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OUTLINE

� The problem — nonparametric regression with measurement

error

� Review of the currently available estimators

� New Bayesian spline approach (Berry, Carroll, and Ruppert,

2002, JASA)

� Simulation results
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THE PROBLEM OF MEASUREMENT ERROR —

ILLUSTRA TION
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THE PROBLEM OF MEASUREMENT ERROR —

ILLUSTRA TION
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THE PROBLEM OF MEASUREMENT ERROR
� The regression model is

� � � ��� �	� 

where

�
is only known to be smooth

� Observe �
and

� � � � �
where

– 
 ��� ��� � � �
– var(

� ���
) = ����

–
� ���

normally distributed

� Measurement error variance ���� is estimated from internal repli-

cate data. (Observe ��� , � � �����������! � .)
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THE PROBLEM OF MEASUREMENT ERROR, CONT.
� Measurement error occurs in a wide variety of problems.

– Measuring nutrient intake

– Measuring airborne lead exposure

– Measuring blood pressure

– C "$# dating

� The effects of measurement error are:

– biased estimates of the regression curve

– increase in the perceived variability about the regression line.



7

THE PROBLEM OF MEASUREMENT ERROR, CONT.

� Other than the work of Fan and Truong (1993, Annals), there

had been little done on nonparametric regression with measure-

ment error until

– Carroll, Maca, and Ruppert (1999, Biometrika) (CMR ) and

– Berry, Carroll, Ruppert (2002, JASA) (BCR)
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REVIEW OF CURRENT ESTIMATORS
� Globally consistent nonparametric regression by deconvolution

kernels (Fan and Truong, 1993, Annals)

– does not work so well
% Fan & Truong show very poor asymptotic rates of conver-

gence
% we have simulations showing poor finite-sample behavior

– no methodology for bandwidth selection or inference
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REVIEW OF CURRENT ESTIMATORS
� Standard measurement error method: SIMEX

– functional — no assumptions on & � '
– very general — can be applied to nearly any measurement

error problem, parametric or nonparametric

� Structural Spline

– Regression splines for basic regression model

– Mixtures of normals for covariate density model

– Emphasis is on flexible parametric modeling, not nonparamet-

ric modeling. (Little or no difference in practice.)
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SIMEX
� The SIMEX method is due to Cook & Stefanski (1995, JASA).

– The theory is in Carroll, et al. (1996, JASA)

– Also see Carroll, Ruppert, and Stefanski (1995, Measurement

Error in Nonlinear Models)

� SIMEX has been previously applied to parametric problems.

– makes no assumptions about the true
�

’s. (Functional)

– results in estimators which are approximately consistent, i.e.,

consistent at least to order ( � ��)� � .
� Here is the method, defined via a graph.
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SIMEX, ILLUSTRA TED
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SIMEX
� CMR applied the SIMEX to nonparametric regression.

� CMR have asymptotic theory in the local polynomial regression

(LPR) context.

– The estimators have the usual rates of convergence.

– They are approximately consistent, to order ( � � .

� An asymptotic theory with rates seems very difficult for splines

– but, simulations in CMR indicate that SIMEX/splines works a

little better than SIMEX/kernel

– problem seems due to undersmoothing
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SIMEX
� Staudenmayer (2000, Cornell PhD thesis) looked at bandwidth

selection for SIMEX/LPR.

– With better bandwidth selection, SIMEX/LPR is competitive

with other methods.



14

STRUCTURAL MODELING
� The regression of

�
on the observed is


 �-� � � � 
 . � ��� �/� 0 � � �-12�43 �51 �
� If we had a model

� ��� 687 �
for

� ��� �
and if we knew , then

we could estimate
� ��� 687 �

by minimizing over the data9
�;: "

� ��< � �-1 647 �43 �51 � � �>=?1 � �

� We need two things to make this work:

– convenient flexible form for
� �-1 687 �

– convenient flexible distribution for
�

.
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REGRESSIONSPLINES
� Model


 �5� �@� � � � �A� 647 � BC� D
�E:GF

H � � � � I
�E: "

H �EJ D
�A�

� The key remaining issue: the joint distribution of
�

and .

