
ORIE 6334 Bridging Continuous and Discrete Optimization Nov. 25, 2019

Lecture 21

Lecturer: David P. Williamson Scribe: Makis Arsenis

1 Set Cover Problem

In the (offline) set cover problem, we are given as input n elements denoted by E =
{e1, e2, . . . , en} and m sets S1, S2, . . . , Sm ⊆ E with corresponding weights w1, w2, . . . wm ∈
R+. The goal is to pick a collection of sets indexed by I ⊆ {1, 2, . . . ,m} which cover all the
elements, i.e.

⋃
j∈I Sj = E while minimizing the total weight

∑
j∈I wj .

There is a simple, greedy O(log n)-approximation algorithm for the set cover problem
and in fact O(log n) is the best approximation ratio one can achieve unless P = NP . In this
lecture we’re going to see a randomized approximation algorithm based on an LP relaxation
of the problem which can be modified to work for the online version of set cover (see Section
2).

Consider the following LP relaxation of the set cover problem where we introduce a
variable xj for every set Sj . The intended meaning of this variable is that xj = 1 whenever
j ∈ I and xj = 0 otherwise.

(P)

min

m∑
j=1

wjxj

s.t.
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n

xj ≥ 0, j = 1, . . . ,m

The corresponding dual LP is the following:

(D)

max
n∑

i=1

yi

s.t.
∑

i:ei∈Sj

yi ≥ wj , j = 1, . . . ,m

yi ≥ 0, i = 1, . . . , n

Notice that if we denote by OPT the value of the optimal solution to the set cover
problem and LPOPT the value of the optimal solution to the primal LP then the following
inequalities hold:

OPT ≥ LPOPT ≥ (any dual feasible solution)

The plan is solve the LP and use the randomized rounding technique to obtain an index
set I which is a valid set cover with high enough probability while the expected total weight

0This lecture is partially based on a survey by Buchbinder and Naor, Design of Competitive Online
Algorithms via a Primal-Dual Approach [1].

21-1

of the chosen sets is most O(log n) away from the OPT. The following lemmas prove that
Algorithm 1 has the above approximation guarantees.

Algorithm 1: Offline Set Cover (randomized) O(log n)-approximation

I ← ∅
Solve the LP to get a solution x∗

for j ← 1 to m do
for k ← 1 to 2 lnn do

Pick X(j, k) ∈ [0, 1] uniformly at random.
end
Tj ← minkX(j, k)
if x∗j ≥ Tj then

I ← I ∪ {j}
end

end

Lemma 1

E

∑
j∈I

wj

 ≤ (2 lnn)

m∑
j=1

wjx
∗
j ≤ (2 lnn) OPT .

Proof: Let Ejk be the event that X(j, k) ≤ x∗j . It’s easy to see that Pr[Ejk] = x∗j . Now,

Pr[j ∈ I] = Pr

[⋃
k

Ejk

]
≤ (2 lnn)x∗j

By linearity of expectation:

E

∑
j∈I

wj

 =

m∑
j=1

Pr[j ∈ I]wj ≤
m∑
j=1

(2 lnn) · x∗jwj = (2 lnn)LPOPT ≤ (2 lnn) OPT .

�

Lemma 2

Pr[I is not a set cover] = Pr

⋃
j∈I

Sj 6= E

 ≤ 1

n

Proof: Pick an arbitrary element ei and compute the probability that it is not covered:

21-2

Pr [ei is not covered] = Pr

 ⋂
j:ei∈Sj

2 lnn⋂
k=1

Ejk

=

∏
j:ei∈Sj

2 lnn∏
k=1

(1− x∗j)

=
∏

j:ei∈Sj

(1− x∗j)2 lnn

≤
(
e
−

∑
j:ei∈Sj

x∗j
)2 lnn

≤ e−2 lnn =
1

n2
,

where we use the fact that
∑

j:ei∈Sj
x∗j ≥ 1, since x∗ is a feasible LP solution, and that

1− x ≤ e−x.
Using the union bound, we get

Pr

⋃
j∈I

Sj 6= E

 ≤ n∑
i=1

Pr

ei is not covered by
⋃
j∈I

Sj

≤ n 1

n2
=

1

n
.

�

Remark 1 Notice that Lemma 1 bounds the value of the returned solution but we’re only
interested in that bound if the solution is a valid one. So what we are really interested in
bounding is the quantity:

E

∑
j∈I

wj

∣∣∣∣∣∣ I is a set cover

Using the inequality E[X|E] ≤ E[X]/Pr[E] for non-negative random variables X, one can
obtain a similar bound to Lemma 1 for the conditional expectation with only an extra factor
of 2 on the right-hand side which is still a O(log n) approximation as promised (see [2,
Theorem 1.17] for more details).

