Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformations: some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Statistics for Financial Engineering: Some R Examples

David Ruppert

Cornell University

April 25, 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformation: some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns Introduction

2 Nonlinear Regression

- Default probabilities
- Data Transformations: some theory

3 Estimating a dynamic model

- Interest rate data
- Checking the model: residual analysis
- GARCH models

Bayesian estimation of expected returns

A little about myself

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Data Transformations: some theory

Estimating a dynamic model

Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns

- BA and MA in mathematics
- PhD in statistics in 1977
- taught in the statistics department at North Carolina for 10 years
- have been in Operations Research and Information (formerly Industrial) Engineering at Cornell since 1987

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A little about myself

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns

- starting teaching Statistics and Finance to undergraduates in 2001
 - textbook published in 2004
- starting teaching Statistics for Financial Engineering to master's students in 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- working on revised and expanded textbook
- now programming exclusively in R

Undergraduate Textbook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A little about my research

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Data Transformations:

Estimating a dynamic model

Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns • have done research in

- asymptotic theory of splines
- semiparametric modeling
- measurement error in regression
- smoothing (nonparametric regression and density estimation)
- transformation and weighting
- stochastic approximation
- biostatistics
- environmental engineering
- modeling of term structure
- executive compensation and accounting fraud

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Three types of regression

Statistics for Financial Engineering: Some R Examples

David Ruppert

 $Y_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i, \ i = 1, \dots, n$

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Nonlinear regression

Linear regression

$$Y_i = m(X_{i,1}, \dots, X_{i,p}; \beta_1, \dots, \beta_q) + \epsilon_i, \ i = 1, \dots, n$$

where m is a known function depending on unknown parameters

Nonparametric regression

$$Y_i = m(X_{i,1}, \dots, X_{i,p}) + \epsilon_i, \ i = 1, \dots, n$$

where m is an unknown "smooth" function

Usual assumptions on the noise

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations: some theory

Estimating a dynamic model

Interest rate data Checking the model: residual analysis GARCH models

Bayesian estimation o expected returns

Usually $\epsilon_1, \ldots, \epsilon_n$ are assumed to be:

- mutually independent (or at least uncorrelated)
- homoscedastic (constant variance)
- normally distributed

Much research over the last 50+ years has looked into ways of

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Checking these assumptions
- 2 statistical methods that require less assumptions

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Checking the mode residual analysis GARCH models

Bayesian estimation of expected returns

Transform-both-sides model

Ideal model (no errors):

$$Y_i = f(\boldsymbol{X}_i, \boldsymbol{\beta})$$

Statistical model (first attempt):

$$Y_i = f(\boldsymbol{X}_i, \boldsymbol{\beta}) + \epsilon_i$$

where $\epsilon_1, \ldots, \epsilon_n$ are iid Gaussian

TBS model:

$$h\{Y_i\} = h\{f(\boldsymbol{X}_i, \boldsymbol{\beta})\} + \epsilon_i$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where

- $\epsilon_1, \ldots, \epsilon_n$ are iid Gaussian
- *h* is an "appropriate" transformation

Estimation of Default Probabilities

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Data:

- ratings: 1=Aaa (best),...,16=B3 (worse)
- default frequency (estimate of default probability)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some statistical models

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

• nonlinear model:

 $\Pr(\text{default}|\text{rating}) = \exp\{\beta_0 + \beta_1 \text{rating}\}\$

• linear/transformation model (in recent textbook):

 $\log{\Pr(\text{default}|\text{rating})} = \beta_0 + \beta_1 \text{rating}$

- **Problem:** cannot take logs of default frequencies that are 0
- (Sub-optimal) solution in textbook: throw out these observations

A better statistical model

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns • Transform-both-sides (TBS) model – see Carroll and Ruppert (1984, 1988):

• using a power transformation:

 $\left\{ \Pr(\text{default}|\text{rating}) + \kappa \right\}^{\lambda} = \left\{ \exp(\beta_0 + \beta_1 \text{rating}) + \kappa \right\}^{\lambda}$

- λ chosen by residual plots (or maximum likelihood)
- $\lambda = 1/2$ works well for this example
- log transformations are also commonly used
- $\kappa > 0$ will shift data away from 0

The Box-Cox family

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns • the most common transformation family is due to Box and Cox (1964):

$$h(y,\lambda) = \frac{y^{\lambda} - 1}{\lambda} \text{ if } \lambda \neq 0$$
$$= \log(y) \text{ if } \lambda = 0$$

• derivative has simple form:

$$h_y(y,\lambda) = \frac{d}{dy}h(y,\lambda) = y^{\lambda-1}$$
 for all λ

(日) (四) (日) (日) (日)

