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1 Eigenvalue Interlacing Theorem

The following theorem is known as the eigenvalue interlacing theorem. Today we will
see several implications of this theorem, including a brand-new result proving the
sensitivity conjecture from complexity theory.

Theorem 1 (Eigenvalue Interlacing Theorem) Suppose A ∈ Rn×n is symmet-
ric. Let B ∈ Rm×m with m < n be a principal submatrix (obtained by deleting
both i-th row and i-th column for some values of i). Suppose A has eigenvalues
λn ≤ λn−1 · · · ≤ λ1 and B has eigenvalues βm ≤ βm−1 · · · ≤ β1. Then

λk+m−n ≤ βk ≤ λk for k = 1, · · · ,m

And if m = n− 1,

λn ≤ βn−1 ≤ λn−1 ≤ βn−2 ≤ · · · ≤ β1 ≤ λ1

2 Clique and Chromatic Number

We now use the eigenvalue interlacing theorem to prove some statements about two
particular graph quantities, the clique number and the chromatic number.

Definition 1 The clique number of G, ω(G), is the size of the largest S ⊆ V such
that for all i, j ∈ S, (i, j) ∈ E.

Definition 2 The chromatic number χ(G) is the fewest number of colors needed such
that we can assign one color to each vertex and for all (i, j) ∈ E, i, j are assigned
different colors.

Observation 1 χ(G) ≥ ω(G).
The observation follows since every vertex in the maximum clique needs to be

assigned a different color: if two vertices in the clique are assigned the same color,
then since there is an edge between them, the two endpoints of that edge are not
assigned different colors.
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Consider the complete graph on n nodes G ≡ Kn; that is, there is an edge between
every pair of vertices. Then ω(G) = n = χ(G). The adjacency matrix of G is
A = J − I where J is the matrix of all ones. Let

e =

 1
...
1

 .

Then
Ae = (J − I)e = ne− e = (n− 1)e

Therefore e is an eigenvector for eigenvalue n− 1.
We can assume all remaining eigenvectors v satisfy v ⊥ e, i.e. vT e = 0.
For any vector v such that vT e = 0,

Av = (J − I)v = 0− v = −v

This means any v such that 〈e, v〉 = 0 is an eigenvector of eigenvalue −1. So we have
eigenvalue −1 with multiplicity n− 1.

Now consider an arbitrary graph G. Let A be its adjacency matrix, and λ1 ≥
λ2 ≥ · · · ≥ λn be the eigenvalues.

Claim 2 λ1 ≥ ω(G)− 1.
Proof: Let B be the principal submatrix of A corresponding to the largest clique
of G. Let m be the clique number, m = ω(G). Then, B = Jm − Im, β1 = m− 1. By
the Interlacing Theorem, λ1 ≥ β1 = m− 1 = ω(G)− 1. 2

We can in fact prove something slightly stronger. The following theorem strength-
ens that bound of the claim since ω(G) ≤ χ(G).

3 Wilf’s Theorem

Theorem 3 (Wilf 1967) χ(G) ≤ bλ1c+ 1
Before we can prove this we need a lemma. Let dG(i) be the degree of node i in

G, ∆(G) = maxi∈V dG(i) and dave = 1
n

∑
i∈V dG(i).

Lemma 4 dave ≤ λ1 ≤ ∆.

Observation 2 χ(G) ≤ ∆ + 1.
This is true because if we color the graph greedily, we will never get stuck: if we

color a vertex, it has at most ∆ neighbors that have already been colored, and so we
can color it with the (∆ + 1)st color. So we note that the lemma implies that Wilf’s
theorem is stronger than this greedy coloring result.

In order to prove the lemma, we first need the following fact, which we will prove
later in the course.

2-2



Fact 1

λ1 = max
x

xTAx

xTx
.

Proof of Lemma 4:
Proof of λ1 ≥ dave:

λ1 = max
x

xTAx

xTx
≥ eTAe

eT e
=

∑
i,j aij

n
=

∑
i∈V dG(i)

n
= dave.

Proof of λ1 ≤ dave:
Let v be the eigenvector associated with λ1, so that Av = λ1v. WLOG, assume

|v(1)| ≥ |v(j)| ∀j. Then,

|λ1v(1)| = |Av(1)|

= |
n∑

j=1

aijv(j)|

= |
∑

j : (1,j)∈E

a1jv(j)|

≤
∑

j : (1,j)∈E

|a1j||v(j)|

≤ |v(1)||
∑

j : (1,j)∈E

|a1j|

≤ |v(1)|∆(G).

Thus we get that λ1 ≤ ∆(G). 2

The following corollary will be useful when we get to the proof of the sensitivity
conjecture.

