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Discount Function, Forward Rates, and Yields

e D(0,t) = D(t) is the discount function, the value at time 0 (now)
of a zero-coupon bond that pays $1 at time ¢.

Price(t)

A - PV

Slide 3 e f(t) is the current forward rate defined by

D(t) = exp { /Ot f(s)ds} for all ¢

e The yield is the average forward rate, i.e.,

o) = 1 [ 1(6)s =~ 10e(D(0)

Discount Function, Forward Rates, and Yields

price
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STRIPS on Dec 31, 1995: price = empirical discount function
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Prices, Forward Rates, and Yields
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31, 1995: log prices

Discount Function, Forward Rates, and Yields
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Empirical Forward Rate

empirical forward =

D(t) = exp { /Ot f(s)ds} for all ¢
d

£t = ~ 5 log{D()}

log{P(tit1)} —log{P(t;)}

tit1 —t;

P(t) = observed price at time ¢

Empirical Forward Rate

empirical forward
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STRIPS on Dec 31, 1995: empirical forward rate



Modelling Coupon Bonds

e Pp,---, P, denote observed market prices of n bonds (coupon or
zero-coupon)

e Bond ¢ has fixed payments C;(¢; ;) due on dates
tij,j=1,...,N; (N; =1 for zero-coupon bonds)

Slide 9
e Model price for the ith coupon bond:
. N; ti.j
Py(8) = Ci(ti;)exp { f(s, é)ds}
j=1
f(-,0) is a model for the forward rate
Spline Model of Forward Rate
o f(5,6)=8"B(s)
— B(s) is a vector of spline basis functions
lide 10

— 0 is a vector of spline coefficients
o o F(t,8) = [ f(s,8)ds = ty(t,8) = 8 B!(s)
— Bl(t) := [ B(s)ds.
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Example: Quadratic Splines

B(s) = (1, s, 5%, (s — Ii1)3_, (s — KK)i)T
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Linear Spline — 4 Knots Lidar Data — Carefully Chosen Knots
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There is a better way to get a smooth fit than selecting knots
Linear Spline — 24 Knots Modelling the Forward Rate
o From before:
T
2;‘ B(t):(lv ta"’7tpa (t_ﬂl)g—a"'a(t_ﬂl()‘i)
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g3 Therefore:
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Penalized Least-Squares

Qn,)\(a) =

. [h(Pi) - h{ﬁi(é)}] ESVirer

7

or equivalently
2

lide 17 Qnr(6) = %Z {h(Pi) —h [Z C (ti ;) exp {—6TBI(ti,j)}

i=1

e /1 is a monotonic transformation: “transform-both-sides” model

e \0'Gd is a “roughness” penalty
- A>0

— G is positive semi-definite

Penalized Least-Squares

From previous slide:

2
n

Qna(0) = % > {h(Pz‘) —h [Z Ci(ti;) exp {—5TBI(ti,j)}

i=1

Several sensible choices for G

lide 18 1. G is a diagonal matrix
e last K diagonal elements equal to one
e all others zero.

e penalizes jumps at the knots in the pth derivative of the spline.
2. quadratic penalty on the dth derivative [{f(¥(s)}2ds
o uses Gy = [ B (1)B\” (1)t
— Bj(t) is the jth element of B(t)

} +26'G4.

} +A6TG6.

Linear Spline with 24 Knots Fit by Penalized Least
Squares
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e Number of knots has little effect on fit provide it is at least 15

e Choice of A is crucial

Using Zero Coupon Bonds

e Now assume we are using zeros, e.g., STRIPS

e P, has a single payment of $1 at time ;
Slide 20

e Therefore,

Qua(8) = % 3 (h(H-) —h [exp {—JTBI(ti)H )2 +267GS



Choosing the Knots Generalized Cross-Validation

= S [ne) - B}

GCV(A) = 2 )
{1-n-10DF(\)}
e one chooses A to minimize GCV(\)
lide 21 ® Ky is the (Ki’fmth sample quantile of {¢;}1" Slide 23 « 0 is a user-specified tuning parameter
e the t; are nearly equally spaced so the knots are also e 0= 1is ordinary GCV
e Fisher, Nychka, and Zervos used ¢ = 2
— this causes more smoothing
— Question: why doesn’t ordinary GCV work well here?
Effective Number of Parameters of a Fit EBBS
e To estimate MSE add together:
There exists a matrix S(A) such that — estimated squared bias
P P — estimated variance
lide 29 B ~S(\) | Slide 24 e Gives IVISE(f; t, \), tie estimated MSE of fat t and \.
P P — then D1 | MSE(f; ¢;, \) is minimized over A
e S()) is called the smoother matrix or hat matrix e EBBS estimates bias at any fixed ¢ by
e DF()\) := trace{S(\)} is called the degrees of freedom of the fit — computing the fit at ¢ for a range of values of the smoothing
or the effective number of parameters

