Statistics for

Statistics for Financial Engineering: Some Examples

David Ruppert
Cornell University

Nov 21, 2008

Outline

(1) Introduction
(2) Nonlinear Regression

- Default probabilities
- Data Transformations: some theory
(3) Estimating a dynamic model
- Interest rate data
- Nonparametric regression by splines
- Checking the model: residual analysis
- GARCH models

4 Term structure
(5) Estimating Fraud Risk

Some Themes

```
Statistics for
    Financial
Engineering:
    Some
    Examples
David Ruppert
```

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model
Interest rate data
Nonparametric regression by splines Checking the model: residual analysis GARCH models
Term

structure

- Calibration of financial models is a statistical problem
- Many financial engineers come from math or physics and have little exposure to statistics and econometrics
- Financial engineering is an exciting area for statisticians to work in and to learn from

A little about myself

- BA and MA in mathematics
- PhD from in statistics in 1977
- taught in the statistics department at North Carolina for 10 years
- have been in Operations Research and Information (formerly Industrial) Engineering at Cornell since 1987
- starting teaching Statistics and Finance to undergraduates in 2001
- textbook published in 2004
- starting teaching Statistics for Financial Engineering to master's students in 2008
- working on revised and expanded textbook

Undergraduate Textbook

A little about my research

Statistics for
Financial Engineering:

Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a

- have done research in
- asymptotic theory of splines
- semiparametric modeling
- measurement error in regression
- smoothing (nonparametric regression and density estimation)
- transformation and weighting
- stochastic approximation
- biostatistics
- environmental engineering
- modeling of term structure
- executive compensation and accounting fraud

Overview

Statistics forFinancialEngineering:
Some
Examples

- Recent example where a statistician could have helped
- Penalized splines
- Two examples:
- Return to interest rate dynamics
- Term structure - estimating the forward rate curve
- Predicting the risk of accounting fraud

Three types of regression

Linear regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i}, i=1, \ldots, n
$$

Nonlinear regression

$$
Y_{i}=m\left(X_{i, 1}, \ldots, X_{i, p} ; \beta_{1}, \ldots, \beta_{q}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where m is a known function depending on unknown parameters

Nonparametric regression

$$
Y_{i}=m\left(X_{i, 1}, \ldots, X_{i, p}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where m is an unknown "smooth" function

Usual assumptions on the noise

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transiormations some theory

Estimating a

Usually $\epsilon_{1}, \ldots, \epsilon_{n}$ are assumed to be:

- mutually independent (or at least uncorrelated)
- homoscedastic (constant variance)
- normally distributed

Much research over the last 50+ years has looked into ways of
(1) checking these assumptions
(2) statistical methods that require less assumptions

Estimation of Default Probabilities

Statistics for
Financial
Engineering: Some
Examples

Data:

- ratings: $1=$ Aaa (best), $\ldots, 16=\mathrm{B} 3$ (worse)
- default frequency (estimate of default probability)

Some statistical models

- nonlinear model:

$$
\operatorname{Pr}(\text { default } \mid \text { rating })=\exp \left\{\beta_{0}+\beta_{1} \text { rating }\right\}
$$

- linear/transformation model (in recent textbook):

$$
\log \{\operatorname{Pr}(\text { default } \mid \text { rating })\}=\beta_{0}+\beta_{1} \text { rating }
$$

- Problem: cannot take logs of default frequencies that are 0
- (Sub-optimal) solution in textbook: throw out these observations

A better statistical model

- Transform-both-sides (TBS) model - see Carroll and Ruppert (1984, 1988):
- using a power transformation:

$$
\operatorname{Pr}(\text { default } \mid \text { rating })^{\alpha}=\exp \left[\alpha\left\{\beta_{0}+\beta_{1} \text { rating }\right\}\right]
$$

- α chosen by residual plots (or maximum likelihood)
- $\alpha=1 / 2$ works well for this example
- log transformations are also commonly used

The Box-Cox family

- the most common transformation family is due to Box and Cox (1964):

$$
\begin{aligned}
h(y, \lambda) & =\frac{y^{\lambda}-1}{\lambda} \text { if } \lambda \neq 0 \\
& =\log (y) \text { if } \lambda=0
\end{aligned}
$$

