
ORIE 6334 Bridging Continuous and Discrete Optimization November 11, 2019

Lecture 17

Lecturer: David P. Williamson Scribe: Ian Delbridge

1 Max Flow in Undirected Graphs

1.1 Max flow

We start by reviewing the maximum flow problem. We are given as input an undirected
graph G = (V,E); it will be convenient to think of the undirected edges as being directed
arcs, so we let ~E be an arbitrary orientation of edges in E. We also have as input a source
vertex s ∈ V and a sink vertex t ∈ V . Normally we also have as input a capacity for each
edge in E, but for simplicity in presentation, we assume that the capacity of every edge in
1. A feasible flow f on ~E is one such that flow conservation is obeyed, namely,∑

j:(i,j)∈ ~E

f(i, j) =
∑

j:(j,i)∈ ~E

f(j, i) for all i 6= s, t,

and capacity constraints are obeyed, namely,

−1 ≤ f(i, j) ≤ 1 for all (i, j) ∈ ~E;

notice that we assume that if f(i, j) is negative this means that |f(i, j)| units of flow are
going from j to i. The goal of the problem is to find a flow f that maximizes the net flow
out of the source, namely ∑

j:(s,j)∈ ~E

f(s, j)−
∑

j:(j,s)∈ ~E

f(j, s).

1.2 Review of multiplicative weights

As an extension of what we discussed in Lecture 3, we can use a multiplicative weights
algorithm to find approximately feasible solutions to the system x ∈ Q, |Ax| ≤ e for convex
Q and A ∈ Rm×n, x ∈ Rn. To do this, we require an oracle such that for any p ∈ Rm, p ≥ 0,
the oracle is able to find x ∈ Q such that pT |Ax| ≤ pT e or determine that no such x exists;
note that if no such x exists, then there is no feasible solution to the system. We let the
oracle width be

ρ = max
i

max
x∈Q

ret. by oracle

|Ax|(i).

0This lecture is from Christiano, Kelner, Madry, Spielman, and Teng 2010, https://arxiv.org/pdf/
1010.2921v2.pdf, and also partly based on Lau’s 2015 Lecture 15, https://cs.uwaterloo.ca/~lapchi/
cs798/notes/L15.pdf.

17-1

https://arxiv.org/pdf/1010.2921v2.pdf
https://arxiv.org/pdf/1010.2921v2.pdf
https://cs.uwaterloo.ca/~lapchi/cs798/notes/L15.pdf
https://cs.uwaterloo.ca/~lapchi/cs798/notes/L15.pdf

The algorithm works as follows:

Algorithm 1: Multiplicative weights for packing problems

Set w1(i)← 1 ∀i
for t = 1 to T do

Wt ←
∑m

i=1wt(i), pt(i) = wt(i)/Wt

Run oracle to find xt ∈ Q s.t. pTt |Axt| ≤ pTt e
vt(i) = 1

ρ |Axt|(i)
wt+1(i)← (1 + εvt(i)) · wt(i)

Return x̄ = 1
T

∑T
t=1 xt

Following the proof from last time, we can show that |Ax̄| ≤ (1 + 4ε)e, x̄ ∈ Q, and
that for T = 1

ε2
ρ lnm, we get running times of O(1

ε2
mρ lnm) + O(1

ε2
ρ lnm) oracle calls

+ matrix/vector multiplications.

2 Using Electrical Flows to Find a Max Flow

Let’s start with a simple question: Suppose we can use the multiplicative weights algorithm
to determine if there is a feasible flow of value k. How can we use this to find the max flow?
The solution would be to do a binary search on the possible flow values. In fact, since flows
are integral and max flow = min cut, we only need to search on the integers in [1,m].

The algorithm that follows determines if there exists a flow of value k/
√

1 + ε, and find
such a flow if it exists. We can run it O(logm) times to get an approximate max flow.

2.1 Finding flow ft

We will use an electrical flow computation as our oracle. We want to put commonalities
between max flow and electrical flows into our description of Q, and the remainder into A.
Specifically:

• The capacity constraint goes into A: Let A = Im (m×m identity matrix) to represent
|f(i, j)| ≤ 1.

• The flow conservation constraints and flow value constraint go into Q, so that

Q = {f ∈ R|E| :
∑

j:(i,j)∈ ~E

f(i, j) =
∑

j:(j,i)∈ ~E

f(j, i) for all i 6= s, t,

∑
j:(s,j)∈ ~E

f(s, j)−
∑

j:(j,s)∈ ~E

f(j, s) = k}.

Notice that we have one row in A per (i, j) ∈ ~E, so weights wt, values vt, and probabilities
pt are all indexed by (i, j).

