Statistics for Financial Engineering: Some R Examples

David Ruppert
Cornell University

April 25, 2009

Outline

(1) Introduction
(2) Nonlinear Regression

- Default probabilities
- Data Transformations: some theory
(3) Estimating a dynamic model
- Interest rate data
- Checking the model: residual analysis
- GARCH models

4 Bayesian estimation of expected returns

A little about myself

- BA and MA in mathematics
- PhD in statistics in 1977
- taught in the statistics department at North Carolina for 10 years
- have been in Operations Research and Information (formerly Industrial) Engineering at Cornell since 1987

A little about myself

Statistics for
Financial
Engineering:
Some R
Examples

- starting teaching Statistics and Finance to undergraduates in 2001
- textbook published in 2004
- starting teaching Statistics for Financial Engineering to master's students in 2008
- working on revised and expanded textbook
- now programming exclusively in R

Undergraduate Textbook

A little about my research

Statistics for
Financial Engineering: Some R Examples

- have done research in
- asymptotic theory of splines
- semiparametric modeling
- measurement error in regression
- smoothing (nonparametric regression and density estimation)
- transformation and weighting
- stochastic approximation
- biostatistics
- environmental engineering
- modeling of term structure
- executive compensation and accounting fraud

Three types of regression

Linear regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+\epsilon_{i}, i=1, \ldots, n
$$

Nonlinear regression

$$
Y_{i}=m\left(X_{i, 1}, \ldots, X_{i, p} ; \beta_{1}, \ldots, \beta_{q}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where m is a known function depending on unknown parameters

Nonparametric regression

$$
Y_{i}=m\left(X_{i, 1}, \ldots, X_{i, p}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where m is an unknown "smooth" function

Usual assumptions on the noise

Usually $\epsilon_{1}, \ldots, \epsilon_{n}$ are assumed to be:

- mutually independent (or at least uncorrelated)
- homoscedastic (constant variance)
- normally distributed

Much research over the last $50+$ years has looked into ways of
(1) checking these assumptions
(2) statistical methods that require less assumptions

Transform-both-sides model

Statistics for
Financial Engineering: Some R
Examples

Ideal model (no errors):

$$
Y_{i}=f\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)
$$

Statistical model (first attempt):

$$
Y_{i}=f\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)+\epsilon_{i}
$$

where $\epsilon_{1}, \ldots, \epsilon_{n}$ are iid Gaussian
TBS model:

$$
h\left\{Y_{i}\right\}=h\left\{f\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)\right\}+\epsilon_{i}
$$

where

- $\epsilon_{1}, \ldots, \epsilon_{n}$ are iid Gaussian
- h is an "appropriate" transformation

Estimation of Default Probabilities

Statistics for
Financial
Engineering: Some R
Examples
David Ruppert

Introduction

Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a
dynamic model
Interest rate data
Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Data:

- ratings: $1=$ Aaa (best), $\ldots, 16=\mathrm{B} 3$ (worse)
- default frequency (estimate of default probability)

Some statistical models

- nonlinear model:

$$
\operatorname{Pr}(\text { default } \mid \text { rating })=\exp \left\{\beta_{0}+\beta_{1} \text { rating }\right\}
$$

- linear/transformation model (in recent textbook):

$$
\log \{\operatorname{Pr}(\text { default } \mid \text { rating })\}=\beta_{0}+\beta_{1} \text { rating }
$$

- Problem: cannot take logs of default frequencies that are 0
- (Sub-optimal) solution in textbook: throw out these observations

A better statistical model

- Transform-both-sides (TBS) model - see Carroll and Ruppert (1984, 1988):
- using a power transformation:

$$
\{\operatorname{Pr}(\text { default } \mid \text { rating })+\kappa\}^{\lambda}=\left\{\exp \left(\beta_{0}+\beta_{1} \text { rating }\right)+\kappa\right\}^{\lambda}
$$

- λ chosen by residual plots (or maximum likelihood)
- $\lambda=1 / 2$ works well for this example
- log transformations are also commonly used
- $\kappa>0$ will shift data away from 0

The Box-Cox family

- the most common transformation family is due to Box and Cox (1964):

$$
\begin{aligned}
h(y, \lambda) & =\frac{y^{\lambda}-1}{\lambda} \text { if } \lambda \neq 0 \\
& =\log (y) \text { if } \lambda=0
\end{aligned}
$$

- derivative has simple form:

$$
h_{y}(y, \lambda)=\frac{d}{d y} h(y, \lambda)=y^{\lambda-1} \text { for all } \lambda
$$

