ORIE 6334 Bridging Continuous and Discrete Optimization Oct 9, 2019

Lecture 11

Lecturer: David P. Williamson
Scribe: Devin Smedira

Recall from the previous lecture that we defined

$$
\beta(S)=\min _{(L, R) \text { a partition of } S} \frac{2|E(L)|+2|E(R)|+|\delta(S)|}{\operatorname{vol}(S)}=\frac{\operatorname{vol}(S)-2|\delta(L, R)|}{\operatorname{vol}(S)}
$$

and

$$
\beta(G)=\min _{\substack{S \subset V \\ S \neq \emptyset}} \beta(S)
$$

We also defined β_{n} to be the smallest eigenvalue of $I+\mathcal{A}$, where \mathcal{A} is the normalized adjacency matrix of G. Last time we showed the following:

Theorem 1 (Trevisan 2009 Lower Bound)

$$
\frac{1}{2} \beta_{n} \leq \beta(G)
$$

1 Finishing the Trevisan Inequality

To finish the proof of the Trevisan Inequality, we only need to show the upper bound holds.

Theorem 2 (Trevisan 2009 Upper Bound)

$$
\beta(G) \leq \sqrt{2 \beta_{n}}
$$

Proof:
First, assume we can pick a $y \in \mathbb{R}^{n}$ satisfying

$$
\beta_{n}=\min _{y} \frac{y^{\top}(D+A) y}{y^{\top} y}=\min _{y} \frac{\Sigma_{(i, j) \in E}(y(i)+y(j))^{2}}{\Sigma_{i \in V} d(i) y(i)^{2}}
$$

and assume that $\max _{i} y^{2}(i)=1$ (if this is not true, scale y accordingly). Choose $t \in(0,1]$ uniformly at random, and set $x(i)=1$ if $x(i) \geq \sqrt{t}, x(i)=-1$ if $x(i) \leq-\sqrt{t}$ and $x(i)=0$ otherwise.

Claim $3 \mathbb{E}[|x(i)+x(j)|] \leq|y(i)+y(j)| \cdot(|y(i)|+|y(j)|)$ for all $(i, j) \in E$.

[^0]Now we know that x generates a

$$
L=\{i: x(i)=-1\}, R=\{i: x(i)=1\}, S=L \cup R
$$

where we can show that $\beta(S) \leq \sqrt{2 \beta_{n}}$ which implies $\beta(G) \leq \sqrt{2 \beta_{n}}$ as follows: Summing over all $(i, j) \in E$ and using the claim and Cauchy-Schwarz gives

$$
\begin{aligned}
\mathbb{E}\left[\sum_{(i, j) \in E}|x(i)+x(j)|\right] & \leq \sum_{(i, j) \in E}|y(i)+y(j)| \cdot(|y(i)|+|y(j)|) \\
& \leq \sqrt{\sum_{(i, j) \in E}(y(i)+y(j))^{2}} \sqrt{\sum_{(i, j) \in E}(|y(i)|+|y(j)|)^{2}} \\
& \leq \sqrt{\beta_{n} \sum_{i \in V} d(i) y(i)^{2}} \sqrt{\sum_{(i, j) \in E} 2\left(y(i)^{2}+y(j)^{2}\right)} \\
& =\sqrt{2 \beta_{n}} \sum_{i \in V} d(i) y(i)^{2} \\
& =\sqrt{2 \beta_{n}} \mathbb{E}\left[\sum_{i \in V} d(i)|x(i)|\right]
\end{aligned}
$$

so that there exists a t which generates an $x \in\{-1,0,1\}^{n}$ where

$$
\beta(G) \leq \frac{\sum_{(i, j) \in E}|x(i)+x(j)|}{\sum_{i \in V} d(i)|x(i)|} \leq \sqrt{2 \beta_{n}},
$$

as desired. As with the proof of the Cheeger inequality, we can find such an x easily because there are only n possible different vectors x produced by the algorithm, and these correspond to $t=y(i)^{2}$ for all $i \in V$.

We return to the proof of the claim.

Proof of claim:

Without loss of generality suppose $y(i)^{2} \geq y(j)^{2}$. If $y(i), y(j)$ have the same sign then

$$
\begin{array}{ll}
t \leq y(i)^{2} \leq y(j)^{2} \rightarrow x(i)=-x(j) & \rightarrow|x(i)+x(j)|=0 \\
y(i)^{2}<t \leq y(j)^{2} \rightarrow x(i)=0, x(j)=1 & \rightarrow|x(i)+x(j)|=1 \\
t \geq y(j)^{2} \geq y(i)^{2} \rightarrow x(i)=x(j)=0 & \rightarrow|x(i)+x(j)|=0
\end{array}
$$

So we can conclude that

$$
\begin{aligned}
\mathbb{E}[|x(i)+x(j)|] & =1 \cdot \mathbb{P}\left[y(j)^{2} \leq t \leq y(i)^{2}\right] \\
& =y(i)^{2}-y(j)^{2} \\
& =(y(i)-y(j))(y(i)+y(j)) \\
& \leq|y(i)+y(j)| \cdot(|y(i)|+|y(j)|)
\end{aligned}
$$

