrow O\left(n^{2}\right)$ iterations.

```
Algorithm 2: Lovett-Meka
    \(w_{0}(i) \leftarrow e^{-\lambda_{i}^{2}}, \forall i\left(\Longrightarrow \sum_{i=1}^{m} w_{0}(i) \leq n / 32\right) ;\)
    for \(t \leftarrow 1\) to \(\infty\) do
        Pick unit vector \(z_{t}\) in the span of \(\left\{e_{j}:-1<x_{t}(j)<1\right\}\),
        of eigenvectors of \(\frac{15}{16} n\) largest eigenvalues of \(M_{t} \equiv \sum_{i=1}^{m} w_{t}(i) v_{i} v_{i}^{T}\)
        and \(\perp\) to \(x_{t}\),
        to \(v_{i}\) for \(\frac{n}{16} i\) that have largest weights \(w_{t}(i)\),
        to \(v_{i}\) for \(i\) with \(\lambda_{i} \leq 1\), to \(\sum_{i=1}^{m} \lambda_{i} w_{t}(i) \rho_{i} v_{i}\);
        Choose \(\max \alpha_{t} \in(0,1]\) s.t. \(x_{t+1}=x_{t}+\alpha_{t} \delta z_{t} \in[-1,1]^{n}\);
        \(w_{t+1}(i) \leftarrow w_{t}(i) \exp \left(\lambda_{i} \delta\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle\right) \rho_{i} ;\)
        if \(\left|\left\{j:-1<x_{t+1}(j)<1\right\}\right|<\frac{n}{2}\) then
            stop;
        end
    end
```

Note: $w_{t}(i)=\exp \left(\lambda_{i}\left\langle v_{i}, x_{t}-x_{0}\right\rangle\right) \cdot \rho_{i}^{t} \cdot e^{-\lambda_{i}^{2}}$ so the weights are exponentially large in the amount by which a constraint is violated, but with discount factor.

Lemma 2 For all iterations t, we can always pick z_{t}.
Proof: We are picking z_{t} from a space of dimension $\geq n / 2-n / 16$ and orthogonal to a space of dimension $\leq 1+n / 16+n / 16+1$ since $\sum_{i=1}^{n} e^{-\lambda_{i}^{2} / 16} \leq \frac{n}{32}$ and $e^{-1 / 16} \geq 1 / 2$ implies that $\left|\left\{i: \lambda_{i} \leq 1\right\}\right| \leq n / 16$. Therefore, we pick z_{t} from a space of dimension $\geq n / 2-n / 16-n / 16-n / 16-2 \geq \frac{5}{16} n-2 \geq 1$ for $n \geq 10$.

Lemma 3 The algorithm terminates after $O\left(n / \delta^{2}\right)$ iterations.
Proof: $\quad\left\|x_{t+1}\right\|^{2}=\left\|x_{t}+\delta \alpha_{t} z_{t}\right\|^{2}=\left\|x_{t}\right\|^{2}+2 \delta \alpha_{t}\left\langle x_{t}, z_{t}\right\rangle+\delta^{2} \alpha_{t}^{2}\left\|z_{t}\right\|^{2}=\left\|x_{t}\right\|^{2}+\delta^{2} \alpha_{t}^{2}$, since z_{t} is orthogonal to z_{t}. If $\alpha_{t}=1,\left\|x_{t+1}\right\|^{2}=\left\|x_{t}\right\|^{2}+\delta^{2}$. We can have $\alpha_{t}<1$ at most n times, since each such time $x_{t+1}(j) \in\{ \pm 1\}$ for some new index j. Since $x_{t} \in[-1,1]^{n},\left\|x_{t}\right\|^{2} \leq n$. Therefore, the total number of iterations is at most $n+n / \delta^{2}$.

Let $W_{t} \equiv \sum_{i=1}^{m} w_{t}(i)$. The following is the Main Lemma.
Lemma $4 W_{t+1} \leq W_{t}$ for all t.
Note this lemma all says $W_{t} \leq n / 32$ for all t. Let T denote the final iteration.
Lemma $5 w_{T}(i) \leq 2$ for all i.

Proof: Suppose otherwise. Let t^{*} be the last iteration for which i is not among the $n / 16$ highest weights. After t^{*},

$$
w_{t+1}(i)=w_{t}(i) \exp \left(\lambda_{i} \delta\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle\right) \rho_{i}=w_{t}(i) \rho_{i}
$$

since z_{t} will be chosen orthogonal to v_{i} when $w_{t}(i)$ is among the $n / 16$ highest weights. This shows that $w_{t+1}(i) \leq w_{t}(i)$ for $t>t^{*}$. So,

$$
2<w_{T}(i) \leq w_{t^{*}+1}(i)=w_{t^{*}}(i) \exp \left(\lambda_{i} \delta\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle\right) \rho_{i} \leq w_{t^{*}}(i) e,
$$

since $\left\|v_{i}\right\| \leq 1, \alpha_{t} \leq 1,\left\|z_{t}\right\|=1$, and $\lambda_{i} \delta \leq 1$. Therefore $w_{t^{*}}(i)>2 / e$; since i isn't among the $n / 16$ highest weights, there exist $n / 16 j$ such that $w_{t^{*}}(j)>2 / e$. But this means $W_{t^{*}}>(n / 16)(2 / e) \geq n / 32$, which contradicts the main lemma.