- derivative has simple form:

$$
h_{y}(y, \lambda)=\frac{d}{d y} h(y, \lambda)=y^{\lambda-1} \text { for all } \lambda
$$

TBS fit compared to others

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction

Nonlinear

Regression

Default probabilities
Transformations: some theory

Estimating a dynamic model

Interest rate data

Nonparametric

regression by splines
Checking the model:
residual analysis
GARCH models

Term

structure

Estimating

Fraud Risk

Nonlinear regression residuals

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear

Regression

Default probabilities

Data

Transformations: some theory

Estimating a
dynamic model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models

Term

structure

Estimating

Fraud Risk

Nonlinear regression residuals

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear

Regression

Default probabilities
Data
Transformations: some theory

Estimating a

dynamic

 modelInterest rate data

Nonparametric

regression by splines
Checking the model:
residual analysis
GARCH models

Term

structure

Estimating

Fraud Risk

TBS residuals

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Trastormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regession by splines
Cercing the model:
resiual annlysis
GARCH models
Term
structure
Estimating
Fraud Risk

TBS residuals

Statistics for
Financial Engineering: Some Examples

David Ruppert

Introduction
Nonlinear Regression
Default probabilities

Data

Transformations: some theory

Estimating a dynamic model

Interest rate data
Nonparametric
regression by splines Checking the model: residual analysis GARCH models

Term

structure

Estimating

Fraud Risk

Estimated default probabilities

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory
Estimating a dynamic model
Interest rate data
Nonparametric
regression by spilines Checking the model residual analysis GARCH models
\section*{Term}
\section*{structure}

A Similar Problem: Challenger Data

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk

Data from UCI Machine Learning Repository (Donor: David Draper)

Challenger Data: Extrapolation to 31°

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk

Logistic regression

Normalizing transformation: how it works

Statistics for
Financial
Engineering: Some Examples

Introduction

Nonlinear

Regression

Defaut probatilities

Data

Transformations
some theory
Estimating a

dynamic

model
Interest rate data

Nonparametric

regression by splines

Checking the mode

resciual analysis

GARCH models

Term

structure

Estimating

Fraud Risk

Variance stabilizing transformation: how it works

Statistics for
Financial
Engineering: Some Examples

```
David Ruppert
```

Introduction

Nonlinear

Regression

Defaut probabilities

Data

Transformations:
some theory
Estimating a

dynamic

model
Interest rate data

Nonparametic

regression by splines
Checking the model residual analysis GARCH models

Term

structure

Estimating

Fraud Risk

Strength of Box-Cox family

- Take $a<b$
- Then

$$
\frac{h_{y}(b, \lambda)}{h_{y}(a, \lambda)}=\left(\frac{b}{a}\right)^{\lambda-1}
$$

which is increasing in λ and equals 1 when $\lambda=1$

- $\lambda=1$ is the dividing point between concave and convex transformations
- $h(y, \lambda)$ becomes a stronger concave transformation as λ decreases from 1
- also, $h(y, \lambda)$ becomes a stronger convex transformation as λ increases from 1

Strength of Box-Cox family, cont.

Statistics for
Financial
Engineering: Some Examples

David Ruppert

Introduction

Nonlinear

Regression

Default probatilities

Data

Transformations: some theory

Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by spines
Checking the modall

residual analysis

GARCH models

Term

structure
Estimating
Fraud Risk

Example: $\mathbf{b} / \mathbf{a}=\mathbf{2}$

Reference for TBS

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk

1-Year Treasury Constant Maturity Rate, daily data

Statistics for
Financial Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformations some theory

Estimating a dynamic

model

Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models

Term

structure

Estimating Fraud Risk

Source: Board of Governors of the Federal Reserve System http://research.stlouisfed.org/fred2/