TBS fit compared to others

Statistics for
Financial
Engineering
Some R
Examples
David Ruppert

Introduction
Nonlinear

Regression

Default probabilities

Data

Transformations some theory

Estimating a
dynamic
model
Interest rate data

Checking the mode

 residual analysis GARCH modelsBayesian estimation of expected returns

Nonlinear regression residuals

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear

Regression

Default probabilities

Data

Transformations: some theory

Estimating a dynamic model

Interest rate data
Checking the model: residual analysis GARCH models

Bayesian

 estimation of expected returns
TBS residuals

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction

Nonlinear

Regression

Default probabilities

Data

Transformations: some theory

Estimating a
dynamic

model

Interest rate data
Checking the model:

residual analysis

GARCH models

Bayesian

 estimation of expected returns

Estimated default probabilities

```
Statistics for
    Financial
Engineering:
    Some R
    Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations:
some theory
Estimating a
dynamic
model
Interest rate data
Checking the model
residual analysis
GARCH models
Bayesian
estimation of
expected
returns
```

method	$\widehat{\operatorname{Pr}\{\text { default } \mid \text { Aaa }\}}$	as $\%$ of TEXTBOOK est
TEXTBOOK	0.005%	100%
nonlinear	0.002%	40%
TBS	0.0008%	16%

A Similar Problem: Challenger Data

Statistics for
Financial Engineering: Some R Examples

```
David Ruppert
```


Introduction

Nonlinear

Regression

Default probabilities

Data

Transformations: some theory

Estimating a dynamic model
Interest rate data
Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Challenger Data: Extrapolation to 31°

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model
Interest rate data Checking the model residual analysis GARCH modeds

Bayesian estimation of expected returns

Logistic regression

Variance stabilizing transformation: how it works

Statistics for
Financial Engineering: Some R
Examples

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations:
some theory
Estimating a dynamic model
Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Strength of Box-Cox family

Statistics for

Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Defaut probabilities
Data
Transformations:
some theory
Estimating a

- Take $a<b$
- Then

$$
\frac{h_{y}(b, \lambda)}{h_{y}(a, \lambda)}=\left(\frac{b}{a}\right)^{\lambda-1}
$$

which is increasing in λ and equals 1 when $\lambda=1$

- $\lambda=1$ is the dividing point between concave and convex transformations
- $h(y, \lambda)$ becomes a stronger concave transformation as λ decreases from 1
- also, $h(y, \lambda)$ becomes a stronger convex transformation as λ increases from 1

Strength of Box-Cox family, cont.

Statistics for
Financial Engineering: Some R Examples

Introduction

Nonlinear

Regression
Defaut probabilities

Data

Transformations:
some theory
Estimating a

dynamic

 modelInterest rate data

Checking the model

 residual analysis GARCH models
Bayesian

 estimation of expected returnsExample: b/a = 2

Maximum likelihood

Statistics for

Financial Engineering: Some R
Examples

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\beta}, \lambda, \sigma) & =n \log (\sigma)-\sum_{i=1}^{n} \frac{\left[h\left(Y_{i}+\kappa, \lambda\right)-h\left\{f\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)+\kappa, \lambda\right\}\right]^{2}}{2 \sigma^{2}} \\
& +\underbrace{\sum_{i=1}^{n}(\lambda-1) \log \left(Y_{i}\right)}_{\text {from Jacobian }}
\end{aligned}
$$

- can maximize over σ analytically:

$$
\widehat{\sigma}^{2}=n^{-1} \sum_{i=1}^{n}\left[h\left(Y_{i}+\kappa, \lambda\right)-h\left\{f\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)+\kappa, \lambda\right\}\right]^{2}
$$

- they maximize over $(\boldsymbol{\beta}, \lambda)$ with optim, for example
- κ is fixed in advance

Reference for TBS

Statistics for
Financial Engineering: Some R
Examples

David Ruppert

Introduction

Nonlinear

Regression

Default probabilities
Data
Transformations:
some theory
Estimating a dynamic model

Interest rate data

Checking the mode

 residual analysis GARCH modelsBayesian estimation of expected returns

Transformation and Weighting in Regression by Carroll and Ruppert (1988)

- Lots of examples
- But none in finance $\stackrel{\rightharpoonup}{\sim}$

1-Year Treasury Constant Maturity Rate, daily data

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformations: some theory

Estimating a dynamic model

Interest rate data

Checking the model

 residual analysis: GARCH models

Source: Board of Governors of the Federal Reserve System http://research.stlouisfed.org/fred2/