– CMR used a mixtures of normals for & � '
and Gibbs sampling

to estimate the parameters.
% This is an extension to measurement error of an idea of

Roeder & Wasserman (JASA, 1997).
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FULLY BAYESIAN MODEL
What’sNew?

Answer: Fully Bayesian MCMC method in BCR

� Uses splines

– smoothing or penalized

– P-splines in this talk

� Structural

–
� � are iid normal

– but seems robust to violations of normality
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FULLY BAYESIAN MODEL
� Smoothing parameter is automatic

� Inference adjusts for the data-based smoothing parameter and

for measurement error

� Allow global confidence bands
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FULLY BAYESIAN MODEL — PARAMETERS
� RegressionModel
� � � � �51 � 687 �	� 
 �
–
� �-1 � 687 �

is a P-spline

–

 � iid K �;�L� ���M �

� MeasurementErr or Model

��� � � � � � �N� where
� �N� iid K �;�L� ���� �

� Structural Model
� � iid K �AO�PQ� ���P �

� Parameters:
7 � ���R � ���� �SO P � ���P



19

FULLY BAYESIAN MODEL — PARAMETERS
� Priors

–
7

is K �5�L���UT �SV " � where is known. [ W BX� T ���R is the smooth-

ing parameter.]

–
T

is Gamma
�;Y Z[�]\ Z^�

– ���R is Inv-Gamma
�;Y R �]\ R �

– ���� is Inv-Gamma
�;Y � �]\ � �

–
O�P

is K �_=`PQ�Sa �P �
– ���P is Inv-Gamma

�;Y P �]\ P �
� Hyperparameters:

Y R �]\ R �bY � �]\ � �bY PQ�]\ PQ�c=`Pd�Sa �P �bY Z
– all fixed at values making the priors noninformative

% E.g.,
a �P � �e� ) .
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GIBBS SAMPLING

� Iterate through
7 � ���R � ���� � ���P �SO P �fT �S� " �������g�S� 9 .

� All steps except one are easy, either gamma, inverse-gamma,

or normal

– E.g.,

& 7 �
other parameters

�ih � 'kj l monqp rts
u v/rtw � � x � T � V " xkh

y m/z � � �R � x � T � V " �
% Here is one of the “other parameters”
% Essentially we’re fitting a spline to the imputed ’s and the

observed
�

’s



21

GIBBS SAMPLING% Estimate of
7

, call it {7 , is
� x � T � V " x h

averaged over
T

and .
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GIBBS SAMPLING
� The exception to the sampling being quick and easy is that a

Metropolis-Hastings step is needed for
� " ���������S� 9 .

& � � ��O�PQ� � �P �|7 � � �R � � �� �ih � '
} vi~>�k� <

�
� � ��

� �
�E: "

� ��� < � � � �

<
�

� � �M .
� � < � ��� � 647 ��0 � <

�
� � �P

�A� � < O�P>� � �
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BAYESIAN INFERENCE

� Let � be the spline basis function evaluated on a fine grid over

some interval, &�� �i�c' .
� � 7

is the curve on &�� �i�c' ..
� � {7 is the estimated curve.

� Let � � be the
�4� < W �

MCMC sample quantile of

p r�~
grid

� ��7 < {7 �
SD

� � 7 � �
� Then,

� {7 � � ���c� SD
� � 7 �

is a 100
�4� < W �

% simultaneous confidence band for the curve on

&�� �i�c' .
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BAYESIAN INFERENCE

� Let � � be derivatives of the spline basis function evaluated on a

fine grid over &�� �i�c' .
� � � 7 is the curve’s derivative on &�� �i�c' .
� � � {7 is the estimated derivative.