Theorem $6\left\langle v_{i}, \bar{x}-x_{0}\right\rangle \leq 11 \lambda_{i}$.
Proof: If $\lambda_{i} \leq 1$, then by construction $z_{t} \perp v_{i}$ for all t, so that $\left\langle v_{i}, \bar{x}-x_{0}\right\rangle=0 \leq \lambda_{i}$. Otherwise,

$$
w_{T}(i)=\exp \left(\lambda_{i}\left\langle v_{i}, \bar{x}-x_{0}\right\rangle\right) \rho_{i}^{T} e^{-\lambda_{i}^{2}} \leq 2 .
$$

Taking the \log of both sides,

$$
\lambda_{i}\left\langle v_{I}, \bar{x}-x_{0}\right\rangle+T \ln \left(\exp \left(-\frac{4 \delta^{2} \lambda_{i}^{2}}{n}\right)\right)-\lambda_{i}^{2} \leq \ln 2 .
$$

From here we see

$$
\left\langle v_{i}, \bar{x}-x_{0}\right\rangle \leq \frac{\ln 2}{\lambda_{i}}+\lambda_{i}\left(1+4 T \frac{\delta^{2}}{n}\right) \leq 2+\lambda_{i}(1+8) \leq 11 \lambda_{i} .
$$

For the penultimate inequality, we recall that $\lambda_{i}>1, T \leq n+n / \delta^{2}$, and $\delta \leq 1$.
The next lemma will help prove the main lemma.
Lemma 7 For any possible $z_{t}, z_{t}^{T} M_{t} z_{t} \leq \frac{16}{n} \sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2}$.
Proof: $\quad \operatorname{tr}\left(M_{t}\right)=\sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2} \operatorname{tr}\left(v_{i} v_{i}^{T}\right)=\sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2}$. Since $M_{t} \succeq 0$, at most $n / 16$ eigenvalues can have value at least $\frac{16}{n} \operatorname{tr}\left(M_{t}\right)$. Therefore, z_{t} is in the span of eigenvectors of M_{t} of eigenvalue at most $\frac{16}{n} \operatorname{tr}\left(M_{t}\right)$, so $z_{t}^{T} M_{t} z_{t} \leq \frac{16}{n} \sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2}$.
Lastly, we provide the proof of the main lemma (Lemma 4).

Proof:

$$
\begin{aligned}
W_{t+1} & =\sum_{i=1}^{m} w_{t+1}(i)=\sum_{i=1}^{m} w_{t}(i) \exp \left(\lambda_{i} \delta\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle\right) \rho_{i} \\
& \leq \sum_{i=1}^{m} w_{t}(i)\left(1+\lambda_{i} \delta\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle+\lambda_{i}^{2} \delta^{2}\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle^{2}\right) \cdot \rho_{i}, \quad \text { using } e^{x} \leq 1+x+x^{2} \quad \text { for }|x| \leq 1 \\
& =\sum_{i=1}^{m} w_{t}(i) \rho_{i}+\delta\left\langle\sum_{i=1}^{m} \lambda_{i} w_{t}(i) \rho_{i} v_{i}, \alpha_{t} z_{t}\right\rangle+\delta^{2} \sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2} \rho_{i}\left\langle v_{i}, \alpha_{t} z_{t}\right\rangle^{2} \\
& =\sum_{i=1}^{m} w_{t}(i) \cdot \rho_{i}+\delta^{2} \alpha_{t}^{2} z_{t}^{T} M_{t} z_{t}, \quad \text { using } z_{t} \perp \sum_{i=1}^{m} \lambda_{i} w_{t}(i) \rho_{i} v_{i} \\
& \leq \sum_{i=1}^{m} w_{t}(i) \rho_{i}+\delta^{2} \frac{16}{n} \sum_{i=1}^{m} w_{t}(i) \lambda_{i}^{2} \\
& \leq \sum_{i=1}^{m} w_{t}(i)=W_{t}, \quad \operatorname{using} \rho_{i}=\exp \left(-\frac{4 \delta^{2} \lambda_{i}^{2}}{n}\right), \text { since } e^{-x} \leq 1-x / 2 \text { for } 0 \leq x \leq 1 .
\end{aligned}
$$