ΔR_{t} versus year

Statistics for
Financial
Engineering: Some Examples

```
David Ruppert
```

Introduction

Nonlinear Regression
Default probabilities
Data
Transformations: some theory

Estimating a
dynamic

model

Interest rate data

Nonparametric

regression by splines
Checking the model: residual analysis CARCH models

Term

structure
Estimating Fraud Risk

ΔR_{t} versus R_{t-1}

Statistics for
Financial
Engineering: Some Examples

Introduction
Nonlinear Regression
Default probabilities

Estimating a
dynamic
model
Interest rate data

Nonparametric

regression by spines Checking the model: residual analysis
GARCH models
Term
structure
Estimating Fraud Risk

ΔR_{t}^{2} versus R_{t-1}

Statistics for
Financial
Engineering: Some Examples

```
David Ruppert
```

Introduction
Nonlinear
Regression
Defaut probabilities
Data
Transformations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
CARCH models
Term
structure

Drift function

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transiormations:
some theory
Estimating a
dynamic model
Interest rate data
Nonparametric regression by splines Checking the model: residual analysis GARCH models

Term

structure

Discretized diffusion model:

$$
\Delta R_{t}=\mu\left(R_{t-1}\right)+\sigma\left(R_{t-1}\right) \epsilon_{t}
$$

- $\mu(x)$ is the drift function
- $\sigma(x)$ is the volatility function (as before)

Estimating Volatility

Parametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\beta_{0} R_{t-1}^{\beta_{1}}
$$

(Common in practice)

Nonparametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\sigma^{2}\left(R_{t-1}\right)
$$

where $\sigma(\cdot)$ is a smooth function

- will be modeled as a spline
- In these models: no dependence on t

Comparing parametric and nonparametric volatility fits

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk

Comparing parametric and nonparametric volatility fits: zooming in near 0

Spline fitting - Estimation of drift function

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regresion by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk

Splines

Nonparametric regression model:

$$
Y_{i}=m\left(X_{i}\right)+\epsilon_{i} .
$$

Here $m(\cdot)$ is a smooth function. We will model it as a spline.

- $p=$ degree $(p+1=$ order $)$
- $\kappa_{0}, \kappa_{1}<\cdots<\kappa_{K}<\kappa_{K+1}=$ the knots
- $m(x)$ is a polynomial of degree p on $\kappa_{k-1}<x<\kappa_{k}$ for $k=1, \ldots, K+1$
- $m^{p-1}(x)$ is continuous everywhere
- but $m^{p}(x)$ can jump at the knots
- so splines have "maximal smoothness"

Splines have "maximal smoothness"

Statistics for
Financial Engineering: Some Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformations: some theory

Estimating a dynamic model

Interest rate data

Nonparametric

regression by splines
Checking the model:

residual analysis

GARCH models
Term

structure

Estimating Fraud Risk

Case 1: $(p=1)$ Is this a linear spline?

NO: has a jump

Splines have "maximal smoothness," cont.

Statistics for
Financial Engineering: Some Examples

David Ruppert

Introduction
Nonlinear

Regression

Default probabilities
Data
Transformations: some theory

Estimating a dynamic model

Interest rate data

Nonparametric

regression by splines
Checking the model:

residual analysis

GARCH models
Term
structure
Estimating Fraud Risk

Case 2: $(p=2)$ Is this a quadratic spline?

YES: change in concavity is okay

Residuals for diffusion model

Statistics for
Financial
Engineering:
SomeExamples
David Ruppert
IntroductionNonlinear

$$
\operatorname{residual}_{t}:=\Delta R_{t}-\widehat{\mu}\left(R_{t-1}\right)
$$

$$
E\left(\text { residual }_{t}\right)=0
$$

$$
\begin{aligned}
\operatorname{std~residual~}_{t} & :=\frac{\text { residual }_{t}}{\widehat{\sigma}\left(R_{t-1}\right)} \\
E\left(\text { std residual }_{t}^{2}\right) & =1
\end{aligned}
$$

Question

Statistics forFinancialEngineering:SomeExamples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transformation!
some theory
Estimating a
dynamicmodel
Interest rate data
Nonparametricregression by spinines
Checking the moderesidual analysis
GARCH models
Term
structure
EstimatingFraud Risk
Are the drift and volatility functions constant in time?

