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OUTLINE

e The problem — nonparametric regression with

error
e Review of the currently available estimators

e New Bayesian spline approach (Berry, Carroll,
2002, JASA)

e Simulation results
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THE PROBLEM OF MEASUREMENT ER

e The regression model is
Y =m(X)+e
where m Is only known to be smooth

e Observe
Y and W = X + U, where

—-FEU|X)=0
—var(U|X) = o2
—U| X normally distributed

2
U

cate data. (Observe W;;, j =1,...,n;.)

e Measurement error variance oZ I1s estimated from



THE PROBLEM OF MEASUREMENT ERROF

e Measurement error occurs in a wide variety of prc

—Measuring nutrient intake
— Measuring airborne lead exposure
—Measuring blood pressure
—Cy4 dating
¢ The effects of measurement error are:

—biased estimates of the regression curve

—Increase In the perceived variability about the re



THE PROBLEM OF MEASUREMENT ERROF

e Other than the work of Fan and Truong (1993, /
had been little done on nonparametric regression

ment error until

— Carroll, Maca, and Ruppert (1999, Biometrika)
—Berry, Carroll, Ruppert (2002, JASA) (BCR)



REVIEW OF CURRENT ESTIMATOR

¢ Globally consistent nonparametric regression by

kernels (Fan and Truong, 1993, Annals)

—does not work so well

x Fan & Truong show very poor asymptotic rai
gence

x Wwe have simulations showing poor finite-samy

—no methodology for bandwidth selection or infer



REVIEW OF CURRENT ESTIMATOR

e Standard measurement error method: SIMEX

—functional — no assumptions on [ X|
—very general — can be applied to nearly any
error problem, parametric or nonparametric

e Structural Spline

— Regression splines for basic regression model
— Mixtures of normals for covariate density model

—Emphasis is on flexible parametric modeling, no

ric modeling. (Little or no difference in practice.



SIMEX

e The SIMEX method is due to Cook & Stefanski (1

—The theory is in Carroll, et al. (1996, JASA)
— Also see Carroll, Ruppert, and Stefanski (1995,
Error in Nonlinear Models)

e SIMEX has been previously applied to parametric

—makes no assumptions about the true X'’s. (Fur

—results in estimators which are approximately ci

consistent at least to order O(a?9).

e Here is the method, defined via a graph.
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SIMEX

e CMR applied the SIMEX to nonparametric regres

e CMR have asymptotic theory in the local polynon
(LPR) context.

— The estimators have the usual rates of converg

—They are approximately consistent, to order O(c
e An asymptotic theory with rates seems very diffici

—but, simulations in CMR indicate that SIMEX/sj
little better than SIMEX/kernel

—problem seems due to undersmoothing



SIMEX

e Staudenmayer (2000, Cornell PhD thesis) looked
selection for SIMEX/LPR.

—With better bandwidth selection, SIMEX/LPR

with other methods.



STRUCTURAL MODELING

e The regression of Y on the observed IV is
B(Y|W) = E{m(X)IW} = [ m(z) ([

e If we had a model m(X; 3) for m(X)and if we kne

we could estimate m/(X; 3) by minimizing over the

n 2
“{ /mxﬁ a:|W)dx} |

¢ \We need two things to make this work:

—convenient flexible form for m(x; 3)

—convenient flexible distribution for X.



REGRESSION SPLINES

e Model
BYIX) = m(X:8) = 34X + 3 1l

e The key remaining issue: the joint distribution of

— CMR used a mixtures of normals for [ X] and G

to estimate the parameters.

* ThIS IS an extension to measurement error
Roeder & Wasserman (JASA, 1997).



FULLY BAYESIAN MODEL

What's New?
Answer: Fully Bayesian MCMC method in BCR

e Uses splines

—smoothing or penalized

—P-splines In this talk
e Structural

— X, are iid normal

—but seems robust to violations of normality



FULLY BAYESIAN MODEL

e SmMoothing parameter is automatic

e Inference adjusts for the data-based smoothing [

for measurement error

¢ Allow global confidence bands



FULLY BAYESIAN MODEL — PARAMET

¢ RegressionModel

Y, =m(z;8) + ¢

—m(x;; 3) is a P-spline

—¢; iid N(0, 0?)
e MeasurementErr or Model

Wi; = X; + U;; where U iid N(0, %)
e Structural Model

X iid N (g, 07)

2

e Parameters: 3, 02,02, iz, 02



FULLY BAYESIAN MODEL — PARAMET

e Priors
—Bis N(0, (vK)~!) where K is known. [o := vyo2
Ing parameter.]
—v is Gamma(A-, B)
— o2 is Inv-Gamma( A, Be)
— o2 is Inv-Gamma(Ay, By)
— pi is N(dg, 12)
— o2 is Inv-Gamma(Ay, B;)

o Hyperparameters A, Be, Ay, By, Az, By, dg, t2, A,

—all fixed at values making the priors noninforma

« E.Q., t2 = 10°.