Idea: Use s-t electrical flows as an oracle to find a flow ft with b = k · (es− et) (vectors
with 1 in position of s, t respectively) and resistance rt(i, j) = wt(i, j) + ε

mWt (Note in this
discussion we are using t both to represent the sink vertex and a time step, but hopefully

17-2

it is clear from context which is which). In order for electrical flows to work as an oracle,
we have to be able to return an x ∈ Q such that pT |Ax| ≤ pT e (and certify that the system
is infeasible if there is no such x) which in this context means we need to find ft such that∑

(i,j)∈ ~E

pt(i, j)|ft(i, j)| ≤
∑

(i,j)∈ ~E

pt(i, j) (1)

⇔
∑

(i,j)∈ ~E

wt(i, j)|ft(i, j)| ≤
∑

(i,j)∈ ~E

wt(i, j) = Wt (2)

The second row is obtained by multiplying both sides by Wt.
Recall from our discussion of electrical flows that ft minimizes total energy out of all

feasible flows obeying the flow conservation constraints with supply vector b. Hence we can
bound the energy of ft based on the total weight. Let f∗ be a flow of value k if one exists;
if the max flow has value k, then such a flow exists. Note that |f∗(i, j)| ≤ 1 since it obeys
the capacity constraints. We now observe that the energy of ft must be at most the energy
of f∗ so that

E(ft) =
∑

(i,j)∈ ~E

ft(i, j)
2 · rt(i, j)

≤
∑

(i,j)∈ ~E

f∗(i, j)
2 · rt(i, j)

≤
∑

(i,j)∈ ~E

1 · rt(i, j)

=
∑

(i,j)∈ ~E

(
wt(i, j) +

ε

m
Wt

)
= (1 + ε)Wt.

We will use this inequality again later; note again that it is conditional on the existence of
the flow f∗ of value k. Now we use this inequality to show that the electrical flow returned
works for our oracle (see (2) above). We want to bound

∑
(i,j)∈ ~E wt(i, j) · |ft(i, j)| using

Cauchy-Schwartz: ∑
(i,j)∈ ~E

wt(i, j) · |ft(i, j)|

2

≤

 ∑
(i,j)∈ ~E

ft(i, j)
2 · wt(i, j)

 ∑
(i,j)∈ ~E

wt(i, j)


=

 ∑
(i,j)∈ ~E

ft(i, j)
2 · wt(i, j)

Wt

≤

 ∑
(i,j)∈ ~E

ft(i, j)
2 · rt(i, j)

Wt

≤ (1 + ε)W 2
t

17-3

so that ∑
(i,j)∈ ~E

wt(i, j) · |ft(i, j)| ≤
√

(1 + ε)Wt.

So to satisfy (2), we scale the returned flow ft down by
√

1 + ε.

2.2 Bounding the Width of our Oracle: ρ

For our particular application, the width ρ is

ρ = max
(i,j)∈ ~E

|ft(i, j)|

for ft returned by the oracle. First we can bound the energy on an edge by the energy of
the flow:

ft(i, j)
2rt(i, j) ≤ E(ft) ≤ (1 + ε)Wt

We can also bound the resistance of each edge:

ft(i, j)
2 · rt(i, j) ≥ ft(i, j)2 ·

ε

m
Wt

Combining the above gives us:

ft(i, j)
2 · ε
m
Wt ≤ (1 + ε)Wt

|ft(i, j)| ≤
√

1 + ε

ε
m

which implies that

ρ = O

(√
m

ε

)
.

2.3 Running time

Using the version of the multiplicative weight algorithm given above, we can check whether
there exists a flow of value ≥ k/

√
1 + ε such that |f(i, j)| ≤ 1 + 4ε in O(1

ε2
ρ lnm) oracle

calls. Substituting in ρ, we get that we can find an approximate flow in O
(
1
ε2

√
m
ε lnm

)
oracle calls, which implies a running time of Õ

(
m1.5

ε2.5

)
.

However, we can compute max flow on undirected unit-capacity graphs exactly in
O(m1.5) time (rather than approximately in this algorithm)? Can we use these ideas to
go faster?

3 A Faster Algorithm: Deleting Edges

Since there can be flows such that ft(i, j) = Θ(
√
m), we need at least Ω(

√
m) more oracle

calls so that the average of the flow on (i, j) approximately obeys the capacity constraint;
thus we cannot get a better running time than Ω(m1.5) this way. We want to decrease the

17-4

upper-bound on ft(i, j) and ρ.

