
ORIE 6334 Bridging Continuous and Discrete Optimization Nov. 18, 2019

Lecture 19

Lecturer: David P. Williamson Scribe: Andrew Morgan

We will finish our discussion of algorithms for spectral sparsifiers over the next two
lectures. In this lecture, we cover a matrix-based analogue of the Multiplicative Weights
Update algorithm (introduced in Lecture 3), as well as the matrix version of the related
algorithm for solving “packing” problems (also introduced in Lecture 3). The latter will, in
fact, directly provide us with a deterministic algorithm for producing a spectral sparsifier of
a given graph on O(n ln(n)/ε2) edges (though the version we prove gives only O(n ln(n)/ε3)),
in contrast to the randomized one (also with O(n ln(n)/ε2) edges) given in the previous
lecture.

Next lecture, the final lecture on spectral sparsifiers, will demonstrate a deterministic
algorithm which will produce a linear-sized sparsifier—that is, one with O(n/ε2) edges.

1 The Matrix Multiplicative Weights Update Algorithm

In the previous lecture, we gave a generalization of the well-known Chernoff bound to the
case of symmetric matrices. Here, we will begin by providing a similar treatment of the
Multiplicative Weights Update algorithm.

Recall that the (scalar version of the) Multiplicative Weights Update algorithm worked
over time steps t = 1, 2, . . . , T , and at each time step would choose some decision i ∈ [n]
according to internal weights, receive a value vt(i) ∈ [0, 1], and update the internal weights
according to the observed values for each decision. The key feature of this algorithm is
that it can achieve “almost” as much total value over the T time steps as the maximum
attainable by any fixed decision i.

For the matrix version of the algorithm, we will instead let our decision space consist of
vectors u ∈ Rn with ||u|| = 1. The algorithm will, at each time step t ∈ [T], choose such a
vector ut, observe a matrix Mt ∈ Rn with 0 4Mt 4 I, and receive value uTMtu ∈ [0, 1].

Notice in particular that, were Mt diagonal with entries Mt(i, i) = vt(i), this would
in fact reduce to the scalar Multiplicative Weights Update algorithm, since ut could be
considered as a probability distribution over the choices i ∈ [n]. So the matrix version is in
fact a strict generalization of the scalar version.

As in the scalar version, the algorithm will make a randomized decision based on weights;
this time, the weights at time step t will be defined by a matrix Wt ∈ Rn×n with Wt < 0. If
we define Pt = Wt/tr(Wt), then this gives a matrix Pt ∈ Rn×n with Pt < 0 and tr(Pt) = 1.
Letting λit, xit be the respective eigenvalues and corresponding eigenvectors of Pt, then, we
notice that Pt =

∑n
i=1 λitxitx

T
it, where λit ≥ 0 and

∑n
i=1 λit = 1. That is, the eigenvalues

λit can be seen as defining a probability distribution over the eigenvectors, such that we will

0This lecture is drawn from Arora and Kale 2016 http://dl.acm.org/citation.cfm?doid=2837020;
Kale’s thesis http://www.satyenkale.com/papers/thesis.pdf; and de Carli Silva, Harvey, and Sato 2015
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf.

19-1

http://dl.acm.org/citation.cfm?doid=2837020
http://www.satyenkale.com/papers/thesis.pdf
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf

pick xit with probability λit at time step t. We present the formal algorithm; see Algorithm
1.

Algorithm 1: Matrix Multiplicative Weights Update

Wt ← I
for t← 1 to T do

Pt ← Wt
tr(Wt)

Make decision ut = xit with prob. λit for xit, λit eigenvectors/eigenvalues of Pt
Get value uTt Mtut
Wt+1 ← exp∗(ε

∑T
k=1Mk).

end

To analyze this algorithm, we first introduce some new notation:

• Let A • B =
∑

i,j aijbij denote the “matrix inner product” of two matrices A = (aij)
and B = (bij).

• Let exp∗(A) denote the “matrix exponential” of a matrix given by the Taylor series
of the exponential:

exp∗(A) = I +A+
1

2!
A2 +

1

3!
A3 + . . .

Defining the matrix exponential separately is an important distinction, since the ma-
trix exponential does not satisfy certain properties of the scalar exponential. For
instance, it is not always the case that exp∗(A+B) = exp∗(A)exp∗(B).

