Semiparametric Estimation of the Proportion of True Null Hypotheses David Ruppert Cornell University http://www.orie.cornell.edu/~davidr August 2005

Joint work with Dan Nettleton and Gene Hwang

Problem:

- One has a large collection of p-values, p_1, \ldots, p_n
- Need to know the proportion that came from a true H_0 - useful, e.g., to estimate the false discovery rate

Recent paper:

Langaas, Ferkingstad, and Lindqvist (2005, JRSS-B)

- Surveys earlier work on this topic
 - Estimator of Schweder and Spjøtvoll

$$\widehat{\pi}(\lambda) = \frac{\#\{p_j > \lambda\}}{n(1-\lambda)}$$

- * λ estimated by a bootstrapping (Storey, 2002) or spline-smoothing (Storey and Tibshirani, 2003)
- Proposes new estimators
 - Estimate the marginal density of the p-values at 0 by
 - * Grenander decreasing density estimator
 - * longest-constant interval estimator
 - * convex-decreasing estimator

Topic of this talk – semiparametric estimator:

- $\{(p_i, \mu_i)\}_{i=1}^n$ are iid
- let

$$\pi_0 = P(\mu_i \in \text{null region})$$

•
$$g(\mu) = \text{density of } \mu_i \text{ under } H_1$$

• marginal cdf of p_i is

$$F_p(p;\pi_0) = \pi_0 p + (1-\pi_0) \int_0^\infty F_{p|\mu}(p;\mu) g(\mu) d\mu \qquad (1)$$

• denote marginal pdf by $f_p(p; \pi_0)$.

Figure 1: Density of the *p*-value from a z-test of $H_0: \mu = 0$ versus $H_1: \mu > 0$ when $\mu = 1$. The lower plot zooms in on the region where the density is concave.

- model g as $g(\mu; \beta)$
 - $g(\cdot; \cdot)$ is a known function
 - $\boldsymbol{\beta}$ is a vector of parameters
 - will use linear splines
- let $F_p(\cdot; \pi_0, \boldsymbol{\beta})$ be given by (1) with $g(\mu)$ replaced by $g(\mu; \boldsymbol{\beta})$.

Weighted penalized least-squares

- let l_i, c_i, r_i , and $w_i = r_i l_i$ be the left edge, center, right edge, and width of the *i*th bin, $i = 1, \ldots, N_{\text{bin}}$
- let $M_1, \ldots, M_{N_{\text{bin}}}$ be the bin counts

$$y_i = \frac{M_i}{nw_i}$$

is an unbiased estimate of

$$m_i(\pi_0, \boldsymbol{\beta}) = \frac{F_p(l_i; \pi_0, \boldsymbol{\beta}) - F_p(r_i; \pi_0, \boldsymbol{\beta})}{w_i} \approx f_p(c_i; \pi_0)$$

• estimate (π_0, β) by minimizing the penalized sum of squares is

$$SS(\pi_0, \boldsymbol{\beta}; \lambda) = \sum_{i=1}^{N_{\text{bin}}} \left\{ y_i - m_i(\pi_0, \boldsymbol{\beta}) \right\}^2 + \lambda Q(\boldsymbol{\beta})$$
(2)

$$-\lambda \ge 0$$

 $-Q(\boldsymbol{\beta})$ is a roughness penalty

Spline model for g

- g will be modeled as a linear spline and estimated using the B-spline basis
- g is assumed to have support contained in $[0, \mu^*]$
- spline will have K knots, $0 = \kappa_1, \ldots, \kappa_K = \mu^*$, equally spaced between 0 and μ^*

- B-splines are normalized to be densities
 - not essential, but helpful
 - any convex combination is a density
- let

$$g(\mu, \boldsymbol{\beta}) = \sum_{k=1}^{K-1} \beta_k B_k(\mu), \qquad (3)$$

where $\beta_k \ge 0$ for all k and $\sum_{k=1}^{K-1} \beta_k = 1$.