Residual plots: ordinary residuals

Statistics for
Financial
Engineering: Some Examples

Introduction
Nonlinear Regression
Default probabilities

Data

Transformations: some theory

Estimating a dynamic model

Interest rate data

Nonparametric

regression by spines
Checking the model:
residual analysis
GARCH models

Term

structure

Residual plots: standardized residuals

Statistics for
Financial
Engineering: Some Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probatilities
Data
Transformationss some theory

Estimating a dynamic model
Interest rate data

Nonparametric

regression by spilines
Checking the model: residual analysis
GARCH models

Term

structure

Residual plots: Squared standardized residuals

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Defautt probabilititis
Data
Trasformations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regresion bysplines
Cecking the model:
residual analysis
GARCH models
Term
Structure
Estimating
Fraud Risk

$\operatorname{GARCH}(p, q)$ model

Statistics for
Financial
Engineering: Some
Examples

David Ruppert

Introduction

Nonlinear
Regression
Default probabilities

Data

Transformations: some theory

Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines Checking the model: residual analysis GARCH models

Term

structure

The $\operatorname{GARCH}(p, q)$ model is

$$
a_{t}=\epsilon_{t} \sigma_{t}
$$

where

$$
\sigma_{t}=\sqrt{\alpha_{0}+\sum_{i=1}^{q} \alpha_{i} a_{t-i}^{2}+\sum_{i=1}^{p} \beta_{i} \sigma_{t-i}^{2}}
$$

and
ϵ_{t} is an independent white noise process

$\operatorname{GARCH}(1,1)$ fit

Statistics for
Financial Engineering: Some Examples

David Ruppert

Introduction

Nonlinear

Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model

Interest rate data

Nonparametric

regression by splines Checking the model: residual analysis GARCH models

Term

structure

Estimating

 Fraud Risk```
Call:
garch(x = std_drift_resid^2, order = c(1, 1))
Model:
GARCH (1,1)
Residuals:
 Min 1Q Median 3Q Max
7.66e-11 1.79e-02 8.73e-02 3.35e-01 2.49e+01
Coefficient(s):
 Estimate Std. Error t value Pr(>|t|)
a0 0.27291 0.00148 184 <2e-16 ***
a1 0.44690 0.00252 177 <2e-16 ***
b1 0.80490 0.00075 1073 <2e-16 ***
 Box-Ljung test
data: Squared.Residuals
X-squared = 0.13, df = 1, p-value = 0.7186
```


## GARCH: estimated conditional standard deviations

Statistics for
Financial
Engineering:
Some
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Nonparametric
regression by splines
Checking the model:
residual analysis
GARCH models
Term
structure
Estimating
Fraud Risk


## GARCH: squared residuals with lowess smooth

Statistics for
Financial Engineering: Some Examples


## Final model for the interest rate dynamics

## Statistics for

Financial Engineering: Some Examples

$$
\Delta R_{t}=\mu\left(R_{t-1}\right)+\sigma\left(R_{t-1}\right) \sigma_{\mathrm{GARCH}}(t) \epsilon_{t}
$$

(1) Model was fit in two steps:
(1) estimate $\mu()$ and $\sigma()$
(2) estimate $\sigma_{\mathrm{GARCH}}(t)$
(2) Could the two step be combined?
(3) Would combining them change the results?

## Reference for spline modeling

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations:
some theory
Estimating a
dynamic model

Interest rate data
Nonparametric
regression by splines
Checking the model: residual analysis
GARCH models

## Term

## structure

Estimating Fraud Risk


Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

- Lots of examples.
- But most from biostatistics and epidemiology


## Software