Idea: Here’s an idea that rarely works, but does in this case: we just enforce that what we
want to be true is true. Whenever the oracle finds an edge (i, j) of with |ft(i, j)| > ρ̂ for
some ρ̂, we will delete the edge for the remainder of the algorithm and recompute the flow;
the oracle will do this until all edges have flow ≤ ρ̂. This forces the width of the oracle to
be ρ̂.

Let H be the set of all deleted edges. We will use ρ̂ = 4
ε · (m lnm)1/3. In the next

subsection, we will show that

• |H| ≤ (m lnm)1/3

• |H| ≤ 1
8εk, so that the flow value decreases by factor of at most

(
1− 1

8ε
)

by deleting
H.

Since there are at most |H| extra flow computations, and we have a smaller oracle
width, there are O

(
1
ε2
· ρ̂ lnm

)
+ |H| oracle calls, or O

(
1
ε3
·m1/3(lnm)4/3

)
oracle calls, for

a running time of Õ
(
m4/3

ε3

)
.

3.1 Analysis of faster algorithm

Here are the things we will need to show to prove the result.

Claim 1 Energy never decreases, and is always at most (1 + ε)WT+1 where WT+1 ≤
m exp

(
1
ε lnm

)
.

Claim 2 The initial energy is at least (1/m)2.

Lemma 3 The energy increases by at least a factor of
(

1 + ερ̂2

2m

)
for each deletion of an

edge.

Once we have these claims and the lemma, we see that(
1 +

ερ̂2

2m

)|H|
≤ final energy

initial energy
≤ (1 + ε)WT+1

1/m2
≤ (1 + ε)m3 exp

(
1

ε
lnm

)
.

Taking the log of both sides, we have

|H| ≤
ln(1 + ε) + 3 lnm+ 1

ε lnm

ln
(

1 + ερ̂2

2m

)
≤

2
ε lnm ·

(
1 + ερ̂2

2m

)
ερ̂2

2m

using ln(1 + x) ≥ x

1 + x

≤ 4m lnm

ε2ρ̂2
+

2

ε
lnm

≤ 6m lnm

ε2ρ̂2

17-5

Thus for ρ̂ = 4
ε (m lnm)1/3, we have that |H| ≤ 6

16(m lnm)1/3. We also note that on any
deleted edge (i, j), ρ̂ < |f(i, j)| ≤ k, so we can multiply the last line by k/ρ̂ ≥ 1 to get

|H| ≤ 6mk lnm

ε2ρ̂3
=

6

64
εk ≤ 1

8
εk

We will now proceed to the proofs of the claims/lemmas in the outline.

Proof of Claim 1: The resistances sent by the multiplicative weight algorithm to the
oracle only increase. By Rayleigh monotonicity (see PS3), this implies that energy does not
decrease. Even when we remove an edge, this is equivalent to increasing the resistance to
∞.

To bound WT+1:

WT+1 ≤ m · exp

(
ε

T∑
t=1

n∑
i=1

vt(i)pt(i)

)

≤ m · exp

(
ε
T

ρ̂

)
see Lec. 3, T =

ρ̂ lnm

ε2

= m · exp

(
1

ε
lnm

)
.

�

Proof of Claim 2: There must be some (i, j) such that f(i, j) ≥ 1/m on a flow of
k ≥ 1 units, and r1(i, j) > w1(i, j) = 1. Hence the energy is at least f(i, j)2r1(i, j) ≥ 1/m2.

�

Proof of Lemma 3: Let E be the energy before deleting an edge e = (i, j) and E ′ be
the energy afterwards. Let p be the potentials associated with the initial energy E . Then
we have shown in Lecture 13 that any potentials can be used to give a lower bound on the
current energy E ′ with

E ′ ≥ 2bT p− pTLG−ep

= 2bT p− pTLGp+
(p(i)− p(j))2

r(i, j)

= E + f(i, j)2 · r(i, j)

≥ E + ρ̂2
(ε
m
Wt

)
≥ E + ρ̂2

(ε
m

)(1

1 + ε
· E
)

=

(
1 +

ερ̂2

(1 + ε)m

)
E

≥
(

1 +
ερ̂2

2m

)
E .

17-6

The second inequality is true because we delete (i, j) when |f(i, j)| > ρ̂; the third inequality
is true because whenever there is a flow of value k, then E ≤ (1 + ε)Wt. �

Peng (2016) shows that it is possible to find an (1− ε)-approximate flow in undirected
graphs in time

O(m log32 n(log log n)2 max(log9 n, 1/ε3)).

17-7

	Max Flow in Undirected Graphs
	Max flow
	Review of multiplicative weights

	Using Electrical Flows to Find a Max Flow
	Finding flow ft
	Bounding the Width of our Oracle:
	Running time

	A Faster Algorithm: Deleting Edges
	Analysis of faster algorithm

