
ORIE 6334 Bridging Continuous and Discrete Optimization November 3, 2019

Lecture 18

Lecturer: David P. Williamson Scribe: Dylan Tsai

1 Spectral Sparsifiers

Today we will introduce the notion of spectral sparsifiers and an algorithm to construct a
spectral sparsifier by randomly sampling edges using their effective resistance.

Definition 1 Let G = (V,E) be an unweighted graph and H = (V,E′) be a graph with
weights w(i, j) ≥ 0 ∀(i, j) ∈ E′. Then H is a spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG.

We can find a spectral sparsifier H of G such that |E′| = O((n log n)/ε2).
Note that the notion of spectral sparsifier is a strengthening of a cut sparsifier.

Definition 2 H is a cut sparsifier of G if ∀S ⊆ V ,

(1− ε)|δG(S)| ≤ w(δH(S)) ≤ (1 + ε)|δG(S)|,

where δG(S) is the set of edges in E with exactly one endpoint in S, δH(S) is the set of
edges in E′ with exactly one endpoint in S, and w(δH(S)) =

∑
(i,j)∈δH(S)w(i, j).

Why is a spectral sparsifier a stronger notion? Given some S ⊆ V , let

x(i) =

{
1, if i ∈ S
0, otherwise.

Then
xTLGx =

∑
(i,j)∈E

(x(i)− x(j))2 = |δG(S)|

xTLHx =
∑

(i,j)∈E

w(i, j)(x(i)− x(j))2 = w(δH(S)).

Then LH � (1 + ε)LG,

⇐⇒ (1 + ε)LG − LH � 0⇒ (1 + ε)xTLGx− xTLHx ≥ 0⇒ (1 + ε)|δG(S)| ≥ w(δH(S)).

Similarly, if LH � (1− ε)LG, we can show that w(δH(S)) ≥ (1− ε)|δG(S)|.
We use cut sparsifiers in algorithms that find cuts (sparse cuts, min s-t cuts) in order to

replace m in the runtime with O((n log n)/ε2). Of course, this is only useful if we can find
the cut sparsifier in the first place in time that’s at most the time to run the cut algorithm.

0This lecture is based in part on the paper by Spielman and Srivastava from 2011, http://epubs.

siam.org/doi/abs/10.1137/080734029; a lecture by Harvey and Cargèse from 2015, http://www.cs.ubc.
ca/~nickhar/Cargese3.pdf; and a lecture by Lau from 2015, https://cs.uwaterloo.ca/~lapchi/cs798/
notes/L17.pdf.

18-1

http://epubs.siam.org/doi/abs/10.1137/080734029
http://epubs.siam.org/doi/abs/10.1137/080734029
http://www.cs.ubc.ca/~nickhar/Cargese3.pdf
http://www.cs.ubc.ca/~nickhar/Cargese3.pdf
https://cs.uwaterloo.ca/~lapchi/cs798/notes/L17.pdf
https://cs.uwaterloo.ca/~lapchi/cs798/notes/L17.pdf

2 Algorithm for Graph Sparsification

The basic idea behind this algorithm is to randomly sample edges and then use Chernoff
bounds to bound the probabilities that a sample is far away from the mean.

However, we have to be careful about how we sample. For instance, we can’t sample
edges with uniform probability. To illustrate, consider a graph with two dense subgraphs
and one edge connecting them. If we sample with uniform probability, we get a good
estimate of a cut through one of the dense regions. But we get a poor estimate of the
cut between the regions, because it is completely dependent on whether we select the one
connecting edge.

The main idea used (starting with Benczur, Karger 1996, and nicely codified by Fung,
Hariharan, Harvey, Panigraphi 2011) is to sample (i, j) with probability ∝ 1/λ(i, j), where
λ(i, j) is a lower bound on the size of an i-j cut.

We can set λ(i, j) to be the size of the minimum i-j cut; however, recall that spectral
sparsifiers are used to speed up cut algorithms, so needing to find a min cut for all edges
(i, j) would defeat the purpose of the spectral sparsifier. The algorithm we will consider
today is from Spielman, Srivastava 2011. To construct a spectral sparsifier, we sample
(i, j) with probability ∝ reff(i, j), the effective resistances. We will show later that we can
compute these reff efficiently.

Algorithm 1: Graph Sparsification by Effective Resistances

w(i, j)← 0 ∀(i, j) ∈ E
Compute reff(i, j) ∀(i, j) ∈ E
`← (6(n− 1) lnn)/ε2

for k ← 1 to ` do
Pick edge (i, j) with probability reff(i, j)/(n− 1)
w(i, j)← w(i, j) + n−1

`·reff(i,j)

end
E′ ← {(i, j) ∈ E : w(i, j) > 0}

We first need the following theorem, which we do not prove.

Theorem 1 (Foster’s Theorem)∑
(i,j)∈E

reff(i, j)

r(i, j)
= n− 1.

As a result, we see that reff(i,j)
(n−1) is a probability distribution on E.

Observation 1 E′ = {(i, j) ∈ E : w(i, j) > 0}, and so |E′| ≤ ` = O(n log n/ε2)

Observation 2 The expected total weight of the edges is m.

As only ` changes and the probability cancels out the other terms, the expected value
increases by 1/` per edge at each iteration. As there are ` iterations, the expected value of
(n− 1)/(` · reff(i, j)) = 1. Then summing over m edges, the expected total weight is m.

We now state the Matrix Chernoff bound (a proof can be found in the 2016 notes).