Corollary 5 It is still the case that λ1 ≤ ∆(G) if aij = 0 when (i, j) 6∈ E and
|aij| ≤ 1 ∀i, j.
Proof of Wilf’s Theorem: The proof is by induction on n.
Base case n = 2,

λ1 = 1, χ1(G) = 2

λ1 = 0, χ1(G) = 1

Inductive step: Suppose the theorem holds on all graphs with n − 1 vertices. Let G
be a graph with n vertices. Since dave ≤ λ1, there must exists a vertex v of degree
≤ λ1. Remove this vertex v and call the resulting graph G′. Let B be its adjacency
matrix and β1 be its largest eigenvalue. By the Interlacing Theorem, β1 ≤ λ1. By
induction, we can color G′ with bβ1c+ 1 ≤ bλ1c+ 1 colors. Since v has less than bλ1c
neighbors, we color v with one of the bλ1c+ 1. 2
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4 Huang’s theorem on sensitivity conjecture

We now turn to a very recent result. First we need some definitions.

Definition 3 The hypercube graph Qd = (V,E) is defined by V = {x : x ∈ {0, 1}d}
and E = {(x, y) : x, y differ in exactly one bit}.
Example:

100 110

000 010

101 111

001 011

Q3

Definition 4 H = (VH , VE) is an induced subgraph of G = (V,E) if VH ⊆ V and
EH = {(x, y) : x, y ∈ VH and (x, y) ∈ E}.

The following result is just a few months old. We’ll later explain its connection
to complexity theory.

Theorem 6 (Huang 7/1/2019) For any d ≥ 1, let H be an induced subgraph of
Qd such that |VH | ≥ 2d−1 + 1. Then, ∆(H) ≥

√
d.

We’ll need the following facts, the first of which we showed last time, and the
second we will show in a few lectures.

Fact 2 If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2, and Tr(A) =∑n
i=1 aii =

∑n
i=1 λi.

Define A1 =

[
0 1
1 0

]
, Ad =

[
Ad−1 I
I −Ad−1

]
, where Ad ∈ R2d×2d .

Lemma 7 Ad has an eigenvalue
√
d of multiplicity 2d−1. −

√
d of multiplicity 2d−1.

Proof: We show by induction that Ad2 = dI.
Base case: When d = 1, A2

1 = I.
Inductive Step: Suppose A2

d−1 = (d− 1)I. Then

A2
d =

[
Ad−1 I
I −Ad−1

]
·
[
Ad−1 I
I −Ad−1

]
=

[
A2

d−1 + I 0
0 A2

d−1 + I

]
=

[
(d− 1)I + I 0

0 (d− 1)I + I

]
= dI.
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So all eigenvalues of A2
d are d. Then,

√
d and −

√
d must be the eigenvalues of Ad.

Since Tr(Ad) = 0, we must have half of the eigenvalues are
√
d and half of them are

−
√
d. 2

Observation 3 The absolute value of Ad (entrywise) is the adjacency matrix of Qd.
Example:

0 1

[
0 1
1 0

]
Q1

00 01

10 11


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


Q2

Proof of Huang’s theorem: Let H be an induced subgraph of Qd. Let AH be
the corresponding principal submatrix of Ad. Then, ∆(H) ≥ λ(AH), by the corollary
we showed earlier. By the eigenvalue interlacing theorem,

λ1(AH) ≥ λ1+2d−|VH |(Ad) = λk(Ad) ≥
√
d,

for k ≤ 2d−1.
2

This result is important since it proved the sensitivity conjecture. We will now
state what this is. For x ∈ {0, 1}d, S ⊆ {1, · · · , d}. Let xS be x with bits in positions
in S flipped. Define boolean function f : {0, 1}d → {0, 1}.

Definition 5 The local sensitivity s(f, x) is defined as the number of indices i such
that f(x) 6= f(xi), i.e,

s(f, x) = |{i : f(x) 6= f(xi)}|

Definition 6 The sensitivity s(f) of f is maxx s(f, x).

Definition 7 The local block sensitivity bs(f, x) is the maximum number of subpar-
titions B1, · · · , Bk such that f(x) 6= f(xBi) for each i.

Definition 8 The block sensitivity bs(f) of f is maxx bs(f, x).
Note that bf(f) ≥ s(f). The sensitivity conjecture is as follows; it states that the

sensitivity and block sensitivity are polynomially related for all boolean functions.
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Conjecture 1 (Nisan, Szegedy ’92) ∃ constant k > 0 such that for all boolean f ,

bs(f) ≤ (s(f))k.

Let deg(f) be the degree of the unique multilinear real polynomial of the function
f . Then Nisan and Szegedy also showed the following.

Theorem 8 (Nisan, Szegedy ’92) bs(f) ≤ 2deg2(f).
Finally, the connection between the graph theoretic problem studied by Huang

and the sensitivity conjecture was made by Gotsman and Linial.

Theorem 9 (Gotsman and Linial ’92) For any monotone function h : N → R,
the following are equivalent:

• For any induced subgraph H of Qd such that |VH | 6= 2d−1, with H ′ the induced
subgraph on V − VH , max(∆(H),∆(H ′)) ≥ h(d).

• For any boolean f , s(f) ≥ h(deg(f)).

Thus Huang’s theorem implies that for h(d) =
√
d, s(f) ≥

√
deg(f). Then we

have that
s(f) ≤ bs(f) ≤ 2deg2(f) ≤ 2s(f)4,

proving the conjecture for k = 4.
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