2 Online Set Cover

In the online version of the problem, we assume we know the sets E,S1, S2, . . . , Sm along
with the corresponding weights w1, . . . , wm at time zero. At each time-step i, an element
ei arrives1 and we must update the current solution by (potentially) adding one or more
sets Sj such that ei is covered. The goal is to come up with an algorithm which obtains a

1The order in which elements arrive is unknown to the algorithm and we can assume it is decided by an
adversary.

21-3

good competitive ratio, defined as follows. For each time step i, let E′ be the set of elements
having arrived so far. We say the competitive ratio of an algorithm is α if the cost of the
online solution is at most α times the cost of the optimal solution for E′ and this holds for
every time-step i.

The idea is to try and solve the corresponding LP in an online manner and then use
this solution to guide our choice of which set to include in the online solution.

2.1 Online LP Solver

The first step in our plan is to come up with a (deterministic) online algorithm for main-
taining a solution x∗ such that: ∑

j:ei∈Sj
x∗j ≥ 1, ∀ei ∈ E′

x∗j ≥ 0

Notice that whenever a new element arrives, a new constraint is added to the primal LP
and a new variable is added to the dual. We’re going to update the online solution in
a non-decreasing manner so that previous constraints are still satisfied after each update.
Eventually, we want to show that for each time-step:

m∑
j=1

wj · x∗j ≤ O(log d) · (optimal LP solution for E′)

where d is defined as follows: let fi = |{j : ei ∈ Sj}|, then d = maxi fi.
In what follows we are going to make the assumption that wj ≥ 1 for all j2. Consider

Algorithm 2 which resembles the multiplicative weights update ideas we’ve seen in previous
lectures.

Algorithm 2: Online LP Solver

xj ← 0, j = 1, . . . ,m
yi ← 0, i = 1, . . . , n
while new elements ei arrives do

while
∑

j:ei∈Sj
xj < 1 do

yi ← yi + 1
for each j such that ei ∈ Sj do

xj ← xj

(
1 + 1

wj

)
+ 1

fi·wj

end

end

end

Here are three useful lemmas regarding the performance of Algorithm 2, the proof of
which we’ll present shortly.

Lemma 3 Algorithm 2 produces a feasible solution.

2If that is not the case we can adjust the weights by scaling all of them by the same value.

21-4

Lemma 4 In each iteration of the outer while loop of Algorithm 2:

(increase in cost of primal) ≤ 2 · (increase in cost of dual)

Lemma 5 Let ~y be a dual solution maintained at some time-step i in Algorithm 2. Then
the following scaled version is a feasible dual solution:

~y

2 ln(3d+ 1)

Using the above results we’re able to prove now the following Theorem.

Theorem 6 Algorithm 2 is O(log n)-competitive.

Proof: Consider a time-step where a set E′ of elements have arrived and denote by
LPOPT the optimal LP solution to the partial LP (containing only the constrains related
to elements in E′).

First, notice that by repeated application of Lemma 4 we get the following inequality
on the current values of xi, yi maintained by the algorithms:

m∑
j=1

wjxj ≤ 2
n∑

i=1

yi. (1)

On the other hand, by Lemma 5 we can get the following inequality:

n∑
i=1

yi ·
1

2 ln(3d+ 1)
≤ LPOPT, or (2)

n∑
i=1

yi ≤ O(log d) · LPOPT. (3)

Combining inequalities (1) and (3) and the fact that x is a feasible solution (by Lemma
3), we derive the theorem:

m∑
j=1

wjxj ≤ O(log n) · LPOPT.

�
We now proceed to prove Lemmas 4 and 5 — Lemma 3 trivially holds by construction.

Proof of Lemma 4: In each iteration of the inner while loop of Algorithm 2, the dual
objective is increased by exactly 1 while the primal objective is increased by:

∑
j:ei∈Sj

wj

(
xj
wj

+
1

fiwj

)
︸ ︷︷ ︸

xnew
j −xold

j

=
∑

j:ei∈Sj

(
xj +

1

fi

)
≤ 1 + fi ·

1

fi
= 2

where the inequality follows from the feasibility of x. �

21-5

Proof of Lemma 5: We need to show that the proposed scaled dual solution satisfies all
dual constraints:

∑
i:ei∈Sj

yi/(2 ln(3d+1)) ≤ wj . To this end, we’re going to follow a strategy
similar to the one used in proving guarantees for the performance of the multiplicative
weights update algorithms. Specifically, we are going to upper and lower bound xj and
then combine those bounds to get the desired upper bound on the dual objective.

