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Example (data from Hastie and James, this
analysis in RWC)
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Possible Model

SBMD; ; 1s spinal bone mineral density on ¢th subject at
age equal to age; ..

SBMDZ',]' = U,; + m(agei,j) + €i,j5

i=1,...m=230, j=4i,... 0

U, is the random intercept for subject .

{U;} are assumed i.i.d. N(0,07).
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Underlying philosophy
1. minimalist statistics
e keep it as simple as possible
2. build on classical parametric statistics

3. modular methodology
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Reference

Semiparametric Regression by Ruppert, Wand, and
Carroll (2003)

e Lots of examples from biostatistics.
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Recent Example — April 17, 2003

Canfield et al. (2003) — Intellectual impairment
and blood lead.

e longitudinal (mixed model)
e nine covariates (modelled linearly)

e cffect of lead modelled as a spline (semiparametric
model)

— disturbing conclusion
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Thanks to Rich Canfield for data and estimates.



Semi

Semiparametric regression

Partial linear or partial spline model:

Y; = W, By, +m(X;) + ¢

m(z) = X! By +B'(z)b.

B'(z) = (Bi(z) -+ Bk(z)).

B'(z) ={(z—r)} - (z—nrg)}
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Example

m(z) = B+ 61z +bi(x — K1)y + -+ b (T — K )+

e slope jumps by b, at k.
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Linear “plus” function
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log ratio
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(Generalization

m(xz) = Bo+1x+- - -+ BpaP+bi(x—kK1 )L+ - +br(x—KkE)L
e pth derivative jumps by p! by at xy

e first p — 1 derivatives are continuous

12
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Quadratic “plus” function
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Ordinary Least Squares
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Penalized least-squares

Minimize

Z (Y — (W] By, + X] By +BT(X;))b)}* + AbTDb.

E.g.,

15
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Penalized Least Squares
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Ridge Regression

From previous slide:

S{Y — (W] By + X[ Bx +BT(X;)b)}” + Ab"Db.
1=1

Let X have row (W] X! BT(X;)). Then
B 1
By | = {X"X + X blockdiag(0,0,D)} ~X'Y.
b

e Also, a BLUP in a mixed model and an empirical
Bayes estimator.

17



Semi

Linear Mixed Models

Y =XB+Zb+¢
where b is N(0,02X).

X3 are the “fixed effects” and Zb are the “random
effects.”

Henderson’s equations.
B\ (XX X'z \' /XY
b) \Z2'X Z'Z+\%;" 7Y |

A:

091\3 | mqw
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19

From previous slides:

Let X have row (W, X! B'(X;)). Then
B |
By | ={X"X + X blockdiag(0,0,D)} ~X"Y.
b

Linear mixed model:
B\ (XX X'z \'/X'Y
b) \Z'X ZTZ+ %! 7Y

:{(X Z)" (X Z)+>\blockdiag(0,2b_1)}_1(X Z)'Y
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Selecting A

1. cross-validation (CV)

2. generalized cross-validation (GCV)
3. ML or REML in mixed model framework

20
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Selecting the Number of Knots

(a) SpaHet, | = 3, typical data set
1.5 " " . .

(b) MASE comparisons
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(@) SpaHetLS,j=3,n=2,000

(b) MASE comparisons

0.5 115
L .
by 110
<
2 Il BN BN B = = = = = = = = =
> 0 o 105} :
=
ks .
® 100} =#= fixed nknots |
— True = = Myopic
=+ full-search = fyl|l-search
-0.5 . . ' ' 95 L—— . ' '
0 0.2 0.4 0.6 0.8 1 5 20 40 80 120
K
x107°
250 — 1.5
200} *
o *
& N o1 S
c 1501 >|<| s
S |
*
3 100 LLJ
= (</E') 0.5
*
50 *
0
1 2 3 4 5 6 0 0.5 1 1.5
number of knots (coded) ASE - K=5 10

n = 2.000

22



Semi

x 10
[
1
1
1
1
1
1
[ \
21 . MSE S
t 4
. o
I(-I/)J ’\¢\¢"')
E -t - A L 4
- ' d
. L d
Variance g
1 | .
o \<Bi
O | | |
0 5 10 5 20
dffit()\) Optimal

25

n = 10,000, 20 knots, quadratic spline
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Return to spinal bone mineral density study

14
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SBMDZ',]‘ = U,; + m(agei,j) + €i,5

i=1,...m=230, j=4i,... 0

24



Semi

age
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spinal bone mineral density
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Model with ethnicity effects

SBMD;; = U; + m(age;;) + Biblack; + Grhispanic,
+0swhite; + ¢4, 1<7<n;, 1<i1<m.

