NONPARAMETRIC REGRESSION WIT MEASUREMENT ERROR: SOME RECENT PR David Ruppert Cornell University

www.orie.cornell.edu/~davidr

(These transparencies, preprints, and references

link to "Recent Talks" and "Recent Paper

Work done jointly with

Scott Berry, Berry Consultants

R. J. Carroll, Texas A & M

Jeff Maca, Novartis

John Staudenmayer, U Mass

OUTLINE

- The problem nonparametric regression with error
- Review of the currently available estimators
- New Bayesian spline approach (Berry, Carroll, 2002, JASA)
- Simulation results

THE PROBLEM OF MEASUREMENT ERR

ILLUSTRATION

THE PROBLEM OF MEASUREMENT ERR

ILLUSTRATION

THE PROBLEM OF MEASUREMENT ER

• The regression model is

$$Y = m(X) + \epsilon$$

where m is only known to be smooth

Observe

Y and W = X + U, where

$$-E(U|X) = 0$$

– var(
$$U|X$$
) = σ_u^2

$$-U|X$$
 normally distributed

• Measurement error variance σ_u^2 is estimated from cate data. (Observe W_{ij} , $j = 1, ..., n_i$.)

THE PROBLEM OF MEASUREMENT ERROF

- Measurement error occurs in a wide variety of pro
 - Measuring nutrient intake
 - Measuring airborne lead exposure
 - Measuring blood pressure
 - $-C_{14}$ dating
- The effects of measurement error are:
 - biased estimates of the regression curve
 - increase in the perceived variability about the re

THE PROBLEM OF MEASUREMENT ERROF

- Other than the work of Fan and Truong (1993, And been little done on nonparametric regression ment error until
 - Carroll, Maca, and Ruppert (1999, *Biometrika*)
 - Berry, Carroll, Ruppert (2002, JASA) (BCR)

REVIEW OF CURRENT ESTIMATOR

- Globally consistent nonparametric regression by kernels (Fan and Truong, 1993, Annals)
 - does not work so well
 - * Fan & Truong show very poor asymptotic rational gence
 - * we have simulations showing poor finite-samp
 - no methodology for bandwidth selection or infer

REVIEW OF CURRENT ESTIMATOR

- Standard measurement error method: SIMEX
 - functional no assumptions on [X]
 - very general can be applied to nearly any error problem, parametric or nonparametric
- Structural Spline
 - Regression splines for basic regression model
 - Mixtures of normals for covariate density model
 - Emphasis is on flexible parametric modeling, nor ric modeling. (Little or no difference in practice.)

SIMEX

- The SIMEX method is due to Cook & Stefanski (1
 - The theory is in Carroll, et al. (1996, JASA)
 - Also see Carroll, Ruppert, and Stefanski (1995, Error in Nonlinear Models)
- SIMEX has been previously applied to parametric
 - makes no assumptions about the true X's. (Fur
 - results in estimators which are *approximately* consistent at least to order $O(\sigma_u^6)$.
- Here is the method, defined via a graph.

SIMEX, ILLUSTRATED

SIMEX

- CMR applied the SIMEX to nonparametric regres
- CMR have asymptotic theory in the local polynom (LPR) context.
 - The estimators have the usual rates of converge
 - They are approximately consistent, to order O(a)
- An asymptotic theory with rates seems very difficult
 - but, simulations in CMR indicate that SIMEX/sp little better than SIMEX/kernel
 - problem seems due to undersmoothing

SIMEX

- Staudenmayer (2000, Cornell PhD thesis) looked selection for SIMEX/LPR.
 - With better bandwidth selection, SIMEX/LPR with other methods.

STRUCTURAL MODELING

• The regression of Y on the observed W is

$$E(Y|W) = E\{m(X)|W\} = \int m(x)f(x|W)$$

If we had a model m(X; B) for m(X) and if we knew
 we could estimate m(X; B) by minimizing over the

$$\sum_{i=1}^{n} \left\{ Y_i - \int m(x; \boldsymbol{\beta}) f(x|W_i) \, dx \right\}^2$$

- We need two things to make this work:
 - convenient flexible form for $m(x; \beta)$
 - convenient flexible distribution for X.

REGRESSION SPLINES

Model

$$E(Y|X) = m(X; \beta) := \sum_{j=0}^{J} \beta_j X^j + \sum_{j=1}^{K} \beta_{j+J} (X)^j + \sum_{j=1}^{K} \beta_$$

- The key remaining issue: the joint distribution of 2
 - CMR used a mixtures of normals for [X] and G to estimate the parameters.
 - * This is an extension to measurement error Roeder & Wasserman (JASA, 1997).