TBS fit compared to others

<□▶ <□▶ < □▶ < □▶ < □▶ = ○へ

Nonlinear regression residuals

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

TBS residuals

Estimated default probabilities

・ロト ・ 同ト ・ ヨト ・ ヨト

э

A Similar Problem: Challenger Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Challenger Data: Extrapolation to 31°

Variance stabilizing transformation: how it works

Strength of Box-Cox family

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

• Take
$$a < b$$

• Then

$$\frac{h_y(b,\lambda)}{h_y(a,\lambda)} = \left(\frac{b}{a}\right)^{\lambda-1}$$

which is increasing in λ and equals 1 when $\lambda=1$

- $\lambda=1$ is the dividing point between concave and convex transformations
- $h(y,\lambda)$ becomes a stronger concave transformation as λ decreases from 1
- \bullet also, $h(y,\lambda)$ becomes a stronger convex transformation as λ increases from 1

Strength of Box-Cox family, cont.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Maximum likelihood

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations: some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation o expected returns

$$\mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\lambda}, \sigma) = n \log(\sigma) - \sum_{i=1}^{n} \frac{\left[h(Y_i + \kappa, \boldsymbol{\lambda}) - h\left\{f(\boldsymbol{X}_i, \boldsymbol{\beta}) + \kappa, \boldsymbol{\lambda}\right\}\right]^2}{2\sigma^2} + \underbrace{\sum_{i=1}^{n} (\lambda - 1) \log(Y_i)}_{\text{from Jacobian}}$$

• can maximize over σ analytically:

•
$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n \left[h(Y_i + \kappa, \lambda) - h \{ f(\boldsymbol{X}_i, \boldsymbol{\beta}) + \kappa, \lambda \} \right]^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- they maximize over $(\boldsymbol{\beta}, \lambda)$ with optim, for example
- κ is fixed in advance

Reference for TBS

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations: some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation o expected returns

Transformation and Weighting in Regression by Carroll and Ruppert (1988)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Lots of examples
- But none in finance $\ddot{\frown}$

1-Year Treasury Constant Maturity Rate, daily data

ヘロト ヘロト ヘビト ヘビト э

 ΔR_t^2 versus R_{t-1}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Drift function

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformations some theory

Estimating a dynamic model

Interest rate data

Checking the mode residual analysis GARCH models

Bayesian estimation of expected returns

Discretized diffusion model:

$$\Delta R_t = \mu(R_{t-1}) + \sigma(R_{t-1})\epsilon_t$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\mu(x)$ is the drift function

• $\sigma(x)$ is the volatility function (as before)

Estimating Volatility

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities Data Transformations:

Estimating a dynamic model

Interest rate data

Checking the mode residual analysis GARCH models

Bayesian estimation o expected returns

Parametric model:

$$\operatorname{Var}\{(\Delta R_t)\} = \beta_0 R_{t-1}^{\beta_1}$$

(Common in practice)

Nonparametric model:

$$\operatorname{Var}\{(\Delta R_t)\} = \sigma^2(R_{t-1})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\sigma(\cdot)$ is a smooth function

- will be modeled as a spline
- In these models: no dependence on t

Spline Software

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities Data Transformations:

some theory

Estimating a dynamic model

Interest rate data

Checking the model residual analysis GARCH models

Bayesian estimation of expected returns The penalized spline fits shown here were obtained using the function spm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- in R's SemiPar package
- author is Matt Wand

Comparing parametric and nonparametric volatility fits

Comparing parametric and nonparametric volatility fits: zooming in near 0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Spline fitting – Estimation of drift function

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Residuals for diffusion model

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformations some theory

Estimating a dynamic model

Interest rate data

Checking the model: residual analysis GARCH models

Bayesian estimation of expected returns residual_t := $\Delta R_t - \hat{\mu}(R_{t-1})$ $E(\text{residual}_t) = 0$

std residual_t :=
$$\frac{\text{residual}_t}{\widehat{\sigma}(R_{t-1})}$$

 $E(\text{std residual}_t^2) = 1$

· 1 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Question
Statistics for Financial Engineering: Some R Examples David Ruppert	
Introduction Nonlinear Regression Default probabilities Data Transformations: some theory	Are the drift and volatility functions constant in time?
Estimating a dynamic model Interest rate data Checking the model: residual analysis GARCH models	
Bayesian estimation of expected returns	·····································

4) Q (4

Residual plots: standardized residuals

Residual plots: Squared standardized residuals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\mathsf{GARCH}(p,q) \mod$

