Semiparametric Modeling, Penalized Splines, and Mixed Models

David Ruppert Cornell University

http://www.orie.cornell.edu/~davidr
January 2004

Joint work with Babette Brumback, Ray Carroll, Brent Coull, Ciprian Crainiceanu, Matt Wand, Yan Yu, and others

Example (data from Hastie and James, this analysis in RWC)

Possible Model

 $SBMD_{i,j}$ is spinal bone mineral density on ith subject at age equal to $age_{i,j}$.

$$ext{SBMD}_{i,j} = U_i + m(\texttt{age}_{i,j}) + \epsilon_{i,j},$$
 $i=1,\ldots,m=230, \quad j=i,\ldots,n_i.$

 U_i is the random intercept for subject i.

 $\{U_i\}$ are assumed i.i.d. $N(0, \sigma_U^2)$.

4

Underlying philosophy

- 1. minimalist statistics
 - keep it as simple as possible
- 2. build on classical parametric statistics
- 3. modular methodology

Reference

Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

• Lots of examples from biostatistics.

Recent Example — April 17, 2003

6

Canfield et al. (2003) — Intellectual impairment and blood lead.

- longitudinal (mixed model)
- nine covariates (modelled linearly)
- effect of lead modelled as a spline (semiparametric model)
 - disturbing conclusion

Thanks to Rich Canfield for data and estimates.

Semiparametric regression

Partial linear or partial spline model:

$$Y_i = \mathbf{W}_i^\mathsf{T} \boldsymbol{\beta}_W + m(X_i) + \epsilon_i.$$
$$m(x) = \mathbf{X}_i^\mathsf{T} \boldsymbol{\beta}_X + \mathbf{B}^\mathsf{T}(x) \mathbf{b}.$$

$$\mathbf{B}^{\mathsf{T}}(x) = (B_1(x) \cdots B_K(x)).$$

E.g.,

$$\mathbf{X}_i^{\mathsf{T}} = (X_i \quad \cdots \quad X_i^p)$$
$$\mathbf{B}^{\mathsf{T}}(x) = \{ (x - \kappa_1)_+^p \quad \cdots \quad (x - \kappa_K)_+^p \}$$

Example

$$m(x) = \beta_0 + \beta_1 x + b_1 (x - \kappa_1)_+ + \dots + b_K (x - \kappa_K)_+$$

• slope jumps by b_k at κ_k

Fitting LIDAR data with plus functions

Generalization

$$m(x) = \beta_0 + \beta_1 x + \dots + \beta_p x^p + b_1 (x - \kappa_1)_+^p + \dots + b_K (x - \kappa_K)_+^p$$

- pth derivative jumps by $p! b_k$ at κ_k
- first p-1 derivatives are continuous

Ordinary Least Squares

Penalized least-squares

Minimize

$$\sum_{i=1}^{n} \left\{ Y - (\mathbf{W}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{W} + \mathbf{X}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{X} + \mathbf{B}^{\mathsf{T}} (X_{i}) \mathbf{b}) \right\}^{2} + \lambda \mathbf{b}^{\mathsf{T}} \mathbf{D} \mathbf{b}.$$

E.g.,

$$D = I$$
.

Penalized Least Squares

Ridge Regression

From previous slide:

$$\sum_{i=1}^{n} \left\{ Y - (\mathbf{W}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{W} + \mathbf{X}_{i}^{\mathsf{T}} \boldsymbol{\beta}_{X} + \mathbf{B}^{\mathsf{T}} (X_{i}) \mathbf{b}) \right\}^{2} + \lambda \, \mathbf{b}^{\mathsf{T}} \mathbf{D} \mathbf{b}.$$

Let \mathcal{X} have row ($\mathbf{W}_i^\mathsf{T} \quad \mathbf{X}_i^\mathsf{T} \quad \mathbf{B}^\mathsf{T}(X_i)$). Then

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_W \\ \widehat{\boldsymbol{\beta}}_X \end{pmatrix} = \left\{ \boldsymbol{\mathcal{X}}^\mathsf{T} \boldsymbol{\mathcal{X}} + \lambda \text{ blockdiag}(\mathbf{0}, \mathbf{0}, \mathbf{D}) \right\}^{-1} \boldsymbol{\mathcal{X}}^\mathsf{T} \mathbf{Y}.$$

• Also, a BLUP in a mixed model and an empirical Bayes estimator.

Linear Mixed Models

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b} + \boldsymbol{\varepsilon}$$

where **b** is $N(0, \sigma_b^2 \Sigma_b)$.

 $\mathbf{X}\boldsymbol{\beta}$ are the "fixed effects" and $\mathbf{Z}\mathbf{b}$ are the "random effects."

Henderson's equations.