The first claim is that xj never gets too large and in particular xj ≤ 3 in each iteration
of the algorithm. Indeed, if xj is ever greater than 1 it is never increased again so the final
value of xj is bounded by:

xfinal
j = xprev

j

(
1 +

1

wj

)
+

1

fiwj
≤ 1 +

1

wj
+

1

fiwj
≤ 1 + 1 + 1 = 3, (4)

where the last inequality follows by the assumption that all wj ≥ 1 and fi ≥ 1 which is
made without loss of generality.

On the other hand, we can prove by induction the following inequality at each time-step:

xj ≥
1

d

((
1 +

1

wj

)∑
i:ei∈Sj

yi

− 1

)
. (5)

Before proving this, let’s see how the Lemma follows by combining Inequalities (4) and
(5):

1

d

((
1 +

1

wj

)∑
i:ei∈Sj

yi

− 1

)
≤ 3

(
1 +

1

wj

)∑
i:ei∈Sj

yi

≤ 3d+ 1 ∑
i:ei∈Sj

yi

 ln

(
1 +

1

wj

)
≤ ln(3d+ 1)

 ∑
i:ei∈Sj

yj

 1
wj

1 + 1
wj

≤ ln(3d+ 1)

1

wj + 1

∑
i:ei∈Sj

yi ≤ ln(3d+ 1)

∑
i:ei∈Sj

yi
2 ln(3d+ 1)

≤ wj

where we used the inequality ln(1 + x) ≥ x
1+x and wj ≥ 1.

We now prove by induction on the number of iterations of the inner while loop (through
the run of the algorithm) that Inequality (5) holds.

For the base of the induction notice that yi = 0 initially and the inequality reduces to
xj ≥ 0 which holds true. Suppose now that the inequality holds at the end of an iteration
where the currently maintained primal solution is xj and the corresponding dual is yj . On
the next iteration, yi∗ is increased by 1 for some element i∗ to give a updated dual vector

21-6

y′ and some of the xj are updated to values x′j to give rise to an updated primal vector x′

for which the following hold:

x′j = xj

(
1 +

1

wj

)
+

1

fiwj

≥ xj
(

1 +
1

wj

)
+

1

d

1

wj
(by definition of d)

≥ 1

d

((
1 +

1

wj

)∑
i:ei∈Sj

yi

− 1

)(
1 +

1

wj

)
+

1

dwj
(induction hypothesis)

≥ 1

d

((
1 +

1

wj

)∑
i:ei∈Sj

y′i
− 1

)
.

�

2.2 Algorithm for the Online Set Cover Problem

The algorithm presented in the previous section only solves the Online Linear Program
related to the Set Cover Problem. We now present Algorithm 3 which we’ll prove is O(log n·
log d)-competitive for the Online Set Cover problem.

Algorithm 3: Online Set Cover Algorithm

I ← ∅
n← 0
while a new element ei arrives do

n← n+ 1
Run an iteration of Algorithm 2 for the newly arrived element to get solution x∗

for j ← 1 to m do
Pick more (if necessary) X(j, k) ∈ [0, 1] uniformly at random in order to
have enough for k to range from 1 up to 2 lnn
Tj ← minkX(j, k)
if x∗j ≥ Tj then

I ← I ∪ {j}
end

end

end

Theorem 7 Algorithm 3 is O(log n log d)-competitive.

Proof: The crucial fact to notice here is that every x∗j of the current LP solution is
non-decreasing in time by construction of the online LP solver and Tj is non-increasing in
time. Consequently, if the inequality x∗j ≥ Tj holds at some time-step then it continues to
hold for every subsequent time-step.

21-7

This allows essentially the same proof we did in Lemma 1 to go through and get that
for every time-step:

E

∑
j∈I

wj

 ≤ (2 lnn)
m∑
j=1

wjx
∗
j ≤ O(log n log d)LPOPT ≤ O(log n log d) OPT .

where in the second-to-last step we used Theorem 6.
A similar argument to the one presented in the proof of Lemma 2 can bound the prob-

ability of returning an invalid cover and conclude that the competitiveness guarantee of
Algorithm 3 holds with high probability. �

References

[1] Niv Buchbinder and Joseph Naor. The Design of Competitive Online Algorithms via a
Primal-Dual Approach. Now Publishers Inc., Hanover, MA, USA, 2009.

[2] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

21-8

	Set Cover Problem
	Online Set Cover
	Online LP Solver
	Algorithm for the Online Set Cover Problem