FULLY BAYESIAN MODEL

What's New?

Answer: Fully Bayesian MCMC method in BCR

- Uses splines
 - smoothing or penalized
 - P-splines in this talk
- Structural
 - $-X_i$ are iid normal

but seems robust to violations of normality

FULLY BAYESIAN MODEL

- Smoothing parameter is automatic
- Inference adjusts for the data-based smoothing p for measurement error
- Allow global confidence bands

FULLY BAYESIAN MODEL — PARAMET

• Regression Model

$$Y_i = m(x_i; \boldsymbol{\beta}) + \epsilon_i$$

- $-m(x_i; \boldsymbol{\beta})$ is a P-spline
- $-\epsilon_i \text{ iid } N(0,\sigma_\epsilon^2)$
- Measurement Error Model

 $W_{ij} = X_i + U_{ij}$ where U_{ij} iid $N(0, \sigma_u^2)$

• Structural Model

 $X_i \text{ iid } N(\mu_x, \sigma_x^2)$

• Parameters: $\boldsymbol{\beta}, \sigma_e^2, \sigma_u^2, \mu_x, \sigma_x^2$

FULLY BAYESIAN MODEL — PARAMET

• Priors

- - β is $N(0, (\gamma K)^{-1})$ where K is known. [$\alpha := \gamma \sigma_e^2$ ing parameter.]
- $-\gamma$ is Gamma (A_{γ}, B_{γ})
- $-\sigma_e^2$ is Inv-Gamma (A_e, B_e)
- $-\sigma_u^2$ is Inv-Gamma (A_u, B_u)
- $-\mu_x$ is $N(d_x,t_x^2)$
- $-\sigma_x^2$ is Inv-Gamma (A_x, B_x)
- Hyperparameters: $A_e, B_e, A_u, B_u, A_x, B_x, d_x, t_x^2, A_\gamma$
 - all fixed at values making the priors noninforma * E.g., $t_x^2 = 10^6$.

GIBBS SAMPLING

- Iterate through β , σ_e^2 , σ_u^2 , σ_x^2 , μ_x , γ , X_1 , ..., X_n .
- All steps except one are easy, either gamma, involved or normal

– E.g.,

 $[\boldsymbol{\beta}|$ other parameters, $\boldsymbol{Y}, \boldsymbol{W}] \sim Normal$ Mean $= (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma \boldsymbol{K})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$ Cov $= \sigma_e^2(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma \boldsymbol{K})^{-1}$.

- * Here X is one of the "other parameters"
- Essentially we're fitting a spline to the impute observed Y's

GIBBS SAMPLING

* Estimate of β , call it $\hat{\beta}$, is

 $(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma \boldsymbol{K})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$

averaged over γ and \boldsymbol{X} .

GIBBS SAMPLING

• The exception to the sampling being quick and ϕ Metropolis-Hastings step is needed for X_1, \ldots, X_n

$$[X_i|\mu_x, \sigma_x^2, \boldsymbol{\beta}, \sigma_e^2, \sigma_u^2, \boldsymbol{Y}, \mathbf{W}]$$

$$\propto \exp\left(-\frac{1}{2\sigma_u^2} \sum_{j=1}^{m_i} (W_{ij} - X_i)^2 - \frac{1}{2\sigma_e^2} \{Y_i - m(X_i; \boldsymbol{\beta})\}^2 - \frac{1}{2\sigma_x^2} (X_i - \mu_x)^2 - \frac{1}{2\sigma_x^2} (X_i$$

BAYESIAN INFERENCE

- Let \tilde{X} be the spline basis function evaluated on a some interval, [a, b].
- $\tilde{\boldsymbol{X}}\boldsymbol{\beta}$ is the curve on [a,b]..
- $ilde{X}\widehat{oldsymbol{eta}}$ is the estimated curve.
- Let K_{α} be the (1α) MCMC sample quantile of

$$\max_{ ext{grid}} \left\{ rac{ ilde{m{X}}(m{m{eta}} - \widehat{m{eta}})}{ ext{SD}(ilde{m{X}}m{m{eta}})}
ight\}.$$

• Then,

$$\tilde{\boldsymbol{X}}\widehat{\boldsymbol{\beta}} \pm K_{.95}\,\mathrm{SD}(\tilde{\boldsymbol{X}}\boldsymbol{\beta})$$

is a $100(1-\alpha)$ % simultaneous confidence band fo [a, b].