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \mathbf{X}^\mathsf{T} \mathbf{X} & \mathbf{X}^\mathsf{T} \mathbf{Z} \\ \mathbf{Z}^\mathsf{T} \mathbf{X} & \mathbf{Z}^\mathsf{T} \mathbf{Z} + \lambda \Sigma_b^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{X}^\mathsf{T} \mathbf{Y} \\ \mathbf{Z}^\mathsf{T} \mathbf{Y} \end{pmatrix}.$$

$$\lambda = \frac{\sigma_\epsilon^2}{\sigma_b^2}.$$

From previous slides:

Let \mathcal{X} have row $(\mathbf{W}_i^\mathsf{T} \ \mathbf{X}_i^\mathsf{T} \ \mathbf{B}^\mathsf{T}(X_i))$. Then

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_W \\ \widehat{\boldsymbol{\beta}}_X \end{pmatrix} = \left\{ \mathcal{X}^\mathsf{T} \mathcal{X} + \lambda \text{ blockdiag}(\mathbf{0}, \mathbf{0}, \mathbf{D}) \right\}^{-1} \mathcal{X}^\mathsf{T} \mathbf{Y}.$$

Linear mixed model:

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \mathbf{X}^\mathsf{T} \mathbf{X} & \mathbf{X}^\mathsf{T} \mathbf{Z} \\ \mathbf{Z}^\mathsf{T} \mathbf{X} & \mathbf{Z}^\mathsf{T} \mathbf{Z} + \lambda \boldsymbol{\Sigma}_b^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{X}^\mathsf{T} \mathbf{Y} \\ \mathbf{Z}^\mathsf{T} \mathbf{Y} \end{pmatrix}$$

$$= \left\{ \left(\mathbf{X} \quad \mathbf{Z} \right)^{\mathsf{T}} \left(\mathbf{X} \quad \mathbf{Z} \right) + \lambda \operatorname{blockdiag}(\mathbf{0}, \mathbf{\Sigma}_b^{-1}) \right\}^{-1} \left(\mathbf{X} \quad \mathbf{Z} \right)^{\mathsf{T}} \mathbf{Y}$$

Selecting λ

- 1. cross-validation (CV)
- 2. generalized cross-validation (GCV)
- 3. ML or REML in mixed model framework

Selecting the Number of Knots

n = 10,000, 20 knots, quadratic spline

Return to spinal bone mineral density study

$$\mathrm{SBMD}_{i,j} = U_i + m(\mathrm{age}_{i,j}) + \epsilon_{i,j},$$
 $i=1,\ldots,m=230, \quad j=i,\ldots,n_i.$

$$\mathbf{Z} = \begin{bmatrix} 1 & \cdots & 0 & (\mathsf{age}_{11} - \kappa_1)_+ & \cdots & (\mathsf{age}_{11} - \kappa_K)_+ \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 1 & \cdots & 0 & (\mathsf{age}_{1n_1} - \kappa_1)_+ & \cdots & (\mathsf{age}_{1n_1} - \kappa_K)_+ \\ \vdots & \vdots & \vdots & & \ddots & & \vdots \\ 0 & \cdots & 1 & (\mathsf{age}_{m1} - \kappa_1)_+ & \cdots & (\mathsf{age}_{m1} - \kappa_K)_+ \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & (\mathsf{age}_{mn_m} - \kappa_1)_+ & \cdots & (\mathsf{age}_{mn_m} - \kappa_K)_+ \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} U_1 \\ \vdots \\ U_m \\ b_1 \\ \vdots \\ b_K \end{bmatrix}$$

Variability bars on \widehat{m} and estimated density of U_i

Broken down by ethnicity

Model with ethnicity effects

$$\begin{split} \mathtt{SBMD}_{ij} &= U_i + m(\mathtt{age}_{ij}) + \beta_1 \mathtt{black}_i + \beta_2 \mathtt{hispanic}_i \\ &+ \beta_3 \mathtt{white}_i + \varepsilon_{ij}, \quad 1 \leq j \leq n_i, \quad 1 \leq i \leq m. \end{split}$$

Asian is the reference group.

Only requires an expansion of the fixed effects by adding the columns

33

• In this model, the age effects curve for the four ethnic groups are parallel.

- Could we model them as non-parallel?
- Might be problematic in this example because of the small values of the n_i .
- But the methodology should be useful in other contexts.

- Add interactions between age and black, hispanic, and white.
 - These are fixed effects.
- Then add interactions between black, hispanic, white, and asian and the linear plus functions in age.
 - These are mean-zero random effects with their own variance component
 - This variance component control the amount of shrinkage of the enthicity-specific curves to the overall effect.

Penalized Splines and Additive Models Additive model:

$$Y_i = m_1(X_{1,i}) + \ldots + m_P(X_{P,i}) + \epsilon_i$$

Bivariate additive spline model

$$Y_{i} = \beta_{0} + \beta_{x,1} X_{i} + b_{x,1} (X_{i} - \kappa_{x,1})_{+} + \dots + b_{x,K} (X_{i} - \kappa_{x,K_{x}})_{+}$$
$$+ \beta_{z,1} Z_{i} + b_{z,1} (Z_{i} - \kappa_{z,1})_{+} + \dots + b_{z,K} (Z_{i} - \kappa_{z,K_{z}})_{+} + \epsilon_{i}$$

- no need for backfitting
- computation very rapid
- no identifiability issues
- inference is simple

Bayesian methods

The linear mixed model is half-Bayesian.