Statistics for Financial Engineering: Some R Examples

The GARCH(p, q) model is

 $a_t = \epsilon_t \sigma_t,$

Introductior

Nonlinear Regression Default probabilit

Data Transformations some theory

Estimating a dynamic model

Checking the mode residual analysis GARCH models

Bayesian estimation o expected returns

$$\sigma_t = \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i a_{t-i}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2}.$$

and

where

 ϵ_t is an iid (strong) white noise process

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- *a_t* is weak white noise
- uncorrelated but with volatility clustering

GARCH(1,1) fit using garch in tseries

```
Statistics for
 Financial
Engineering:
 Some B
             Call:
 Examples
             garch(x = std drift resid^2, order = c(1, 1))
             Model:
             GARCH(1,1)
             Coefficient(s):
                 Estimate Std. Error t value Pr(>|t|)
             a0
                  0.27291
                               0.00148
                                            184 <2e-16 ***
                 0.44690
                               0.00252
             a1
                                            177 <2e-16 ***
                  0.80490
                               0.00075
                                           1073 <2e-16 ***
             b1
                     Box-Ljung test
                    Squared.Residuals
             data:
             X-squared = 0.13, df = 1, p-value = 0.7186
```

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

GARCH: estimated conditional standard deviations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

GARCH: squared residuals with lowess smooth

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Data Transformations: some theory

Estimating a dynamic model

Checking the mode residual analysis GARCH models

Bayesian estimation of expected returns

year

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

イロト (同) (三) (三) (つ)

AR(1)/GARCH(1,1)

Statistics for

```
Financial
             Call:
Engineering:
 Some B
              garchFit(formula = ~arma(1, 0) + garch(1, 1), data = std_drift_resid)
Examples
             Mean and Variance Equation:
              data ~ \operatorname{arma}(1, 0) + \operatorname{garch}(1, 1)
              [data = std_drift_resid]
             Conditional Distribution:
              norm
             Std. Errors:
              based on Hessian
             Error Analysis:
                      Estimate
                                 Std. Error
                                             t value Pr(>|t|)
                      0.001099
                                   0.007476
                                                0.147
                                                         0.883
             mu
                                   0.010468 13.248 < 2e-16 ***
             ar1
                     0.138691
             omega 0.008443
                                   0.001163 7.257 3.96e-13 ***
                     0.073603
                                   0.005483
                                               13.424 < 2e-16 ***
             alpha1
             beta1
                     0.923098
                                   0.005457
                                              169.158 < 2e-16 ***
```

AR(1)/GARCH(1,1) residuals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

AR(1)/GARCH(1,1) residuals - QQ plot

AR(1)/GARCH(1,1)

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilitie Data Transformations:

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation o expected returns

```
Call:
  garchFit(formula = ~arma(1, 0) + garch(1, 1), data = std_drift_resid,
      cond.dist = "std")
```

Mean and Variance Equation: data ~ arma(1, 0) + garch(1, 1) [data = std_drift_resid]

```
Conditional Distribution: std
```

Error Analysis:

	Estimate	Std. Error	t value	Pr(> t)	
mu	0.0001087	0.0059401	0.018	0.98540	
ar1	0.0969621	0.0090996	10.656	< 2e-16	***
omega	0.0016722	0.0005955	2.808	0.00498	**
alpha1	0.0664390	0.0065895	10.083	< 2e-16	***
beta1	0.9413495	0.0052248	180.169	< 2e-16	***
shape	3.9169920	0.1600835	24.468	< 2e-16	***

AR(1)/GARCH(1,1) residuals - QQ plot

Final model for the interest rate dynamics

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities Data Transformations:

some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

$$\Delta R_t = \mu(R_{t-1}) + \sigma(R_{t-1})a_t$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Model was fit in two steps:

- () estimate $\mu()$ and $\sigma()$
 - spm in SemiPar
- **2** model a_t as AR(1)/GARCH(1,1)

• garchFit in fGarch

- ② Could the two step be combined?
- Solution Would combining them change the results?

Reference for spline modeling

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Data Transformations:

Estimating a

dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns Cambridge Series in Statistical and Probabilistic Mathematics

Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

(日) (四) (日) (日) (日)

- Lots of examples.
- But most from biostatistics and epidemiology

Bayesian statistics

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformations: some theory

Estimating a dynamic model

Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

- Bayesian analysis allows the use of prior information
- hierarchical priors can:
 - specify knowledge that a group of parameters are similar to each other

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- estimate their common distribution
- WinBUGS can be run from inside R using the R2WinBUGS package
- there is a similar BRugs package that runs OpenBugs
 - BRugs is no longer on CRAN

Data

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities Data Transformations:

Estimating a dynamic

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

midcapD.ts in fEcofin package

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- 500 daily returns on:
 - 20 stocks
 - market

Goal

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilitie Data Transformations:

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns The goal is to use the first 100 days to estimate the mean returns for the next 400 days

Four possible estimators:

- sample means
- Bayes estimation (shrinkage)
- mean of means (total shrinkage)
- CAPM
 - (expected return) = beta × (expected market return)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

	Who won?						
Statistics for Financial Engineering: Some R Examples	Estimate	Sum of squared errors					
David Ruppert	sample means	1.9					
Introduction	Bayes	0.17					
Nonlinear Regression Default probabilities	mean of means	0.12					
Data Transformations: some theory	CAPM 1	0.66					
Estimating a dynamic model	CAPM 2	0.45					
Interest rate data Checking the model:	Squared estimation errors are summed over the 20 stocks						

CAPM 1: use mean of first 100 market returns CAPM 2: use mean of last 400 market returns

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Bayesian estimation of

expected returns

Likelihood and prior

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Data Transformations some theory

Estimating a dynamic model Interest rate data Checking the mode

residual analysis GARCH models

Bayesian estimation of expected returns $r_{i,t} = t$ th return on i stock

Likelihood:

$$r_{i,t} = \mu_i + \epsilon_{i,t}$$
$$\epsilon_{i,t} \sim IN(0, \sigma_{\epsilon}^2)$$

 $\mathsf{IN} = "\mathsf{Independent Normal"}$

Hierarchical Prior:

$$\mu_i \sim IN(\alpha, \sigma_\mu^2)$$

Diffuse (non-informative) priors on α , σ_{ϵ}^2 , σ_{μ}^2 Auto and cross-sectional correlations are ignored (treated as 0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data-driven shrinkage

Statistics for Financial Engineering: Some R Examples

David Ruppert

Introduction

Nonlinear Regression

Default probabilities

Transformations some theory

Estimating a dynamic model

Interest rate data Checking the model residual analysis GARCH models

Bayesian estimation of expected returns

Hierarchical Prior:

$$\mu_i \sim IN(\alpha, \sigma_\mu^2)$$

- the μ_i are shrunk towards α
- α should be (approximately) the mean of the means

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\sigma_{\mu}^2/\sigma_{\epsilon}^2$ controls the amount of shrinkage
 - large $\sigma_{\mu}^2/\sigma_{\epsilon}^2 \Rightarrow$ less shrinkage
- data-driven shrinkage
 - because σ_{μ}^2 and σ_{ϵ}^2 are estimated

$WinBUGS \ output$

Statistics for										
Financial										
Engineering:				- 1						
Some R	> print(m	eans.sim	,digit	s=3)						
Examples	Inference for Bugs model at "midCap.bug", fit using WinBUGS, 3 chains, each with 5100 iterations (first 100 discarded)									
David Ruppert	n.sims =	15000 it	terati	ons saved						
		mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
	mu[1]	1.1e-01	0.169	-0.22	-1.0e-03	1.1e-01	2.1e-01	4.5e-01	1	4000
	mu[2]	1.2e-01	0.170	-0.20	1.5e-02	1.2e-01	2.3e-01	4.7e-01	1	6500
	mu[3]	7.7e-02	0.168	-0.27	-2.7e-02	7.9e-02	1.8e-01	4.1e-01	1	3300
	mu[4]	4.5e-02	0.176	-0.33	-6.1e-02	5.2e-02	1.6e-01	3.8e-01	1	1300
	mu[18]	8.3e-02	0.170	-0.27	-2.4e-02	8.7e-02	1.9e-01	4.1e-01	1	3000
	mu[19]	5.1e-02	0.171	-0.32	-5.1e-02	5.7e-02	1.6e-01	3.7e-01	1	1700
	mu[20]	4.8e-02	0.175	-0.33	-5.8e-02	5.5e-02	1.6e-01	3.7e-01	1	1800
	sigma_mu	1.5e-01	0.065	0.06	9.9e-02	1.3e-01	1.8e-01	3.1e-01	1	520
	sigma eps	4.3e+00	0.068	4.18	4.3e+00	4.3e+00	4.4e+00	4.4e+00	1	15000
	alpha	8.8e-02	0.102	-0.11	1.7e-02	8.8e-02	1.6e-01	2.8e-01	1	710
	deviance	1.2e+04	3.989	11510.00	1.2e+04	1.2e+04	1.2e+04	1.2e+04	1	5300
	For each and Rhat	parameter is the po	r, n.e: otentia	ff is a c al scale i	rude meas reduction	ure of e factor	ffective (at conv	sample : ergence,	size, Rhat:	=1).
Bayesian estimation of expected	DIC info (using the rule, pD = Dbar-Dhat) pD = 4.1 and DIC = 11521.6 DIC is an estimate of expected predictive error (lower deviance is better).									
returns										