```
Statistics for
 Financial
Engineering:
 Some
 Examples
David Ruppert
```

Introduction
Nonlinear
Regression
Defaut probabilities
Data
Transformations:
some theory

The spline fits shown here were obtained using the function spm

- in R's SemiPar package
- author is Matt Wand

Estimating a

## Estimating Term Structure with a Spline Model

Statistics forFinancialEngineering:SomeExamples
David Ruppert
Introduction
Nonlinear
Regression
Default probatilities
Data
Transformationssome theoryEstimating a
dynamicmodel
Interest rate data
NonparametricChecking the modelresidual analysis
GARCH models
Term
structure
Joint work with:- Bob Jarrow (Cornell)- Yan Yu (University of Cincinnati)

## Bond prices and the forward rate

## Statistics for

Financial Engineering: Some Examples

David Ruppert

## Introduction

Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model
Interest rate data
Nonparametric
regression by splines

- $t=$ time to maturity
- $f(t)=$ forward rate
- $F(t)=\int_{0}^{t} f(s) d s$
- $y(t)=$ yield to maturity $=F(t) / t$
- $P(t)=$ price of zero-coupon bond
- $D(t)=$ discount function

$$
\begin{aligned}
\frac{P(t)}{\operatorname{PAR}} & =D(t)=\exp \{-F(t)\} \\
& =\exp \{-t y(t)\}=\exp \left\{-\int_{0}^{t} f(s) d s\right\}
\end{aligned}
$$

## Estimation of the forward rate

## Statistics for

Financial Engineering: Some
Examples

Suppose the $i$ th bond pays $C_{i}\left(t_{i, j}\right)$ and time $t_{i, j}$

- $i=1, \ldots, n$
- $j=1, \ldots, z_{i}$

Let $f(s, \boldsymbol{\delta})=\boldsymbol{\delta}^{\prime} \boldsymbol{B}(s)$ be a spline model for the forward rate.

- $\boldsymbol{B}(s)$ is a vector of spline basis functions (many choices)

Model for price of $i$ th bond:

$$
\widehat{P_{i}}(\boldsymbol{\delta})=\sum_{j=1}^{z_{i}} C_{i}\left(t_{i, j}\right) \exp \left\{-\boldsymbol{\delta}^{\prime} \boldsymbol{B}^{I}\left(t_{i, j}\right)\right\}
$$

where

$$
\boldsymbol{B}^{I}(t)=\int_{0}^{t} \boldsymbol{B}(s) d s
$$

## Corporate Bonds

Statistics for
Financial Engineering: Some Examples

- Problem: often there are not enough bonds to fit a fully nonparametric model
- Jarrow, Ruppert, and Yu solve this by using a semiparametric model


## Algorithm

Step 1: Nonparametric P-spline model for the forward rate to US Treasury bonds.

- $\boldsymbol{\delta}$ is estimated by penalized least squares
- $\widehat{f}_{T r}(t)=\widehat{\boldsymbol{\delta}}^{\prime} \boldsymbol{B}(t)$, where $\widehat{\boldsymbol{\delta}}$ are the estimated spline coefficients

Step 2: Parametric estimation to obtain the forward rate curve for a corporation's bonds.

- credit spread is parametric with parameter $\alpha$
- for example, if the credit spread is a constant, then

$$
f_{C}(t)=\widehat{f}_{T r}(t)+\alpha=\hat{\boldsymbol{\delta}}^{\prime} \boldsymbol{B}(t)
$$

- fix $\hat{\boldsymbol{\delta}}$ at value from Step 1 and estimate $\alpha$ by OLS


## -Log-prices (as fraction of PAR)

Statistics for
Financial
Engineering: Some Examples

Introduction

## Nonlinear

Regression
Default probabilities
Data
Transformations: some theory

Estimating a

## dynamic

 modelInterest rate data

## Nonparametric

regression by splines Checking the model: residual analysis GARCH models

Term
structure


Data from Dec 1995

## Estimates of forward rate

Statistics for
Financial
Engineering: Some Examples

## Introduction

## Nonlinear

Regression
Defaut probatilities
Data
Transformationss some theary

Estimating a dynamic model
Interest rate data

## Nonparametric

regression by spines

## Checking the modell

 residual analysis GARCH modelsTerm
structure

## Estimating

Fraud Risk

empirical forward $=-\frac{\log \left\{P\left(t_{i+1}\right)\right\}-\log \left\{P\left(t_{i}\right)\right\}}{t_{i+1}-t_{i}}$

## Residual analysis

Statistics for
Financial
Engineering: Some Examples

## David Ruppert

## Introduction

## Nonlinear

Regression
Default probabilities

## Data

Transformations: some theory

Estimating a dynamic model

Interest rate data

## Nonparametric

regression by splines

## Checking the model:

 residual analysis GARCH modelsTerm
structure





## Estimates of Treasury and AT\&T forward rates

Statistics for
Financial
Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

## Data

Transiormations: some theory

Estimating a dynamic mode

Interest rate data

## Nonparametric

regression by spinines Checking the model: residual analysis GARCH models

Term
structure
Estimating Fraud Risk


## Reference on modeling term structure

