
Calibrating
Environmental

Engineering
Models and
Uncertainty

Analysis

David Ruppert

Background
The team

The research problem

The Model
Environmental model

Modeling the noise

Likelihood

Methodology
Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

Monte Carlo

Summary and
Future
Research

Calibrating Environmental Engineering Models
and Uncertainty Analysis

David Ruppert

Cornell University

Oct 14, 2008



Calibrating
Environmental

Engineering
Models and
Uncertainty

Analysis

David Ruppert

Background
The team

The research problem

The Model
Environmental model

Modeling the noise

Likelihood

Methodology
Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

Monte Carlo

Summary and
Future
Research

Project Team

Christine Shoemaker, co-PI, Professor of Civil and
Environmental Engineering

works in applied optimization
David Ruppert, co-PI
Nikolai Blizniouk, PhD student in Operations Research

now post-doc at Harvard
other students and post-docs

Rommel Regis
Stefan Wild
Pradeep Mugunthan
Dillon Cowan
Yingxing Li



Calibrating
Environmental

Engineering
Models and
Uncertainty

Analysis

David Ruppert

Background
The team

The research problem

The Model
Environmental model

Modeling the noise

Likelihood

Methodology
Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

Monte Carlo

Summary and
Future
Research

What is calibration?

Calibration means estimating the parameters in a model
want a good fit to the data

Can be viewed as a nonlinear regression problem
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Why is Calibration Difficult?

Likelihood may be multimodal
Non-Gaussian data
Non-constant noise variance
Spatial and temporal correlations
Model is computationally expensive

May take minutes or even hours to evaluate the model for
one set of parameter values
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Our Approach

uses
optimization and
radial basis function meta-model of log-posterior

to speed computations
fully Bayesian
takes into account all parameter uncertainty
“noise” model includes possible

correlation
non-Gaussian distribution
non-constant variance
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Deterministic component of model

ith observation is

Yi = (Yi,1, . . . , Yi,d)T

in absence of noise:

Yi,j = fj(Xi ,β)

fj(·) comes from scientific theory
Xi is a covariate vector
β contains the parameters of interest

noise is modeled empirically
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Components of the noise model

We modeled the noise via:
data transformation
spatial-temporal correlation model



Calibrating
Environmental

Engineering
Models and
Uncertainty

Analysis

David Ruppert

Background
The team

The research problem

The Model
Environmental model

Modeling the noise

Likelihood

Methodology
Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

Monte Carlo

Summary and
Future
Research

Purpose of data transformation

We used transformations to:
normalize the response distribution
stabilize the variance
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Normalizing transfromation
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Variance stabilizing transformation
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Transform-both-sides model

The transform-both-sides model is

h {Yi,j , λj} = h {fj(Xi ,β), λj}+ εi,j ,

equivalently

Yi,j = h−1 [h {fj(Xi ,β), λj}+ εi,j , λj ]

transforms both sides of the equation giving deterministic
model
preserves the theoretical model
{h(·, λ) : λ ∈ Λ} is some transformation family
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Transform-both-sides examples

the identity transformation gives the usual nonlinear
regression model

additive Gaussian errors
if we use the log transformation then

Yi,j = exp [log{fj(Xi ,β)}+ εi,j ] = fj(Xi ,β) exp(εi,j)

multiplicative, lognormal errors
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The Box-Cox family

the most common transformation family is due to Box and
Cox (1964):

h(y, λ) =
yλ − 1

λ
if λ 6= 0

= log(y) if λ = 0

derivative has simple form:

hy(y, λ) =
d
dy h(y, λ) = yλ−1 for all λ



Calibrating
Environmental

Engineering
Models and
Uncertainty

Analysis

David Ruppert

Background
The team

The research problem

The Model
Environmental model

Modeling the noise

Likelihood

Methodology
Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

Monte Carlo

Summary and
Future
Research

Strength of Box-Cox family

Take a < b
Then

hy(b, λ)
hy(a, λ)

=
(

b
a

)λ−1

which increases to 1 as λ ↑ 1
∴ h(y, λ) becomes a stronger concave transformation as λ
decreases from 1
also, h(y, λ) becomes a stronger convex transformation as
λ increases from 1
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Strength of Box-Cox family, cont.
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Technical problem with Box-Cox family

With the Box-Cox family
does not map (0,∞) onto (−∞,∞), except for λ = 0
so transformed response has a truncated normal
distribution
this makes Bayesian inference more complex
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COIL transformation family

COnvex combination of Identity and Log (COIL) family:

hC (y, λ) = λy + (1 − λ) log(y), 0 ≤ λ ≤ 1.