Asian is the reference group.
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Only requires an expansion of the fixed effects by adding

the columns

black;

blacky

black,,

black,,

hispanic,

hispanic,

hispanic

hispanic

Whit61

Whit61

white,,

white,,
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e In this model, the age effects curve for the four ethnic
groups are parallel.

e Could we model them as non-parallel?

e Might be problematic in this example because of the
small values of the n,.

e But the methodology should be useful in other
contexts.

33
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e Add interactions between age and black, hispanic,
and white.

— These are fixed effects.

e Then add interactions between black, hispanic,
white, and asian and the linear plus functions in
age.

— These are mean-zero random effects with their own
variance component

— This variance component control the amount of
shrinkage of the enthicity-specific curves to the
overall effect.

34
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Penalized Splines and Additive Models
Additive model:

Y;' = ml(Xl,z-) + ...+ mp(Xpyi) -+ €;

35
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Bivariate additive spline model

Yi=Bo+ 01 Xi+ bua(Xi—kKe1)++ -+ bo g (Xi—Re i, )+
+ 0,12+ b1 (Zi —ko1)e + -+ bk (2 — Kok, )+ + €
e no need for backfitting
e computation very rapid
e no identifiability issues

e inference is simple

36
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Bayesian methods

The linear mixed model is halt-Bayesian.
e The random effects have a prior.

e The parameters without a prior are:

— fixed effects

x give them diffuse normal priors

— varlance components

x give them diffuse inverse gamma, priors

37
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Bayesian methods

Can be easily implemented in WinBUGS or programmed
in, say, MATLAB.

Allows Bayes rather than empirical Bayes inference.

e Uncertainty due to smoothing parameter selection is
taken into account.

38
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The Bias-Variance Trade-off and Confidence Bands
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How does one adjust confidence intervals for bias?

e undersmooth — so variance dominates and bias can

be safetly ignored.

40



Semi

-4

xlO'

n=10,000
20 knots
0=.3

4.5

3.5

2.5

MSE

O
o1
T




Semi

Adjustment for bias continued

e cstimate bias by a higher order method and subtract
off bias (essentially the same as above)

e Wahba/Nychka Bayesian intervals
— bias is random so adds to posterior variance

— interval is widened but there is no “offset”.

42
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Wahba/Nychka Bayesian Intervals

y=X08+Zu+¢e, Cov =

C=(X Z)
B and 1 are BLUPs.

43
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Cov ( ‘u) — 0?(CTC+%D)"'CTC(CTC+ % D)

(Frequentist variance. Ignores bias)

COV([ & ])ZO’?(CTC—I—%D)_l.

u—u

(Bayesian posterior variance. Takes bias into account.)
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Effect of measurement error
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X plus error

W = X + error and Var(X) = Var(error).
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Correction for measurement error

Relatively little research in this area.

e Fan and Truong (1993): deconvolution kernels
— first work
— ineflicient in finite-sample studies
— no inference

— strictly for 1-dimensional smoothing

e Carroll, Maca, Ruppert

— functional SIMEX methods and structural spline
methods

— more efficient than Fan and Truong

47
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e Berry, Carroll, and Ruppert (JASA, 2002)

fully Bayesian

smoothing or penalized splines

rather efficient in finite-sample studies
inference available

scales up — semiparametric inference is easy

structural

48
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Berry, Carroll, and Ruppert

starts with mixed-model spline formulation

— but fully Bayesian
conjugate priors

true covariates are 1.1.d. normal

— but surprisingly robust
normal measurement error

in Gibbs, only sampling of true (unknown) covariates
requires a Hastings-Metropolis step

49
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Effect of measurement error
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W = X + error and Var(X) = Var(error).
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Correction for measurement error
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Measurement Error, continued

Ganguli, Staudenmayer, Wand:
e EM maximum likelihood estimation in BCR model.
e Works about as well as the fully Bayesian approach.

e Extension to additive models.
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Generalized Regression

e Extension to non-Gaussian responses is conceptually
easy.

e Get a GLLM.

— However, GLIM’s are not trivial. Can use:

* Monte Carlo EM
+* Or MCMC

53
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Single-Index Models

Yi=9(X]0) +Z]B + e

Yu and Ruppert (2002, JASA).

Let
9(x) = v0 + T + -+ + 2"

(v — k)L + - +ex (e — ki)L

Becomes a nonlinear regression model

Y, = m(Xm Zi7 07 137 Y, C) T €.
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