- The random effects have a prior.
- The parameters without a prior are:
 - fixed effects
 - * give them diffuse normal priors
 - variance components
 - * give them diffuse inverse gamma priors

Bayesian methods

Can be easily implemented in WinBUGS or programmed in, say, MATLAB.

Allows Bayes rather than empirical Bayes inference.

• Uncertainty due to smoothing parameter selection is taken into account.

The Bias-Variance Trade-off and Confidence Bands lambda=0 lambda=10

Semi 40

How does one adjust confidence intervals for bias?

• undersmooth — so variance dominates and bias can be safetly ignored.

41

Adjustment for bias continued

- estimate bias by a higher order method and subtract off bias (essentially the same as above)
- Wahba/Nychka Bayesian intervals
 - bias is random so adds to posterior variance
 - interval is widened but there is no "offset".

Wahba/Nychka Bayesian Intervals

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \boldsymbol{\varepsilon}, \quad \operatorname{Cov} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \sigma_u^2 \mathbf{I} & 0 \\ 0 & \sigma_{\varepsilon}^2 \mathbf{I} \end{bmatrix},$$

$$C = (X \ Z)$$

 $\widetilde{\boldsymbol{\beta}}$ and $\widetilde{\mathbf{u}}$ are BLUPs.

Semi 44

$$\operatorname{Cov}\left(\left[\begin{array}{c}\widetilde{\boldsymbol{\beta}}\\\widetilde{\mathbf{u}}\end{array}\right]\Big|\mathbf{u}\right) = \sigma_{\varepsilon}^{2}(\mathbf{C}^{\mathsf{T}}\mathbf{C} + \frac{\sigma_{\varepsilon}^{2}}{\sigma_{u}^{2}}\mathbf{D})^{-1}\mathbf{C}^{\mathsf{T}}\mathbf{C}(\mathbf{C}^{\mathsf{T}}\mathbf{C} + \frac{\sigma_{\varepsilon}^{2}}{\sigma_{u}^{2}}\mathbf{D})^{-1}$$

(Frequentist variance. Ignores bias)

$$\operatorname{Cov}\left(\left[\begin{array}{c} \widetilde{\boldsymbol{\beta}} \\ \widetilde{\mathbf{u}} - \mathbf{u} \end{array}\right]\right) = \sigma_{\varepsilon}^{2} (\mathbf{C}^{\mathsf{T}} \mathbf{C} + \frac{\sigma_{\varepsilon}^{2}}{\sigma_{u}^{2}} \mathbf{D})^{-1}.$$

(Bayesian posterior variance. Takes bias into account.)

Effect of measurement error

W = X + error and Var(X) = Var(error).

Correction for measurement error

Relatively little research in this area.

- Fan and Truong (1993): deconvolution kernels
 - first work
 - inefficient in finite-sample studies
 - no inference
 - strictly for 1-dimensional smoothing
- Carroll, Maca, Ruppert
 - functional SIMEX methods and structural spline methods
 - more efficient than Fan and Truong

- Berry, Carroll, and Ruppert (JASA, 2002)
 - fully Bayesian
 - smoothing or penalized splines
 - rather efficient in finite-sample studies
 - inference available
 - scales up semiparametric inference is easy
 - structural

Berry, Carroll, and Ruppert

- starts with mixed-model spline formulation
 - but fully Bayesian
- conjugate priors
- true covariates are i.i.d. normal
 - but surprisingly robust
- normal measurement error
- in Gibbs, only sampling of true (unknown) covariates requires a Hastings-Metropolis step

Effect of measurement error

W = X + error and Var(X) = Var(error).

Solid: true. Dotted: uncorrected. Dashed: corrected.

Measurement Error, continued

Ganguli, Staudenmayer, Wand:

- EM maximum likelihood estimation in BCR model.
- Works about as well as the fully Bayesian approach.
- Extension to additive models.

Generalized Regression

- Extension to non-Gaussian responses is conceptually easy.
- Get a GLLM.
 - However, GLIM's are not trivial. Can use:
 - * Monte Carlo EM
 - * Or MCMC

Single-Index Models

$$Y_i = g(\mathbf{X}_i^\mathsf{T}\boldsymbol{\theta}) + \mathbf{Z}_i^\mathsf{T}\boldsymbol{\beta} + \epsilon_i.$$

Yu and Ruppert (2002, JASA).

Let

$$g(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_p x^p + c_1 (x - \kappa_1)_+^p + \dots + c_K (x - \kappa_K)_+^p.$$

Becomes a nonlinear regression model

$$Y_i = m(\mathbf{X}_i, \mathbf{Z}_i, \boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \mathbf{c}) + \epsilon_i.$$