We restrict λ to [0, 1), since hC (·, 1) does not map (0,∞)
to (−∞,∞)
COIL can approximate Box-Cox
The inverse h−1

C (·, λ) does not have a closed form
evaluate by interpolation (fast)

Another family that could be used:

hC (y, λ, ε) = εy(λ) + (1 − ε) log(y)
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Multivariate transformations

Define
λ = (λ1, . . . , λd)T

and
h(y,λ) = {h(y1, λ1), . . . , h(yd , λd)}T
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TBS Likelihood

Our statistical model is
h{Y ,λ} ∼ MVN [h{f (β),λ},Σ(θ)]
Likelihood is

[Y |β,λ,θ] =

exp
[
−0.5 ‖h(Y ,λ)− h{f (β),λ}‖2

Σ(θ)−1

]
(2π)nd/2|Σ(θ)|1/2 · |Jh(Y ,λ)|

|Jh(Y ,λ)| is the Jacobian
Σ(θ) is the covariance matrix
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Overview of Methodology

Goal:
Approximate the posterior density accurately with as few
expensive likelihood evaluations as possible

There are four steps:
1 Locate the region(s) of high posterior density
2 Find an “experimental design” that covers the region of

high posterior density
the likelihood is evaluated on this design

3 Use function evaluations from Steps 1 and 2 to
approximate the posterior

4 MCMC and standard Bayesian analysis using the
approximate posterior density
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Removing nuisance parameters

The posterior density is

[β,λ,θ|Y ] =
[β,λ,θ, Y ]∫

[β,λ,θ, Y ] dβ dλ dθ
,

where [β,λ,θ, Y ] = [Y |β,λ,θ] · [β,λ,θ]

Interest focuses on

[β|Y ] =
∫

[β,λ,θ|Y ] dλ dθ
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Removing nuisance parameters - four methods

Exact: let ζ = (λ,θ)

[β|Y ] =
∫

[β, ζ|Y ] dζ

Profile posterior:

πmax(β, Y ) = sup
ζ

[β, ζ, Y ] = [β, ζ̂(β), Y ]

ζ̂(β) maximizes [β, ζ, Y ] with respect to ζ

Laplace approximation:
multiplies the profile posterior by a correction factor

Pseudo-posterior:
[β, ζ̂(β̂), Y ]

{β̂, ζ̂(β̂)} is the MAP = joint mode of posterior
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Finding posterior mode using Condor

When locating the posterior mode we want:
1 As few expensive function evaluations as possible
2 A small percentage of “wasted evaluations”

a) few evaluation locations in region of very low posterior
probability

b) few evaluation locations that are very close together
3 Getting very close to the mode is not a goal

All good optimization techniques achieve 1
Optimization methods based on numerical derivatives
violate 2 b)

MATLAB’s fmincon exhibited this problem
CONDOR uses sequential quadratic programming

worked well in our empirical tests
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Further function evaluations needed

Goal:
approximate posterior on CR(α) = {β : [β, Y ] > κ(α)}

Function evaluations in optimization stage insufficient to
approximate posterior accurately
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Constructing the experimental design

1 Normal approximation to posterior
requires a small number of additional function evaluations

2

ĈR(α) =
{

β : (β − β̂)T
[
Î

ββ
]−1

(β − β̂) ≤ χ2
p,1−α

}
3 Space-filling design on ĈR(α)
4 Remove points not in ĈR(α′) for α′ < α

E.g., α = 0.1 and α′ = 0.01
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Radial basis functions

π(·, Y ) denotes one of the approximations to [β, Y ]
l(·) = log{π(·, Y )} is interpolated at
BD = {β(1), . . . ,β(N)} by

l̃(β) =
N∑

i=1
aiφ(‖β − β(i)‖2) + q(β)

where
a1, . . . , aN ∈ R
φ is a radial basis function

we used φ(r) = r3

q ∈ Πp
m (the space of polynomials in Rp of degree ≤ m

β ∈ Rp
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Autoregressive Metropolis-Hastings algorithm

draw MCMC sample from π̃(·, Y ) = exp{̃l(·)}
restrict sample to ĈR(α′)

Metropolis-Hastings candidate:
βc = µ + ρ(β(t) − µ) + et

µ = location parameter
ρ = autoregressive parameter (matrix)