Figure 2: B-splines with 7 knots and $\mu^* = 6$ used to model g. Each B-spline is normalized to be a density. The B-spline with support [5, 6] is shown as a dashed line and is not used in the model for g because it is discontinuous at 6.

• define $\theta_1 = \pi_0$ and $\theta_{k+1} = (1 - \pi_0)\beta_k$ for $k = 1, \dots, K - 1$

• define
$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)^{\mathsf{T}}$$

- let $Z_1(p) = p$ be the (uniform) cdf of the *p*-values under H_0
- for k = 1, ..., K 1, let $Z_{k+1}(p) = \int F_{p|\mu}(p;\mu)B_k(\mu)d\mu$ be the marginal cdf of a *p*-value if the density of μ is B_k
- the marginal cdf of a p-value is modeled as

$$F_p(p; \boldsymbol{\theta}) = \sum_{k=1}^{K} \theta_k Z_k(p), \qquad (4)$$

where

$$\theta_k \ge 0, \ \forall \ k, \ \text{and} \ \sum_{k=1}^K \theta_k = 1$$
(5)

• The roughness penalty is

$$Q(\boldsymbol{\theta}) = (2\theta_1 - \theta_2)^2 + \sum_{k=2}^{K-1} (\theta_k - \theta_{k+1})^2$$
$$= \{d(1 - \pi_0)\}^2 \sum_{k=1}^{K-1} \{g(\kappa_k) - g(\kappa_{k+1})\}^2$$

• the sum of squares is

$$SS(\boldsymbol{\theta}; \lambda) = \sum_{i=1}^{N_{\text{bin}}} \left\{ y_i - \sum_{k=0}^{K-1} \theta_k Z_{i,k+1} \right\}^2 \\ + \lambda \left\{ (2\theta_2 - \theta_3)^2 + \sum_{k=3}^{K-1} (\theta_k - \theta_{k+1})^2 \right\} \\ = \|\mathbf{y} - \mathbf{Z}\boldsymbol{\theta}\|^2 + \lambda \boldsymbol{\theta}^{\mathsf{T}} \left\{ (\mathbf{D}\mathbf{A})^{\mathsf{T}} \mathbf{D}\mathbf{A} \right\} \boldsymbol{\theta},$$

where

$$-\mathbf{y} = (y_1, \ldots, y_{N_{\mathrm{bin}}})^\mathsf{T}$$

- **Z** is the $N_{\text{bin}} \times K$ matrix whose i, jth element is $Z_{i,j} = \{Z_j(r_i) - Z_j(l_i)\}/w_i$

$$-\mathbf{A} = \operatorname{diag}(0, 2, 1, \dots, 1)$$

- **D** is a $(K-2) \times K$ "differencing matrix" whose *i*th row has +1 in column i + 1, -1 in column i + 2, 0 elsewhere

• minimizing $SS(\boldsymbol{\theta}; \lambda)$ is equivalent to minimizing

$$\boldsymbol{f}^{\mathsf{T}}\boldsymbol{\theta} + 0.5\,\boldsymbol{\theta}^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta} \tag{6}$$

where

$$- f = -\mathbf{y}^{\mathsf{T}} \mathbf{Z}$$

- $-\mathbf{H} = \mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{A}^{\mathsf{T}}\mathbf{D}^{\mathsf{T}}\mathbf{D}\mathbf{A},$
- the constraints are

$$\boldsymbol{\theta} \ge 0 \text{ and } \mathbf{1}^{\mathsf{T}} \boldsymbol{\theta} = 1,$$
 (7)

- **1** is a *K*-dimensional vector of ones

• approximate GCV — use GCV for the unconstrained estimator

Two semiparametric estimators of θ :