- Let \tilde{X}' be derivatives of the spline basis function e fine grid over [a, b].
- $\tilde{X}'\beta$ is the curve's derivative on [a, b].
- $\tilde{X}'\widehat{oldsymbol{eta}}$ is the estimated derivative.
- Let K'_{α} be the $(1-\alpha)$ MCMC sample quantile of

$$\max_{\text{grid}} \left\{ \frac{\tilde{\boldsymbol{X}}'(\boldsymbol{\beta} - \boldsymbol{\widehat{\beta}})}{\text{SD}(\boldsymbol{\tilde{X}}'\boldsymbol{\beta})} \right\}$$

• Then,

$$\tilde{\boldsymbol{X}}' \hat{\boldsymbol{\beta}} \pm K'_{.95} \operatorname{SD}(\tilde{\boldsymbol{X}}' \boldsymbol{\beta})$$

is a $100(1-\alpha)$ % simultaneous confidence band for on [a, b].

SIMULATIONS

The six cases were considered. $n_i \equiv 2$ in each case

Case 1 The regression function is

Case 2 Same as Case 1 except n = 200.

Case 3 A modification of Case 1 above except that n

Case 4 Case 1 of CMR so that

$$m(x) = 1000x_{+}^{3}(1-x)_{+}^{3},$$

 $x_+ = xI(x > 0)$, with n = 200, $\sigma_{\epsilon}^2 = 0.0015^2$, $\sigma_{\epsilon}^2 = 0.0015^2$, $\mu_x = 0.5$ and $\sigma_x^2 = 0.25^2$.

Case 5 A modification of Case 4 of CMR so that

$$m(x) = 10\,\sin(4\pi x),$$

with n = 500, $\sigma_{\epsilon}^2 = 0.05^2$, $\sigma_u^2 = 0.141^2$, $\mu_x = 0.5$ and

Case 6 The same as Case 1 above except that X is chi-square(4) random variable. (Tests robustness tion of the structural assumptions.)

Mean Squared Bias $ imes 10^2$					
Method	Case 1	Case 2	Case 3	Case 4	Ca
Naive	5.59	4.92	5.21	1,108	3
Bayes	0.78	0.38	1.04	17.4	Ζ
Structural, 5 knots	1.38	0.62	0.46	3.7	8
Structural, 15 knots	1.44	0.60	0.66	3.3	
	·				
Mean Squared Error $ imes 10^2$					
Method	Case 1	Case 2	Case 3	Case 4	Ca
Naive	6.91	5.57	5.38	1,155	3
Bayes	2.84	1.56	1.47	195	1
Structural, 5 knots	8.17	3.82	1.73	217	2
Structural 15 knots	0 00	5 40	1 85	227	-

Results based on 200 Monte Carlo simulations for each

5.40

1.85

237

9.90

Structural, 15 knots

was not included in the table — it was not among the b

EXAMPLE — SIMULATED

- $Y = \sin(2X) + \epsilon$
- X is N(1,1)
- $\sigma_u = 1$
- $\sigma_e = 0.15$
- n = 201
- $n_i = 2$ for all i
- 15 knot quadratic P-splines
- 2,000 iterations of Gibbs. First 667 deleted as bur

Results of Gibbs Sampling. Every twentieth ite Note: X(1) = -1.45 and $\overline{W}(1) = -0.8$. Also, $\log(\sigma)$

EXAMPLE — SIMULATED

What does the Bayes approach work so well? Here's tion:

Bayes uses all possible information to estimate cially, m(X).

- $||m(X) E\{m(X)|\mathbf{W}, \mathbf{Y}, \text{other param.}\}||$ $\approx ||m(X) - \operatorname{ave}\{m(\widehat{X})\}|| = 2.47$
- $||m(X) m(E\{X|\mathbf{W}, \mathbf{Y}, \text{other param.}\})||$ $\approx ||m(X) - m(\operatorname{ave}\{\widehat{X}\})|| = 4.67$
- $\bullet \| m(X) m(E(X|\overline{W})) \| = 10.25$
- $\bullet \|m(X) m(\overline{W})\| = 12.36$

DISCUSSION

- With the work of CMR and BCR we now have r ficient estimators for nonparametric regression v ment error.
 - SIMEX (LPR and splines) in CMR
 - (Flexible) Structural splines in CMR
 - Fully Bayesian (hardcore structural) in BCR

DISCUSSION

- With **BCR** we have a methodology that
 - automatically selects the amount of smoothing
 - estimates the unknown X's
 - allows inference that takes account of the effects parameter selection and measurement error
- Most efficient methods appear to be structural, the may be competitive

hardcore structural methods seem reasonably r