� Let � �� be the
�4� < W �

MCMC sample quantile of

p r�~
grid

� � ��7 < {7 �
SD

� � � 7 � �
� Then,

� � {7 � � ����c� SD
� � � 7 �

is a 100
�4� < W �

% simultaneous confidence band for the derivative

on &�� �i�i' .
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SIMULA TIONS

The six cases were considered.
 � � �

in each case.

Case1 The regression function is
� �-12� � �S� w �A��1�� � �

� � � 1 � . �S��� w��512�2� �E0 �

with
 � �e���

, ���M � �L�C� � , ���� � �L�C� � , O�P � �
and ���P �

.
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Case2 Same as Case 1 except
 � � ���

.
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Case3 A modification of Case 1 above except that
 

.
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Case4 Case 1 of CMR so that
� �-12� � �e�����t1d�J �8� < 12���J �

1 J � 1[�d�-1   �¡�
, with

 � � ���
, ���M � �L�¢���L�¤£ � , � ,O�P � �L�¥£

and ���P � �L� � £ � .
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Case5 A modification of Case 4 of CMR so that
� �-12� � �e� �S� w���¦§��12�]�

with
 � £g���

, ���M � �L�C�o£ � , ���� � �L�¨�i¦©� � , O�P � �L�ª£
and .
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Case6 The same as Case 1 above except that
�

is a normalized

chi-square(4) random variable. (Tests robustness against viola-

tion of the structural assumptions.)
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Mean SquaredBias « ¬®­k¯
Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Naive 5.59 4.92 5.21 1,108 3,733 4.83
Bayes 0.78 0.38 1.04 17.4 468 1.74
Structural, 5 knots 1.38 0.62 0.46 3.7 838 1.47
Structural, 15 knots 1.44 0.60 0.66 3.3 226 1.75

Mean SquaredErr or « ¬®­[¯
Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Naive 6.91 5.57 5.38 1,155 3,793 5.77
Bayes 2.84 1.56 1.47 195 1,031 2.69
Structural, 5 knots 8.17 3.82 1.73 217 2,032 7.27
Structural, 15 knots 9.90 5.40 1.85 237 799 6.94

Resultsbasedon 200Monte Carlo simulationsfor eachcase.SIMEX

wasnot included in the table — it wasnot amongthe bestestimators.
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EXAMPLE — SIMULA TED
� � � �|� w�� � � �	� 

� �

is K �8�����°�
� � � � �
� � R � �L�¨�¤£
�  � � �L�
�  � � �

for all ±
� 15 knot quadratic P-splines

� 2,000 iterations of Gibbs. First 667 deleted as burn-in.
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EXAMPLE — SIMULA TED

What does the Bayes approach work so well? Here’s my explana-

tion:

Bayes uses all possible information to estimate
�

and, espe-

cially,
� ��� �

.

� ´ � ��� � < 
 . � �A� �°� �ih �
other param.

0 ´
µ ´ � �A� � < rez¡v . � � {� �S0 ´ � � �²¦`¶

� ´ � ��� � < � � 
 . � � �ih �
other param.

0·� ´
µ ´ � �A� � < � �_rez¡v . {� 0·� ´ � ¦©�¢¸¡¶

� ´ � ��� � < � � 
 �A� � �4� ´ � �e�L� � £
� ´ � ��� � < � � � ´ � � � �C��¸
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DISCUSSION
� With the work of CMR and BCR we now have reasonably ef-

ficient estimators for nonparametric regression with measure-

ment error.

– SIMEX (LPR and splines) — in CMR

– (Flexible) Structural splines — in CMR

– Fully Bayesian (hardcore structural) — in BCR
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DISCUSSION
� With BCR we have a methodology that

– automatically selects the amount of smoothing

– estimates the unknown
�

’s

– allows inference that takes account of the effects of smoothing

parameter selection and measurement error

� Most efficient methods appear to be structural, though SIMEX

may be competitive

– hardcore structural methods seem reasonably robust