ΔR_{t} versus year

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic

model

Interest rate data

Checking the mode

 residual analysis GARCH models

ΔR_{t} versus R_{t-1}

Statistics for
Financial
Engineering:
Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model

Interest rate data

Checking the model

 residual analysis GARCH models
Bayesian

estimation of expected returns

ΔR_{t}^{2} versus R_{t-1}

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformationso some theory

Estimating a dynamic model

Interest rate data

Checking the mode

 residual analysis GARCH modelsBayesian estimation of expected returns

Drift function

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear
Regression
Default probabilities

Data

Transformations
some theory
Estimating a dynamic model
Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns

Discretized diffusion model:

$$
\Delta R_{t}=\mu\left(R_{t-1}\right)+\sigma\left(R_{t-1}\right) \epsilon_{t}
$$

- $\mu(x)$ is the drift function
- $\sigma(x)$ is the volatility function (as before)

Estimating Volatility

Parametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\beta_{0} R_{t-1}^{\beta_{1}}
$$

(Common in practice)

Nonparametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\sigma^{2}\left(R_{t-1}\right)
$$

where $\sigma(\cdot)$ is a smooth function

- will be modeled as a spline
- In these models: no dependence on t

Spline Software

Statistics for
Financial
Engineering:
Some R
Examples

The penalized spline fits shown here were obtained using the function spm

- in R's SemiPar package
- author is Matt Wand

Comparing parametric and nonparametric volatility fits

Statistics for
Financial Engineering: Some R Examples

```
David Ruppert
```

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations
some theory

Estimating a dynamic model

Interest rate data

Checking the model

 residual analysis GARCH models
lag_rate

lag_rate

Comparing parametric and nonparametric volatility fits: zooming in near 0

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear

Regression

Default probabilities

Data

Transformations some theory

Estimating a

dynamic

model

Interest rate data

Spline fitting - Estimation of drift function

Statistics for
Financial
Engineering:
Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Defaut probabilities
Data
Trastormations:
some theory
Estimating a
dynamic
model
Interest rate data
Checking the model:
residual anamysis
GARcH models
Bayesian
estimation of
expected
returns

Residuals for diffusion model

$$
\begin{aligned}
\text { residual }_{t} & :=\Delta R_{t}-\widehat{\mu}\left(R_{t-1}\right) \\
E\left(\text { residual }_{t}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{std~residual~}_{t} & :=\frac{\text { residual }_{t}}{\widehat{\sigma}\left(R_{t-1}\right)} \\
E\left(\operatorname{std}^{\text {residual }}{ }_{t}^{2}\right) & =1
\end{aligned}
$$

Question

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations:
some theory
Estimating a dynamic model
Interest rate data
Checking the model:
residual analysis
GARCH models
Bayesian
estimation of expected returns

Are the drift and volatility functions constant in time?

Residual plots: ordinary residuals

Statistics for
Financial
Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear Regression
Default probabilities

Data

Transiormations: some theory

Estimating a

dynamic

 mode
Interest rate data

Checking the model:
residual analysis
GARCH models
Bayesian estimation of expected returns

Residual plots: standardized residuals

Statistics for

Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformations some theory

Estimating a dynamic

model

Interest rate data

Checking the model:
residual analysis
GARCH models
Bayesian estimation of expected returns
autocorrelation function

Normal Q-Q Plot

Sample Quantiles

Residual plots: Squared standardized residuals

Statistics for
Financial
Engineering:
Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Defaut probabilitiss
Data
Trastormations:
some theory
Estimating a
dynamic
model
Interest rate data
Checking the model:
residual analysis
anRcH models
Bayesian
estimation of
expected
returns

Residual plots: Squared standardized residuals

Statistics for
Financial
Engineering:
Some R
Examples
David Ruppert
Introduction
Nonlinear
Regression
Default probabilities
Data
Transormations:
some theory
Estimating a
dynamic
model
Interest rate data
Checking the model:
residual analysis
GARCH models
Bayesian
estimation of
expected
returns

autocorrelation function

$\operatorname{GARCH}(p, q)$ model

Statistics for

Financial Engineering: Some R Examples

The $\operatorname{GARCH}(p, q)$ model is

$$
a_{t}=\epsilon_{t} \sigma_{t}
$$

where

$$
\sigma_{t}=\sqrt{\alpha_{0}+\sum_{i=1}^{q} \alpha_{i} a_{t-i}^{2}+\sum_{i=1}^{p} \beta_{i} \sigma_{t-i}^{2}}
$$