18-2

https://people.orie.cornell.edu/dpw/orie6334/Fall2016/lecture19.pdf

Theorem 2 (Tropp 2011) Let X1, . . . , X` be independent, random, symmetric n×n ma-
trices such that 0 � Xk � R · I for a scalar R. Let µmin · I �

∑`
k=1 E[Xk] � µmax · I. Then

for all 0 ≤ δ < 1,

Pr
[
λmax

(∑̀
k=1

Xk

)
≥ (1 + δ)µmax

]
≤ n · exp

(
− δ2µmax

3R

)
,

Pr
[
λmin

(∑̀
k+1

Xk

)
≤ (1− δ)µmin

]
≤ n · exp

(
− δ2µmin

2R

)
.

How do we translate the proof that H is a spectral sparsifier into bounds on the minimum
and maximum eigenvalue of a matrix? The following result is what allows us to do so.

Lemma 3 LH � (1 + ε)LG iff L
†/2
G LHL

†/2
G � (1 + ε)I iff λmax(L

†/2
G LHL

†/2
G) ≤ (1 + ε),

where L†G denotes the pseudo-inverse.

Proof: Write any x = αe+ y, where e is the all-ones vector and 〈y, e〉 = 0. Then

LH � (1 + ε)LG ⇐⇒ xTLHx ≤ (1 + ε)xTLGx ∀x
⇐⇒ yTLHy ≤ (1 + ε)yTLGy ∀y : 〈y, e〉 = 0

⇐⇒ zTL
†/2
G LHL

†/2
G z ≤ (1 + ε)zTL

†/2
G LGL

†/2
G z using y = L

†/2
G z or z = L

1/2
G y

⇐⇒ zTL
†/2
G LHL

†/2
G z ≤ (1 + ε)zT z ∀z : 〈z, e〉 = 1

⇐⇒ L
†/2
G LHL

†/2
G � (1 + ε)I.

�
For the lower bound, we have the following analogous result.

Lemma 4 LH � (1 − ε)LG iff L
†/2
G LHL

†/2
G � (1 − ε)I iff λ∗min(L

†/2
G LHL

†/2
G) ≥ (1 − ε),

where λ∗min is the minimum over all non-zero eigenvalues.

The proof is similar to above after claiming that we can do something similar to Chernoff
bounds using λ∗min.

Proceeding with our discussion of the algorithm, LH =
∑

(i,j)∈E w(i, j)(ei−ej)(ei−ej)T
so

L
†/2
G LHL

†/2
G =

∑
(i,j)∈E

w(i, j)
[
L
†/2
G (ei − ej)(ei − ej)TL†/2G

]
=

∑
(i,j)∈E

w(i, j)x(i,j)x
T
(i,j) where x(i,j) = L

†/2
G (ei − ej).

Then (1− ε)LG � LH � (1 + ε)LG is equivalent to showing

λmax

(∑
(i,j)∈E

w(i, j)x(i,j)x
T
(i,j)

)
≤ (1 + ε), and

18-3

λ∗min

(∑
(i,j)∈E

w(i, j)x(i,j)x
T
(i,j)

)
≥ (1− ε).

Note that∑
(i,j)∈E

x(i,j)x
T
(i,j) =

∑
(i,j)∈E

L
†/2
G (ei − ej)(ei − ej)TL†/2G

= L
†/2
G

[∑
(i,j)∈E

(ei − ej)(ei − ej)T
]
L
†/2
G = L

†/2
G LGL

†/2
G = I∗,

where I∗ is something like the identity (technically, it’s the product of LGL
†
G, which when

multiplied by any vector x orthogonal to e returns x). And

xT(i,j)x(i,j) = (ei − ej)TL†/2G L
†/2
G (ei − ej) = (ei − ej)TL†G(ei − ej) = reff(i, j).

Now with this setup, we can prove the following theorem.

Theorem 5 H is a spectral sparsifier of G with probability ≥ 1− 2
n .

Proof: We want to apply the matrix Chernoff bound. We let Xk = n−1
`·reff(i,j)x(i,j)x

T
(i,j) if

we pick edge (i, j) in the kth iteration. Then

L
†/2
G LHL

†/2
G =

∑̀
k=1

Xk ≡ X.

Also,

E[X] =
∑̀
k=1

E[Xk] =
∑̀
k=1

∑
(i,j)∈E

reff(i, j)

n− 1
· n− 1

` · reff(i, j)
x(i,j)x

T
(i,j)

=
∑

(i,j)∈E

x(i,j)x
T
(i,j) = I∗

We want to show that 0 � Xk � R · I for some R and ` = 6(n − 1) lnn/ε2. It is clear

that Xk � 0. Xk = n−1
`

xxT

xT x
for x = x(i,j), so

zTXkz =
n− 1

`

zTxxT z

xTx
=
n− 1

`

(xT z)2

xTx
≤ n− 1

`
zT z by Cauchy-Schwarz,

so that Xk � n−1
` I means Xk � R · I for R = n−1

` = ε2

6 lnn .
Then using µmin = µmax = 1 and δ = ε,

Pr[λmax(X) ≥ 1 + ε] ≤ n · exp

(
− ε2

3R

)
= n · exp (−2 lnn) =

1

n

Pr[λmin(X) ≤ 1− ε] ≤ n · exp

(
− ε2

2R

)
= n · exp(−3 lnn) =

1

n2
≤ 1

n
.

The theorem statement follows by the union bound. �
In the next lecture, we will see how to use a variation of the multiplicative weight update

algorithm to find a spectral sparsifier deterministically.
We did not get to showing how to compute effective resistances, but can be done using

a very nice trick involving dimension reduction and the Johnson-Lindenstrauss lemma.

18-4

	Spectral Sparsifiers
	Algorithm for Graph Sparsification