As with scalar Multiplicative Weights, we wish to show that, in expectation, the algo-
rithm does not perform much worse than the best fixed decision u ∈ Rn (with ||u|| = 1).
First, since the algorithm chooses xit with probability λit, the expected value of the algo-
rithm is given by:

T∑
t=1

n∑
i=1

λit(x
T
itMtxit) =

T∑
t=1

n∑
i=1

(λitx
T
itxit) •Mt =

T∑
t=1

Pt •Mt

Next, consider the best fixed decision u; we can bound the value of this decision by:

T∑
t=1

uTMtu = uT

(
T∑
t=1

Mt

)
u ≤ max

u∈Rn:||u||=1
uT

(
T∑
t=1

Mt

)
u = λmax

(
T∑
t=1

Mt

)

using the observation that λmax(A) = maxx∈Rn:||x||=1 x
TAx. (As an aside, this implies

that the best fixed decision u is in fact the eigenvector associated with the eigenvalue

λmax

(∑T
t=1Mt

)
.)

Hence, we set out to prove that
∑T

t=1 Pt •Mt is “not much less” than λmax

(∑T
t=1Mt

)
.

We will require the following facts about the matrix exponent and matrix inner product to
conduct the analysis:

19-2

Lemma 1 (Golden-Thompson Inequality.) For symmetric matrices A and B:

tr(exp∗(A+B)) ≤ tr(exp∗(A)exp∗(B))

Fact 1 For symmetric matrices A and B, tr(AB) = A •B.

Fact 2 X •A ≤ X •B if A 4 B and X < 0.

Fact 3 exp∗(εA) 4 I + (eε − 1)A if 0 4 A 4 I.

Fact 4 λmax(exp∗(A)) = exp(λmax(A)).

Facts 1 and 2 are straightforward from the definitions, and Fact 3 can be shown similarly
to the analogous fact proven as part of Problem Set 4. Fact 4 follows from the fact that
Ak (for k > 1) has the same eigenvectors as A and corresponding eigenvalues equal to λk

(where λ is the corresponding eigenvalue of A); hence,

λmax(exp∗(A)) = λmax(I+A+
1

2!
A2+. . .) = 1+λmax(A)+

1

2!
λmax(A)2+. . . = exp(λmax(A))

The above facts allow us to prove the following theorem:

Theorem 2 Let ε ≤ 1/2. Then:

T∑
t=1

Pt •Mt ≥
1

1 + ε
λmax

(
T∑
t=1

Mt

)
− 1

ε
ln(n)

Proof: The proof proceeds analogously to that of the scalar Multiplicative Weights Up-
date algorithm; we begin by upper-bounding and lower-bounding tr(WT+1), and combining
the bounds will provide the desired conclusion.

First, consider any time step t ∈ [t]:

tr(Wt+1) = tr

(
exp∗

(
ε

t∑
k=1

Mk

))

≤ tr

(
exp∗

(
ε
t−1∑
k=1

Mk

)
exp∗(εMt)

)
(by Golden-Thompson)

= exp∗

(
ε

t−1∑
k=1

Mk

)
• exp∗(εMt) (by Fact 1)

= Wt • exp∗(εMt)

= tr(Wt)Pt • exp∗(εMt)

≤ tr(Wt)Pt • (I + (eε − 1)Mt) (by Facts 2 and 3)

= tr(Wt)(Pt • I + (eε − 1)Pt •Mt) (by distributivity of •)

= tr(Wt)(1 + (eε − 1)Pt •Mt) (since tr(Pt) = 1)

≤ tr(Wt)exp((eε − 1)(Pt •Mt)) (since 1 + x ≤ ex)

19-3

Note that exp in the last step is scalar exponentiation, rather than the matrix exponent
exp∗. We continue by bounding WT+1 using a telescoping product, once again as in scalar
Multiplicative Weights:

tr(WT+1) ≤ tr(WT)exp((eε − 1)(PT •MT)) ≤ . . .

. . . ≤ tr(W1)exp

(
(eε − 1)

T∑
t=1

(Pt •Mt)

)
= n exp

(
(eε − 1)

T∑
t=1

(Pt •Mt)

)
Next, we prove a lower bound:

tr(WT+1) = tr

(
exp∗

(
ε

T∑
t=1

Mt

))
≥ λmax

(
exp∗

(
ε

T∑
t=1

Mt

))
= exp

(
ελmax

(
T∑
t=1

Mt

))

which follows from the fact that tr(A) ≥ λmax(A) for A < 0 and from Fact 4. Finally, we
combine the two bounds and take the natural log of both sides:

n exp

(
(eε − 1)

T∑
t=1

(Pt •Mt)

)
≥ tr(WT+1) ≥ exp

(
ελmax

(
T∑
t=1

Mt

))

ln(n) + (eε − 1)