and

$$
\epsilon_{t} \text { is an iid (strong) white noise process }
$$

- a_{t} is weak white noise
- uncorrelated but with volatility clustering

$\operatorname{GARCH}(1,1)$ fit using garch in tseries

Statistics for
Financial Engineering: Some R Examples

Introduction

Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a dynamic model

Interest rate data

Checking the mode

 residual analysis GARCH modelsBayesian estimation of expected returns

Call:
$\operatorname{garch}(\mathrm{x}=$ std_drift_resid~2, order $=c(1,1))$

Model:
$\operatorname{GARCH}(1,1)$

Coefficient(s):
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\mathrm{a} 0.27291 \quad 0.00148 \quad 184 \quad<2 \mathrm{e}-16$ ***
a1 $0.44690 \quad 0.00252 \quad 177<2 e-16 * * *$
b1 $0.80490 \quad 0.00075 \quad 1073<2 \mathrm{e}-16 * * *$

Box-Ljung test
data: Squared.Residuals
X-squared $=0.13, \mathrm{df}=1, \mathrm{p}$-value $=0.7186$

GARCH: estimated conditional standard deviations

Statistics for
Financial
Engineering:
Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Trastormations:
some theory
Estimating a
dynamic
model
Interest rate data
Checking the model:
reisual analysis
GARCH models
Bayesian
estimation of
expected
returns

GARCH: squared residuals with lowess smooth

Statistics for
Financial Engineering:

Some R
Examples

GARCH squared residuals

GARCH residuals

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear
Regression
Defaut probatilities

Data

Transformations: some theory

Estimating a dynamic model
Interest rate data

Checking the model

residual analysis GARCH models

Bayesian estimation of expected returns

GARCH residuals

$\operatorname{AR}(1) / \operatorname{GARCH}(1,1)$

Statistics for
Financial Engineering: Some R Examples

Call:

```
    garchFit(formula = ~arma(1, 0) + garch(1, 1), data = std_drift_resid)
```

Mean and Variance Equation:
data ~ $\operatorname{arma}(1,0)+\operatorname{garch}(1,1)$
[data = std_drift_resid]

Conditional Distribution:
norm

Std. Errors:

based on Hessian

Error Analysis:
Estimate
Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\mathrm{mu} & 0.001099 & 0.007476 & 0.147 & 0.883\end{array}$
ar1 0.138691
$0.01046813 .248<2 e-16$
omega 0.008443
$0.001163 \quad 7.2573 .96 \mathrm{e}-13$
$0.00548313 .424<2 \mathrm{e}-16$
beta1 0.923098
$0.005457169 .158<2 \mathrm{e}-16$

$\operatorname{AR}(1) / \mathrm{GARCH}(1,1)$ residuals

Statistics for
Financial
Financial Engineering: Some R Examples

David Ruppert

Introduction
Nonlinear
Regression
Defaut probabilities

Data

Transformations: some theory

Estimating a dynamic model
Interest rate data
Checking the model:
residual analysis GARCH models

Bayesian estimation of expected returns

AR(1)/GARCH(1,1) residuals

$\operatorname{AR}(1) / \operatorname{GARCH}(1,1)$ residuals - QQ plot

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear

Regression

Defaut probabilities

Data

Transformations some theory

Estimating a dynamic model
Interest rate data
Checking the model

rescual anayysis

 GARCH modelsBayesian estimation of expected returns

Normal Q-Q Plot

$\operatorname{AR}(1) / \operatorname{GARCH}(1,1)$

Statistics for
Financial Engineering: Some R Examples

Call:
garchFit(formula $=\sim \operatorname{arma}(1,0)+\operatorname{garch}(1,1)$ data $=$ std_drift_resid, cond.dist = "std")

Mean and Variance Equation:
data $\sim \operatorname{arma}(1,0)+\operatorname{garch}(1,1)$
[data = std_drift_resid]

Conditional Distribution: std

Error Analysis:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

mu	0.0001087	0.0059401	0.018	0.98540

ar1 $0.0969621 \quad 0.0090996 \quad 10.656<2 \mathrm{e}-16$
omega 0.00167220 .0005955
2.8080 .00498
alpha1 $0.0664390 \quad 0.0065895$
$10.083<2 \mathrm{e}-16$
beta1 $0.94134950 .0052248180 .169<2 \mathrm{e}-16$
shape $3.9169920 \quad 0.1600835 \quad 24.468<2 \mathrm{e}-16$