```
Statistics for
 Financial
Engineering:
 Some
 Examples
David Ruppert
Introduction
Nonlinear
Regression
Defult probabilities
Data
Transformations:
some theory
Jarrow, R., Ruppert, D., and Yu, Yan. (2004)
 Estimating the term structure of corporate debt with a semiparametric penalized spline model, JASA, 99, 57-66.

\section*{Predicting the risk of accounting fraud}
- manuscript: "Predicting the risk of SEC enforcement using executive compensation data"
- authors:
- Emmanuel Sharef - now at Morgan-Stanley
- David Ruppert
- uses survival analysis
- to handle censoring
- similar to applications used to predict bankrupcy (Chava and Jarrow, 2004)

\section*{Data Sources}
```

Statistics for
Financial
Engineering:
Some
Examples

- AAER (Accounting and Auditing Enforcement Releases) from SEC
- we used only firms traded on NYSE, AMEX, or Nasdaq
- 1991 to 2004
- 92 "failures" = AAER issued to firm
- executive compensation data from ExECUCOMP database
- accounting data from Compustat


## Baseline enforcement probability

Statistics for
Financial
Engineering: Some Examples

Percentage of Sample Firms Subject to Enforcement Actions

## Introduction

Nonlinear
Regression
Default probabilities

## Data

Transiormations: some theory

Estimating a
dynamic model

Interest rate data
Nonparametric
regression by spines Checking the model: residual analysis GARCH models

## Term

## structure

Estimating Fraud Risk


## Enforcement actions by industry code

Statistics for
Financial Engineering: Some
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model

Interest rate data
Nonparametric regression by splines
Checking the model residual analysis
GARCH models

## Term

structure

SEC Enforcement Actions by Industry Code


Sample distribution of Industry Codes


| Ind. <br> Code | Industry Name | Enforcement <br> Count (\%) | Sample <br> Count (\%) | Enforcement <br> Frequency |
| :--- | :--- | :--- | :--- | :--- |
| 10 | Energy | $4(4.3 \%)$ | $97(4.8 \%)$ | $4.1 \%$ |
| 15 | Materials | $2(2.2 \%)$ | $126(6.2 \%)$ | $1.6 \%$ |
| 20 | Industrials | $9(9.8 \%)$ | $278(13.7 \%)$ | $3.2 \%$ |
| 25 | Consumer Discretionary | $12(13 \%)$ | $399(19.6 \%)$ | $3.0 \%$ |
| 30 | Consumer Staples | $7(7.6 \%)$ | $97(4.8 \%)$ | $7.2 \%$ |
| 35 | Health Care | $12(13 \%)$ | $236(11.6 \%)$ | $5.1 \%$ |
| 40 | Financials | $8(8.7 \%)$ | $252(12.4 \%)$ | $3.2 \%$ |
| 45 | Information Technology | $29(31.5 \%)$ | $428(21.1 \%)$ | $6.7 \%$ |
| 50 | Telecommunication | $3(3.3 \%)$ | $33(1.6 \%)$ | $9.1 \%$ |
| 55 | Utilities | $6(6.5 \%)$ | $87(4.3 \%)$ | $6.9 \%$ |
| Total |  | $92(100 \%)$ | $2033(100 \%)$ | $4.5 \%$ |

Estimating Fraud Risk

## Notation for survival model

- $\left[T_{0}, T_{1}\right]=$ time-frame of study
- $t_{i}=$ time when $i$ th firm starts equity trading
- $\tau_{i}=$ time of enforcement action of $i$ th firm
- $C_{i}=$ censoring time of $i$ th firm
- $Y_{i}=\min \left(\tau_{i}, C_{i}\right)$
- $\delta_{i}$ censoring indicator
- $X_{i}=$ covariate vector (accounting and executive compensation variables)


## Hazard Model

## Statistics for

Financial Engineering: Some Examples

Discrete-time hazard rate:

$$
P_{t}^{i}=\mathbb{P}\left\{\tau_{i}=t \mid \tau_{i} \geq t, X_{t_{i}+a_{i}}^{i}, \ldots, X_{\tau_{i} \wedge t}^{i}\right\}
$$

Logistic regression model:

$$
P_{t}^{i}=\frac{1}{1+e^{-\beta^{T} X_{t}^{i}}}
$$

Estimation by maximizing the survival analysis likelihood.

## Model Selection And Goodness-Of-Fit Testing