parameter

— fitting a curve to model bias



EBBS — Estimating Bias

e to the first order, the bias is v(t)\ for some ()
o Let f(t,)\) be fdepending on maturity and A

e Compute {)\g,f(t,)\g)} ,0=1,...,L
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e ~ AL <...<Apis the grid of values of
— we used L = 50 values of A
— logy(A¢) were equally spaced between —7 and 1
— DF(10) = 4.8 and DF(10~7) = 28.9 for a 40-knot cubic spline
fit
EBBS — Estimating Bias
e For any fixed ¢, fit a straight line to the data
lide 26 {(Alaf(t7>\l)Z:17aL}

e slope of the line is 7(¢)

e estimate of squared bias at ¢ and A is (F(t) A¢)?

EBBS versus GCV
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Geometry of Transformations

tangent line at Y=1
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Strength of a Transformation
e Suppose y1 < Yo
e strength of a transformation h:
h/
strength = /(yQ) -1
W (y1)
e Example:
J M (o] _ 1
lide 30 hyia) = L= ifa#£0
!
= log(y) ifa=0
[ ]
a—1
strength := <y2) -1
Y1

> 0 fa>1
< 0 ifaxl
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Strength of a Transformation
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Transformation and Weighting

e log is the linearizing transformation
— convenient

— induces some heteroscedasticity, but not enough to cause a
problem

o log{P(t)}/t = — yield
— cause severe heteroscedasticity — avoid

Transformation and weighting should be done primarily to induce
the assumed noise distribution, which is:

e normal

e constant variance



Transformation and Weighting Transformation and Weighting
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Modelling the Correlation Modelling Corporate Term Structure

AT&T

e open problem

0.09
e probably not stationar 008 IR
. . . . . & N \\\\\\\\\\\\\\\\\\\‘\\\\\\\\\
lide 37 e simulations show that stationary AR and MA processes do not Slide 39 2006 \\\\‘\5%\\\\\\\\\\\}11\\\“ LR
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0.04 \\t\\\\\\\
0.03 \§\\\\
=

Apr 94 - Dec 95 R

Years to Maturity

Modelling Corporate Term Structure Modelling Corporate Term Structure

fo(t) = fr(t) + ag + art + ast?
lide 38 5 . . Slide 40
e «p + ait + ast® is the credit spread

Question: Should one smooth over both date and time to maturity?
e Hp: a1 = as = 0 is accepted for AT&T data

e ag > 0 for the AT&T data
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Asymptotics

The PLS estimator is the solution to

zn:wz((sv)‘a G) =0

i=1

for an appropriate ¥; (-, -, )

Asymptotics: A — 0

Theorem 1
o Jet {Sn A, } be a sequence of penalized least squares estimators
e assume typical “regularity” assumptions
e suppose Ay, is o(1)
o then d, is a (strongly) consistent for §g

e if \, is o(n"'/?), then
Vi (8ur, = 80) 2 N {0,027 (80)}
where

Q8o) :=lm By, By =007t Y E {982, G)i(8, 1, G)T}

i=1

Asymptotics: \ fixed

e assume A\, = A

e the bias does not shrink to 0

— limit of §,,  solves
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n_l zn:wl((s,)\,G)} =0

i=1
e the large sample variance formula is

o2

Var{3()} = 2 [{Z + AGH 1B {20 + 06} 1]

Summary

e splines are convenient for estimating term structure
e penalization is better, or at least easier, than knot selection
e EBBS provides a reasonable amount of smoothing

e GCV undersmooths because

Slide 44 — noise is correlated

— target function is a derivative

e corporate term structure can be estimated by “borrowing
strength” from treasury bonds

e a constant credit spread fits the data reasonably well

e asymptotics are available for inference
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