$\operatorname{AR}(1) / \operatorname{GARCH}(1,1)$ residuals - QQ plot

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear
Regression
Default probabilities

Data

Transformations: some theory

Estimating a dynamic

model

Interest rate data
Checking the model

residual analysis

GARCH models

Bayesian estimation of expected returns

QQ-plot using $\mathbf{t}(3.91)$

Sample quantiles

Final model for the interest rate dynamics

$$
\Delta R_{t}=\mu\left(R_{t-1}\right)+\sigma\left(R_{t-1}\right) a_{t}
$$

(1) Model was fit in two steps:
(1) estimate $\mu()$ and $\sigma()$

- spm in SemiPar
(2) model a_{t} as $\operatorname{AR}(1) / \operatorname{GARCH}(1,1)$
- garchFit in f Garch
(2) Could the two step be combined?
(3) Would combining them change the results?

Reference for spline modeling

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations: some theory

Estimating a
dynamic model

Interest rate data

Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

- Lots of examples.
- But most from biostatistics and epidemiology

Bayesian statistics

- Bayesian analysis allows the use of prior information
- hierarchical priors can:
- specify knowledge that a group of parameters are similar to each other
- estimate their common distribution
- WinBUGS can be run from inside R using the R2WinBUGS package
- there is a similar BRugs package that runs OpenBugs
- BRugs is no longer on CRAN

Data

Statistics for
Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations some theory

Estimating a dynamic model
Interest rate data
Checking the model
residual analysis
GARCH models
Bayesian estimation of expected returns
midcapD.ts in fEcofin package

- 500 daily returns on:
- 20 stocks
- market

Goal

Statistics for

Financial Engineering: Some R
Examples
David Ruppert

Introduction
Nonlinear
Regression
Default probabilities
Data
Transformations some theory

Estimating a dynamic model
Interest rate data Checking the mode residual analysis GARCH models

Bayesian estimation of expected returns

The goal is to use the first 100 days to estimate the mean returns for the next 400 days

Four possible estimators:

- sample means
- Bayes estimation (shrinkage)
- mean of means (total shrinkage)
- CAPM
- $($ expected return $)=$ beta \times (expected market return $)$

Who won?

Statistics for
Financial Engineering: Some R
Examples

Estimate	Sum of squared errors
sample means	1.9
Bayes	0.17
mean of means	0.12
CAPM 1	0.66
CAPM 2	0.45

Squared estimation errors are summed over the 20 stocks
CAPM 1: use mean of first 100 market returns
CAPM 2: use mean of last 400 market returns

Why does shrinkage help?

Statistics for
Financial Engineering: Some R
Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probabilities

Data

Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns

sample means

estimate
target

Bayes

estimate
target

Likelihood and prior

Statistics for

Financial Engineering: Some R Examples
$r_{i, t}=t$ th return on i stock
Likelihood:

$$
\begin{aligned}
r_{i, t} & =\mu_{i}+\epsilon_{i, t} \\
\epsilon_{i, t} & \sim I N\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

IN = "Independent Normal"
Hierarchical Prior:

$$
\mu_{i} \sim I N\left(\alpha, \sigma_{\mu}^{2}\right)
$$

Diffuse (non-informative) priors on $\alpha, \sigma_{\epsilon}^{2}, \sigma_{\mu}^{2}$
Auto and cross-sectional correlations are ignored (treated as 0)

Data-driven shrinkage

Statistics for

Financial Engineering: Some R
Examples

Hierarchical Prior:

$$
\mu_{i} \sim I N\left(\alpha, \sigma_{\mu}^{2}\right)
$$

- the μ_{i} are shrunk towards α
- α should be (approximately) the mean of the means
- $\sigma_{\mu}^{2} / \sigma_{\epsilon}^{2}$ controls the amount of shrinkage
- large $\sigma_{\mu}^{2} / \sigma_{\epsilon}^{2} \Rightarrow$ less shrinkage
- data-driven shrinkage
- because σ_{μ}^{2} and σ_{ϵ}^{2} are estimated

WinBUGS output

Statistics for
Financial Engineering: Some R Examples

David Ruppert

Introduction
Nonlinear
Regression
Default probatilities
Data
Transformations: some theory

Estimating a dynamic mode

Interest rate data Checking the model: residual anayysis GARCH models

Bayesian estimation of expected returns