```
Statistics for
 Financial
Engineering:
 Some
 Examples
- 1991-2001 = training data
- 2003-2004 = test data (not used for estimation or model selection)
- Model selection by cross-validation
- Use 1991-1995 to predict 1996-1997
- Use 1991-1996 to predict 1997-1998
- and so forth
- finally, use 1991-2000 to predict 2001-2002
- Use ROC curves to check for goodness-of-fit

\section*{Most Significant Effects}

Statistics for
Financial Engineering: Some Examples
\begin{tabular}{lrrrr}
\hline & Estimate & Std Error & z value & p-value \\
\hline sale3ls & -0.01579 & 0.00731 & -2.16 & 0.03 \\
bs_volatility & 1.25500 & 0.34220 & 3.67 & 0.00 \\
ceo_othann_log_25_d & 0.66180 & 0.33470 & 1.98 & 0.05 \\
ceo_options_log_25_d & 0.74750 & 0.34180 & 2.19 & 0.03 \\
shrownpc & 0.05365 & 0.02130 & 2.52 & 0.01 \\
ceo_is_chman & 1.26800 & 0.48600 & 2.61 & 0.01 \\
auditor_top5_d & -0.79080 & 0.32900 & -2.40 & 0.02 \\
\hline
\end{tabular}
sale3ls 3-year least squares annual growth of sales
bs_volatility Black-Scholes volatility over 60 months
ceo_othann_log_25_d = 1 if CEO's other annual compensation in top 25th percentile
ceo_options_log_25_d = 1 if value of stock options to CEO during the year in the top 25th percentile shrownpc percentage of company's shares owned by CEO.

\section*{ROC curve: what is it?}

\section*{Statistics for \\ Financial Engineering: Some Examples \\ David Ruppert \\ Introduction \\ Nonlinear \\ Regression \\ Default probabilities \\ Data \\ Transformations: some theory \\ Estimating a dynamic \\ model \\ Interest rate data \\ Nonparametric \\ regression by splines Checking the model: residual analysis GARCH models \\ Term \\ structure \\ Estimating Fraud Risk}
- "signal" is used to detect positives
- \(c\) is a "tuning parameter"
- signal \(>c \Rightarrow\) positive

\section*{ROC curves}

Statistics for
Financial
Engineering:
Some
Examples

\section*{David Ruppert}

\section*{Introduction}

\section*{Nonlinear}

Regression
Default probabilities

\section*{Data}

Transformations: some theory

Estimating a dynamic model
Interest rate data

\section*{Nonparametric}
regression by spines Checking the model: residual analysis GARCH models

Term
structure

\section*{Estimating} Fraud Risk

\section*{Examples}

Statistics for
Financial Engineering: Some Examples

David Ruppert

\section*{Introduction}

\section*{Nonlinear}

\section*{Regression}

Defautt probatilities
Data
Transformationss some theory

Estimating a dynamic model
Interest rate data

\section*{Nonparametric}
regression by splines
Checking the model:
residual analysis
GARCH models

\section*{Term}
structure
Estimating Fraud Risk

\section*{Thanks}
Statistics forFinancialEngineering:SomeExamples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations
some theoryEstimating a
dynamicmodelInterest rate data
Nonparametricregression by splinesChecking the model:residual analysis
GARCH models
Term
structure

\section*{Thank you for coming}```