• $\widehat{\pi_0}_{sem,1} = \widehat{\theta}_1$

• $\widehat{\pi_0}_{sem,2}$ = estimated density at 1 Recall:

$$F_p(p; \boldsymbol{\theta}) = \sum_{k=1}^{K} \theta_k Z_k(p)$$

Therefore,

$$\widehat{\pi_0}_{\text{sem},2} = \sum_{k=1}^{K} \widehat{\theta}_k Z'_k(p) \bigg|_{p=1}$$

Recall:

- $Z_1(p) = p$ is the (uniform) cdf of the *p*-values under H_0
- for k = 1, ..., K 1, let $Z_{k+1}(p) = \int F_{p|\mu}(p;\mu)B_k(\mu)d\mu$ is the marginal cdf of a *p*-value if the density of μ is B_k
- therefore

$$\widehat{\pi_{0}}_{\text{sem},2} = \widehat{\theta}_{1} + \sum_{k=2}^{K} \widehat{\theta}_{k} \int f_{p|\mu}(p;\mu) B_{k}(\mu) d\mu \bigg|_{p=1} \ge \widehat{\pi_{0}}_{\text{sem},1}$$

Simulation study

• one-side z-test

- $\mu = 0$ versus $\mu > 0$ based on $Z \sim N(\mu, 1)$

- g is beta (b_1, b_2) on $[\mu_{\min}, \mu_{\max}]$
- Gr-*M* and LCI-*M* are the Grenander and longest constant interval estimator estimators using *M* equally-spaced order statistics
 - M = n gives standard Grenander and LCI estimators

Gr-50	Gr-500	Gr-5000	LCI-50	LCI-500	LCI-5000
3.0231	23.3634	95.7562	1.9185	4.2623	12.6780

Table 1: 1000 × MSE for six estimators with n = 5000, $\pi_0 = 0.8000$, $\mu_{\min} = 0$, $\mu_{\max} = 4$, $b_1 = 2$, and $b_2 = 2$. Each MSE is based on 25 Monte Carlo simulations. The standard errors of the MSE values are roughly 1/2 the MSE values themselves or smaller.

Figure 3: Comparison of Gr-25, Gr-1000, LCI-25, LCI-1000 estimators. The top and bottom rows are different data sets, both from Case #3.

Figure 4: The two non-null densities of μ used in the simulations. Their values of $(\mu_{\min}, \mu_{\max}, b_1, b_2)$ are (0, 4, 1, 2) for Cases 1 and 3, and (0.5, 4.5, 3, 2) for Cases 2 and 4.

	Case $\#1$	Case $\#2$	Case #3	Case $#4$
π_0	0.95	0.95	0.7	0.7
$\mu_{\min}, \mu_{\max}, b_1, b_2$	0,4,1,2	0.5,4.5,3,2	0,4,1,2	0.5,4.5,3,2
$\widehat{\pi_{0}}_{\text{sem},1}, K = 8, \text{ wt}$	0.3759	0.3555	1.6042	0.8240
$\widehat{\pi_{0}}_{\mathrm{sem},2}, K = 8, \mathrm{wt}$	0.3014	0.1878	2.3984	0.3466
$\widehat{\pi_0}_{\text{sem},1}, K = 16, \text{ wt}$	0.4694	0.2974	1.8562	1.0424
$\widehat{\pi_0}_{\text{sem},2}, K = 16, \text{ wt}$	0.2961	0.1635	2.5801	0.4004
Gr-10	0.6609	0.8513	4.4478	0.4323
Gr-50	4.0509	4.4439	2.5229	2.3228
Gr-250	16.8678	17.7898	6.5489	9.6928
LCI-10	0.7541	0.7012	4.6142	0.4575
LCI-50	2.2739	1.6569	5.4461	1.4849
LCI-250	3.1757	2.3155	10.2505	2.1253

Table 2: 1000 \times MSE. 1500 Monte Carlo samples per case.

Figure 5: Semiparametric estimates of f_p , the density of the *p*-values, from six independent data sets from Cases #3 and #4.

Features of semiparametric estimators:

- accurate (small MSE and bias)
- shape-preserving
- fully automatic
- can be computed very rapidly