GIBBS SAMPLING

2

e lterate through B, 02,02, 02, iz, v, X1, - - -, Xn.

e All steps except one are easy, either gamma, in\
or normal
—-E.g.,
|[B|other parameters, Y, W| ~ Normal
Mean = (X'X +vK)"!XTy
Cov=02(X"X +7K)™ L.
x Here X Is one of the “other parameters”

x Essentially we’'re fitting a spline to the impute

observed Y's



GIBBS SAMPLING

x Estimate of 3, call it B IS
(X'X +vK)" XY

averaged over v and X.



GIBBS SAMPLING

e The exception to the sampling being quick and

Metropolis-Hastings step Is needed for X1,..., X,
[X |:u337 ;137/370 0 Y W]
1 m; )
202 (Wi; — X;)
Ug=1
1 1 5
——{Y; —m(X;; B)} — —(X; — pz)?
O¢ 207

ox exp(—



BAYESIAN INFERENCE

e Let X be the spline basis function evaluated on a

some interval, |a, b|.
e X 3 is the curve on [a, b]..

e X 3 is the estimated curve.

o Let K, be the (1 — o) MCMC sample quantile of
X(B-B)
max = .
gid | SD(X3)

X3+ K g5 SD(X 3)

e Then,

IS a 100(1 — )% simultaneous confidence band fo
la, b].



BAYESIAN INFERENCE

e Let X' be derivatives of the spline basis function €

fine grid over [a, b|.
e X'3 is the curve’s derivative on [a, b].
e X'B is the estimated derivative.
o Let K/ be the (1 — o) MCMC sample quantile of

Imax Xl(IB _ B> .
grid SD(X,,B)

e Then,
X'B + Ky, SD(X'B)
Is a 100(1—a)% simultaneous confidence band for

on |a, b|.



SIMULATIONS

The six cases were considered. n; = 2 in each case

Casel The regression function is

sin (mz/2)
1+ 2x2{sign(z) + 1}
with n = 100, 02 = 0.3%, 02 = 0.8%, g = 0 and o2 =
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Case2 Same as Case 1 except n = 200.



Case3 A modification of Case 1 above except that n



Case4 Case 1 of CMR so that
m(z) = 100023 (1 — z)3,

ry = xl(z > 0), with n = 200, 02 = 0.0015%,
e = 0.5 and o2 = 0.25°.
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Case5 A modification of Case 4 of CMR so that
m(x) = 10 sin(47x),

with n = 500, 02 = 0.05%, 02 = 0.141%, u; = 0.5 and

10
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Case6b The same as Case 1 above except that X Is
chi-square(4) random variable. (Tests robustness

tion of the structural assumptions.)



Mean Squared Bias x 104

Structural, 15 knots

'Methoo Casel Case?2 Case3 Case4d C
'Naive 559 492 521 1,108 3
Bayes 0.78 038 104 174
Structural, 5knots | 1.38 0.62 0.46 3.7

f

144 060 066 3.3

Mean Squared Err or x 104

'Method Casel Case?2 Case 3 Case4 C
'Nalve 691 557 538 1155 3
Bayes 284 156 147 195 1
Structural, 5knots | 817 382 173 217 2
Structural, 15 knots| 990 540 185 237 ‘

Resultshasedon 200

Monte Carlo simulationsfor eac

wasnot included in the table — it wasnot amongthe b



EXAMPLE — SIMULATED

oY =sin(2X) + ¢

e X is N(1,1)

eg, =1

0., =0.15

o = 201

oen;, =2forall:

¢ 15 knot quadratic P-splines

e 2,000 iterations of Gibbs. First 667 deleted as bur
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EXAMPLE — SIMULATED

What does the Bayes approach work so well? Here’

tion:

Bayes uses all possible information to estimate

cially, m(X).

o |[m(X)— E{m(X)|W,Y,other param.}||
~ [|m(X) — ave{m(X)}| = 2.47

o |m(X)—m(E{X|W,Y  other param.})||
~ |m(X) — m(ave{X})| = 4.67

o [|m(X) — m(E(X|W))|| = 10.25

) _
o [|m(X) — m(W)|| = 12.36



DISCUSSION

¢ With the work of CMR and BCR we now have r
ficient estimators for nonparametric regression Vv
ment error.

—SIMEX (LPR and splines) — in CMR
— (Flexible) Structural splines — in CMR

— Fully Bayesian (hardcore structural) — in BCR



DISCUSSION

e With BCR we have a methodology that

—automatically selects the amount of smoothing
— estimates the unknown X's

—allows inference that takes account of the effects

parameter selection and measurement error

e Most efficient methods appear to be structural, tl

may be competitive

—hardcore structural methods seem reasonably r