T∑
t=1

(Pt •Mt) ≥ ελmax

(
T∑
t=1

Mt

)
T∑
t=1

(Pt •Mt) ≥
ε

eε − 1
λmax

(
T∑
t=1

Mt

)
− 1

eε − 1
ln(n) ≥ 1

1 + ε
λmax

(
T∑
t=1

Mt

)
− 1

ε
ln(n)

where the last step follows from eε − 1 ≤ ε(1 + ε) (for 0 ≤ ε ≤ 1/2) and from eε − 1 ≥ ε.
�

Remark. At one point in class, it was suggested that we might be able to prove a similar
bound to the above by updatingWt+1 ← (I+εMt)Wt rather thanWt+1 ← exp∗(ε

∑T
k=1Mk).

Whether this worked was unclear, though the upper bound appeared to hold mostly as
written.

2 Packing Problems and Deterministic Sparsifiers

Now recall the application of the scalar Multiplicative Weights Update algorithm to solving
“packing problems”—specifically, given A ∈ Rm×n and a convex set Q ⊆ Rn, we could use
a variant of the algorithm to find x ∈ Q such that Ax ≤ (1 + ε)e, as long as we have some
oracle that, given p ≥ 0 in Rm, will find x ∈ Q such that pTAx ≤ pT e if such an x exists.

We shall now show the analogue of this application to the matrix Multiplicative Weights
algorithm. Suppose we have some set of matrices Bi < 0 for i ∈ [m] such that

∑m
i=1Bi = I.

We would like to obtain some “sparse” vector y ≥ 0 in Rm such that (1−ε)I 4
∑m

i=1 y(i)Bi 4
(1 + ε)I, where by “sparse” we mean that the number of non-zero entries of y is very small
(specifically, we will attain O(n ln(n)/ε3) non-zeroes).

19-4

To do this, we will need an oracle analogous to that of the scalar version, but with some
added slack ε and an additional lower bound: specifically, given some “probability matrices”
P, P̃ < 0 such that tr(P) = tr(P̃) = 1, the oracle must return a y such that y(i) = α > 0
for exactly one i ∈ [m] (that is, y has exactly one non-zero), and furthermore such that
αP •Bi ≤ (1 + ε)P • I = 1 + ε and αP̃ •Bi ≥ (1− ε)P̃ • I = 1− ε.

We also require a notion of the width of the oracle; we define this as

ρ = max
i∈[m]

max
y∈Y

αtr(Bi)

over the set Y of y that can be returned by the oracle. (Recall that the analogous width for
the scalar oracle was maxi∈[m] maxx∈X(Ax)(i) over X returnable by the oracle; notice that

the matrix version gives 1
ρ

∑m
i=1 y(i)Bi 4 I, whereas the scalar version gives 1

ρAx ≤ e.)
Before presenting and proving the algorithm, let’s see how we can apply this algorithm

to finding spectral sparsifiers. We can define one matrix for every edge of the graph:

B(i,j) = L
†/2
G (ei − ej)(ei − ej)TL†/2G

Then:

∑
(i,j)∈E

B(i,j) =
∑

(i,j)∈E

L
†/2
G (ei − ej)(ei − ej)TL†/2G = L

†/2
G

 ∑
(i,j)∈E

(ei − ej)(ei − ej)T
L

†/2
G

= L
†/2
G LGL

†/2
G = I∗

where, as before, I∗ is the identity with respect to vectors orthogonal to e. If we run the
algorithm, we obtain a sparse vector y such that:

(1− ε)I 4
∑

(i,j)∈E

y(i, j)Bi,j 4 (1 + ε)I

(1− ε)I 4 L†/2G

 ∑
(i,j)∈E

y(i, j)(ei − ej)(ei − ej)T
L

†/2
G 4 (1 + ε)I

(1− ε)I 4 L†/2G LHL
†/2
G 4 (1 + ε)I

(1− ε)LG 4 LH 4 (1 + ε)LG

where H is a weighted subgraph of G with weights y(i, j) for each edge. Specifically,
this means that H will be a spectral sparsifier (on O(n ln(n)/ε3) edges, though this can be
improved to O(n ln(n)/ε2) by adjusting the algorithm); furthermore, the following algorithm
will be deterministic, and so we will have constructed a sparsifier deterministically. We next
present and prove the algorithm; see Algorithm 2.