Otherwise, $y(i), y(j)$ have different signs, so

$$
\begin{array}{ll}
t \leq y(j)^{2} \leq y(i)^{2} \rightarrow x(i)=x(j)= \pm 1 & \rightarrow|x(i)+x(j)|=2 \\
y(j)^{2}<t \leq y(i)^{2} \rightarrow x(i)=0, x(j)= \pm 1 & \rightarrow|x(i)+x(j)|=1 \\
t \geq y(i)^{2} \geq y(j)^{2} \rightarrow x(i)=x(j)=0 &
\end{array}>|x(i)+x(j)|=0 ~ \$ ~ \$
$$

So we can conclude that

$$
\begin{aligned}
\mathbb{E}[|x(i)+x(j)|] & \left.=1 \cdot \mathbb{P}\left[y(j)^{2} \leq t \leq y(i)^{2}\right]+2 \cdot \mathbb{P}\left[t \leq y(j)^{2}\right)\right] \\
& =y(i)^{2}-y(j)^{2}+2 y(j)^{2} \\
& =y(j)^{2}+y(i)^{2} \\
& \leq|y(i)+y(j)| \cdot(|y(i)|+|y(j)|),
\end{aligned}
$$

as claimed.
Notice this proof means we can find a $L, R, S=L \cup R$ where

$$
\frac{\operatorname{vol}(S)-2|\delta(L, R)|}{\operatorname{vol}(S)} \leq \sqrt{2 \beta_{n}}
$$

2 MAX CUT

Next, we develop and and analyze randomized approximation algorithms for MAX CUT. Recall the MAX CUT problem: Given $G=(V, E)$, find $S \subset V$ that maximizes $\delta(S)$.

Definition 1 (MAX CUT) Given $G=(V, E)$, find $S \subset V$ that maximizes $|\delta(S)|$
Definition 2 (Approximation algorithm) A (randomized) α-approximation algorithm runs in (randomized) polynomial time and computes a solution with (expected) value within α of the value of an optimal solution.

Note that there exists an easy randomized algorithm for MAX CUT: Flip a coin for each $i \in V$ to decide whether or not $i \in S$. Then

$$
\mathbb{E}|\delta(S)|=\sum_{(i, j) \in E} \operatorname{Pr}[(i, j) \in S]=\frac{1}{2}|E| \geq \frac{1}{2} \mathrm{OPT}
$$

where OPT is the value of an optimal solution to MAX CUT on G.
Today, we will show a . 529-approximation algorithm due to Trevisan using a combination of this naive randomized algorithm and Trevisan's Cheeger-like inequalities.

3 Trevisan's Algorithm for MAX CUT

The main idea of this algorithm is to trade off between two cases:

- If $\mathrm{OPT}<(1-\epsilon)|E|$, then we get an approximation ratio from the naive random algorithm that is better than $1 / 2$.
- If $\mathrm{OPT} \geq(1-\epsilon)|E|$, then we can use Trevisan's inequality to get a better bound.

For Max Cut S^{*}, let $S=V, L=S^{*}, R=V-S^{*}$. Suppose that OPT $\geq(1-\epsilon)|E|$. Then

$$
\begin{aligned}
\beta(G) \leq \beta(S) & =\frac{2\left|E\left(S^{*}\right)\right|+2\left|E\left(V-S^{*}\right)\right|+|\delta(V)|}{\operatorname{vol}(V)}=\frac{2\left(|E|-\left|\delta\left(S^{*}\right)\right|\right)}{2|E|} \\
& \leq \frac{2(|E|-(1-\epsilon)|E|)}{2|E|} \\
& =\epsilon .
\end{aligned}
$$

Notice that we know $\frac{1}{2} \beta_{n} \leq \beta(G)$, so in this case we can infer that $\beta_{n} \leq 2 \epsilon$.
So if $\beta_{n}>2 \epsilon$, then $\mathrm{OPT}<(1-\epsilon)|E|$. So the naive randomized algorithm finds S such that

$$
\mathbb{E} \delta(S)=\frac{1}{2}|E| \geq \frac{\mathrm{OPT}}{2(1-\epsilon)}
$$

Thus in this case it is a $\frac{1}{2(1-\epsilon)}$ - approximation algorithm.
Now suppose that $\beta_{n} \leq 2 \epsilon$. We can run the algorithm to find a set S and a partition of S into L and R such that $\beta(S)$ is small, namely, at most $\sqrt{2 \beta_{n}} \leq 2 \sqrt{\epsilon}$.

Once we have this S, what should we do to find a large cut? In this case, we will attempt to improve our bounds by making some recursive calls. We recurse our Max-Cut algorithm on $V-S$, to find (L^{\prime}, R^{\prime}) that partition $S-V$.
Consider the following two possible cuts of G (presented as partitions on V):

- $\left(L \cup L^{\prime}, R \cup R^{\prime}\right)$
- $\left(L \cup R^{\prime}, R \cup L^{\prime}\right)$

Notice that every edge in $\delta(S)$ either "stays on the same side", going from L to L^{\prime} or R to R^{\prime}, or else "crosses sides", going from L to R^{\prime} or R to L^{\prime}. That means that one of the above cuts must contain at least $1 / 2$ the edges in $\delta(S)$. We choose that cut.