ρ = 0 → independence MH
ρ = 1 → random-walk MH

et ’s are i.i.d. from density g
if the candidate is accepted, then β(t+1) = βc

otherwise, β(t+1) = β(t)
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Applications in Environmental Engineering

not enough statisticians are working on environmental
engineering problems
environmental engineers often use ad hoc and inefficient
statistical methods
modern statistical techniques such as variance functions,
transformations, spatial-temporal models potentially offer
substantial improvements
statisticians and environmental engineers will both benefit
from collaboration
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GLUE

GLUE = Generalized Likelihood Uncertainty Estimation
widely used
considered state-of-the-art by many environmental
engineers
replaces the likelihood function of iid normal errors with
an arbitrary objective function
shows no appreciation of maximum likelihood as a general
method
objective function is not based on the data-generating
probability model
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Synthetic data example: Chemical spill

To test algorithm:
use computationally inexpensive function
then approximate and exact result can be compared

chemical accident caused spill at two locations on a long
channel

mass M spill at location 0 at time 0
mass M spill at location L and time τ

diffusion coefficient is d
parameter vector is β = (m, d, l, τ)T

want estimate of average concentration at end of channel
l is of special interest
need assessments of uncertainty as well
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Chemical spill model

Model is:

C(s, t; M , D, L, τ) =
M

√
4πDt

exp
�
−s2

4Dt

�

+
Mp

4πD(t − τ)
exp

�
−(s − L)2

4D(t − τ)

�
· I(τ < t)
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Details of simulation

assume data is collected at spatial location 0 (0.5) 2.5 and
times 0.3 (0.3) 60 (5 time 200 observations)
assume that a major goal is to estimate average
concentration of time interval [40, 140] at the end of the
channel (s = 3), specifically

F(β) =
20∑

i=0
f {(3, 40 + 5i),β}

requires additional function evaluations (but not much
more computation)
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Details, continued

λ = 0.333 in COIL family
one chemical species
σ can be integrated out of the posterior analytically
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Posterior densities: components of β
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Figure: Kernel estimates of the posterior densities of βi ’s with the
exact joint posterior (solid line) and RBF approximations to joint
posterior (dashed line), pseudoposterior (dashed-dotted line), profile
posterior with and without Laplace correction (dotted and large
dotted lines, respectively).
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Posterior densities: F(β)
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Figure: Kernel smoothed density estimates for the posterior of F(β).
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Results of a Monte Carlo experiment

MC mean ratio of C.I. lengths
true exact RBF size .9 size .95 size .99

β1 = M 10 10.0057 10.0061 .9969 .9961 .9844
(.0866) (.0893) (.0602) (.0624) (.0738)

β2 = D .07 .07008 .07008 .9910 .9888 .9687
(.00097) (.00101) (.0592) (.0612) (.0673)

β3 = L 1 1.0005 1.0005 .9671 .9662 .9604
(.0136) (.0134) (.0785) (.0765) (.0750)

β4 = τ 30.16 30.1610 30.1610 .9786 .9709 .9403
(.0096) (.0096) (.0779) (.0818) (.0835)

F(β) 128.998 129.063 129.067 .9959 .9937 .9841
(1.087) (1.100) (.062) (.0628) (.0695)
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Results of a Monte Carlo experiment

Table: Observed coverage probabilities.

size .9 cred. int. size .95 cred. int. size .99 cred. int.
exact RBF exact RBF exact RBF

β1 .905 .904 .950 .944 .986 .990
(.009) (.009) (.007) (.007) (.004) (.003)

β2 .908 .903 .954 .951 .991 .987
(.009) (.009) (.007) (.007) (.003) (.004)

β3 .916 .899 .953 .954 .989 .988
(.009) (.010) (.007) (.007) (.003) (.003)

β4 .904 .909 .947 .945 .988 .987
(.009) (.009) (.007) (.007) (.003) (.004)

F(β) .904 .902 .947 .937 .994 .980
(.009) (.009) (.007) (.008) (.002) (.004)
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What have we achieved?

In this research we have:
applied modern statistical tools to calibration of
environmental engineering models, e.g.,

transform-both-side
spatial-temporal correlation models
MCMC

implemented a Bayesian method of uncertainty analysis
substantially reduced the number of evaluations of the
computationally expensive environmental model by a
meta-model based on RBF’s
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multimodal posterior density
design: replacing local quadratic approximation by radial
basis approximation
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automatic tuning of MCMC
other transformation families
variance functions

as in Carroll and Ruppert, Transformations and Weighting
in Regression
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