To explain why this works, first notice that 1
ρ

∑m
i=1 yt(i)Bi effectively plays the role of

Mt in the matrix Multiplicative Weights Update algorithm, since

tr(Bi)αt ≤ ρ =⇒ 0 � 1

ρ

m∑
i=1

yt(i)Bi � I

19-5

Algorithm 2: Algorithm for Feasibility

W1 ← I, W̃1 ← I
for t← 1 to T do

Pt ← Wt
tr(Wt)

, P̃t ← W̃t

tr(W̃t)

Run oracle to find yt s.t. ∃ only one i s.t. yt(i) = αt > 0, αtPt •Bit ≤ (1 + ε),
αP̃t •Bit ≥ (1− ε)
Wt ← exp∗(ερ

∑t
k=1

∑m
i=1 yk(i)Bi)

W̃t ← exp∗(− ε
ρ

∑t
k=1

∑m
i=1 yk(i)Bi)

end

return ȳ = 1
T

∑T
t=1 yt

Also, we have:

T∑
t=1

Pt •

(
1

ρ

m∑
i=1

yt(i)Bi

)
=

1

ρ

T∑
t=1

αtBit • Pt ≤ (1 + ε)
T

ρ

So, by Theorem 2 (the matrix Multiplicative Weights Update algorithm):

(1 + ε)
T

ρ
≥

T∑
t=1

Pt •

(
1

ρ

m∑
i=1

yt(i)Bi

)

≥ 1

1 + ε
λmax

(
1

ρ

m∑
i=1

yt(i)Bi

)
− 1

ε
ln(n)

=
1

1 + ε

T

ρ
λmax

(
m∑
i=1

ȳ(i)Bi

)
− 1

ε
ln(n)

Rearranging terms gives:

λmax

(
m∑
i=1

ȳ(i)Bi

)
≤ (1 + ε)2 +

(1 + ε)ρ

εT
ln(n)

So, if we set T = (1+ε)ρ
ε2

ln(n), this becomes:

λmax

(
m∑
i=1

ȳ(i)Bi

)
≤ (1 + ε)2 + ε ≤ 1 + 4ε

We can symmetrically show (using P̃t) that

λmin

(
m∑
i=1

ȳ(i)Bi

)
≥ 1− 4ε

19-6

(where we let λmin denote the minimum non-zero eigenvalue), which allows us to conclude
that

(1− 4ε)I 4
m∑
i=1

ȳ(i)Bi 4 (1 + 4ε)I

Furthermore, since each yt has one non-zero entry, the number of non-zeroes in ȳ is at
most the number of iterations, T = (1+ε)ρ

ε2
ln(n). By the following lemma, we can conclude

that ȳ has O(n ln(n)/ε3) non-zeroes, though we note that the algorithm can be modified to
improve this to O(n ln(n)/ε2).

Lemma 3 There is an oracle with width ρ = O
(
(1+ε)n

ε

)
.

Proof: Recall that the oracle needs to find i and α such that αP •Bi ≤ 1 + ε, αP̃ •Bi ≥
1 − ε, and αtr(Bi) ≤ ρ = (1 + ε)n/ε. Define p̃i = Bi • P̃ . Then p̃i ≥ 0 since P̃ � 0 and
Bi � 0. Also

n∑
i=1

p̃i = P̃ •

(
n∑
i=1

Bi

)
= P̃ • I = tr(P̃) = 1.

So p̃i is a probability distribution. Then

Ei

[
tr(Bi)

p̃i

]
=

m∑
i=1

tr(Bi) = tr(I) = n,

so that

Pr

[
tr(Bi)

p̃i
≤ (1 + ε)n

ε

]
= 1− Pr

[
tr(Bi)

p̃i
>

(1 + ε)n

ε

]
> 1− ε

1 + ε
=

1

1 + ε
,

by Markov’s inequality. Similarly,

Ei

[
P •Bi
p̃i

]
=

m∑
i=1

P •Bi = P • I = tr(P) = 1,

so that

Pr

[
P •Bi
p̃i

≤ 1 + ε

]
= 1− Pr

[
P •Bi
p̃i

> 1 + ε

]
> 1− 1

1 + ε
,

again by Markov’s inequality. So there must exist an index i such that both

P •Bi
p̃i

≤ 1 + ε and
tr(Bi)

p̃i
≤ (1 + ε)n

ε
≡ ρ.

Thus if we set α = 1/p̃i, we get that αP •Bi ≤ 1 + ε, αtr(Bi) ≤ ρ, and

αP̃ •Bi =
1

p̃i
P̃ •Bi = 1 ≥ 1− ε,

where the final equation follows by the definition of p̃i. �

19-7

	The Matrix Multiplicative Weights Update Algorithm
	Packing Problems and Deterministic Sparsifiers