Call the size of the cut our algorithm finds on $G, \operatorname{ALG}(G)$, and the size of the maximum cut in $G, \operatorname{OPT}(G)$. Then:

$$
\operatorname{ALG}(G) \geq|\delta(L, R)|+\frac{1}{2}|\delta(S)|+\operatorname{ALG}(G-S)
$$

and

$$
\begin{aligned}
\operatorname{OPT}(G) & \leq|E(L)|+|E(R)|+|\delta(L, R)|+|\delta(S)|+\operatorname{OPT}(G-S) \\
& =\frac{1}{2} \operatorname{vol}(S)+\frac{1}{2}|\delta(S)|+\operatorname{OPT}(G-S)
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\operatorname{ALG}(G)}{\mathrm{OPT}(G)} & \geq \min \left\{\frac{|\delta(L, R)|}{\frac{1}{2} \operatorname{vol}(S)}, \frac{\frac{1}{2}|\delta(S)|}{\frac{1}{2}|\delta(S)|}, \frac{\operatorname{ALG}(G-S)}{\mathrm{OPT}(G-S)}\right\} \\
& =\min \left\{\frac{|\delta(L, R)|}{\frac{1}{2} \operatorname{vol}(S)}, \frac{\operatorname{ALG}(G-S)}{\mathrm{OPT}(G-S)}\right\}
\end{aligned}
$$

Since $\beta_{n} \leq 2 \epsilon$, using Trevisan's inequalities we bound:

$$
\begin{aligned}
2 \sqrt{\epsilon} & \geq \frac{\operatorname{vol}(S)-2|\delta(L, R)|}{\operatorname{vol}(S)} \\
& =1-\frac{2|\delta(L, R)|}{\operatorname{vol}(S)}
\end{aligned}
$$

Thus

$$
\frac{|\delta(L, R)|}{\frac{1}{2} \operatorname{vol}(S)} \geq 1-2 \sqrt{\epsilon}
$$

So, we can conclude that

$$
\frac{\operatorname{ALG}(G)}{\operatorname{OPT}(G)} \geq \min \left\{1-2 \sqrt{\epsilon}, \frac{\operatorname{ALG}(G-S)}{\operatorname{OPT}(G-S)}\right\}
$$

The same must hold true for $G-S$ recursively. But note that for some subgraph of G we consider in some recursive step, it may be possible that $\beta_{n} \geq 2 \epsilon$. Thus we conclude that:

$$
\frac{\operatorname{ALG}(G)}{\operatorname{OPT}(G)} \geq \min \left\{1-2 \sqrt{\epsilon}, \frac{1}{2(1-\epsilon)}\right\}
$$

These two expressions are equal for $\epsilon \approx .0554$, at which point the ratio is about .529 . So this is a .529-approximation algorithm \square

Better analyses were given in Trevisan 2009, which improved the bound to .531, and in Soto 2015, which improved it to .614 .

[^1]
4 Discussion

Goemans, W (1995) give a .878-approximation algorithm for MAX CUT by using semidefinite programming (SDP). So why do we care about Trevisan's spectral algorithm?

- Computing eigenvectors is a lot easier (in terms of speed and memory) than solving SDP. (Although, Trevisan's algorithm makes recursive calls that require recomputing new vectors).
- Some experimental results indicate that this algorithm performs better than the SDP-based algorithm (both in time and result quality).
- This method may be more powerful than LP. Kothari, Meka, Raghavendra (STOC 2017) showed you need at least subexponentially-sized LPs to get an integrality gap for MAX CUT greater than $\frac{1}{2}$.

These observations raise some research questions:

- The current bound on the algorithm's performance doesn't seem tight - is it?
- Is there a "one-shot" spectral algorithm, one that doesn't require recursive calls? The recursion makes it hard to analyze the algorithm, and forces recomputation of eigenvectors.
- Can we apply this algorithm to other problems with a similar structure (called 2CSP)? For instance, the MAX DICUT problem (MAX CUT in directed graphs) and the MAX 2SAT problem have this structure. In the MAX 2SAT problem, we are given n boolean variables x_{1}, \ldots, x_{n}, and some number of clauses with at most two variables (e.g. $\bar{x}_{1}, x_{2} \vee \bar{x}_{3}$, etc.) The goal is to find a setting of the variables to true or false so as to maximize the total number of satisfied clauses.

[^0]: ${ }^{0}$ This lecture is derived from Lau's 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/ csc5160/notes/L02.pdf and Lau's 2015 notes, Lecture 4, https://cs.uwaterloo.ca/~lapchi/ cs798/notes/L04.pdf

[^1]: ${ }^{1}$ Lau, in his lecture notes, attributes this analysis to Nick Harvey.

