Penalized Splines and Financial Market Data

David Ruppert
Operations Research and Industrial Engineeering
Cornell University
dr24@cornell.edu
http://legacy.orie.cornell.edu/~ davidr

Main Themes

- Calibration of financial models is a statistical problem
- Researchers in mathematical finance are experts in probability theory but often are less knowledgeable about statistical modeling and data analysis
- Unfortunately, statisticians have, with some notable exceptions, not recognized finance as an important area of application
- Transformation and weighting in regression can improve the calibration of financial models
- Splines are an effective tool for data analysis and statistical modeling

Overview

- Recent example where a statistician could have helped
- Example of curve fitting - dynamics of interest rates
- Penalized splines
- Two examples:
- Return to interest rate dynamics
- Term structure - estimating the forward rate curve

Example: Estimation of Default Probabilities

Data:

- ratings: $1=$ Aaa (best), $\ldots, 16=\mathrm{B} 3$ (worse)
- default frequency: estimate of default probability
- many zero values at best ratings

From recent book on credit risk

- nonlinear model:

$$
\operatorname{Pr}(\text { default } \mid \text { rating })=\exp \left\{\beta_{0}+\beta_{1} \text { rating }\right\}
$$

- linear/transformation model (in recent textbook):

$$
\log \{\operatorname{Pr}(\text { default } \mid \text { rating })\}=\beta_{0}+\beta_{1} \text { rating }
$$

- Problem: cannot take logs of default frequencies that are 0
- (Sub-optimal) solution in textbook: throw out these observations
- Transform-both-sides (TBS) model - see Carroll and Ruppert (1984, 1988):

$$
\operatorname{Pr}(\text { default } \mid \text { rating })^{\alpha}=\exp \left[\alpha\left\{\beta_{0}+\beta_{1} \text { rating }\right\}\right]
$$

- α chosen by residual plots (or maximum likelihood)
- $\alpha=1 / 2$ works well
$-\alpha=0 \Rightarrow \log$ transformation
* if we $x \mapsto x^{\alpha}$ by $x \mapsto\left(x^{\alpha}-1\right) / \alpha$

TBS fit compared to others
Data $=$ proportion defaulting

Values at bottom are at $\log ($ proportion $)=-\infty$

Nonlinear regression residuals

Nonlinear regression residuals

TBS residuals

method	$\widehat{\operatorname{Pr}}\{$ default \mid Aaa $\}$	$\%$ of TEXTBOOK estimate
TEXTBOOK	0.005%	100%
nonlinear	0.002%	40%
TBS	0.0008%	16%

Comments:

- Suppose sample sizes were large so that all categories had at least one default
- log transformation would have been applied to all 16 sample proportions
- but this might have caused outliers and unstable estimates
- Perhaps a logistic regression fit should be compared with the TBS fit.

Geometry of transformations - variance stabilization

Geometry of transformations - symmetrization

1-Year Treasury Constant Maturity Rate, daily data
Source: Board of Governors of the Federal Reserve System
http://research.stlouisfed.org/fred2/

ΔR_{t} versus rate

Estimating Volatility

Parametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\beta_{0} R_{t-1}^{\beta_{1}}
$$

E.g.,

- $\beta_{1}=0$ (Vasicek, 1977)
- $\beta_{1}=1 / 2$ (Cox, Ingersoll, Ross, 1985)
- $\beta_{1}=1$ (Courtadon, 1982)
- β_{1} a free parameter (Chan, Karolyi, Longstaff, and Sanders, 1992)

Nonparametric model:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\sigma^{2}\left(R_{t-1}\right)
$$

where $\sigma(\cdot)$ is a smooth function

- will be modeled as a spline
- In these models: no dependence on t

Penalized Splines for Semiparametric Modeling

Underlying philosophy

1. minimalist statistics

- keep it as simple as possible

2. build on classical parametric statistics
3. modular methodology

Reference

Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

- Lots of examples.
- But most from biostatistics and epidemiology

Semiparametric regression

Partial linear or partial spline model:

$$
Y_{i}=\mathbf{W}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}_{W}+m\left(X_{i}\right)+\epsilon_{i} .
$$

Here $m(\cdot)$ is a smooth function. We will model it as a spline with a truncated polynomial basis:

$$
\begin{gathered}
m(x)=\boldsymbol{X}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}_{X}+\boldsymbol{B}^{\boldsymbol{\top}}(x) \boldsymbol{b} \\
\boldsymbol{X}_{i}^{\boldsymbol{\top}}=\left(\begin{array}{lll}
X_{i} & \cdots & X_{i}^{p}
\end{array}\right) \\
\boldsymbol{B}^{\boldsymbol{\top}}(x)=\left\{\begin{array}{lll}
\left(x-\kappa_{1}\right)_{+}^{p} & \cdots & \left(x-\kappa_{K}\right)_{+}^{p}
\end{array}\right\}
\end{gathered}
$$

The intercept is part of $\mathbf{W}_{i}^{\top} \boldsymbol{\beta}_{W}$.

Example

$$
m(x)=\beta_{1} x+b_{1}\left(x-\kappa_{1}\right)_{+}+\cdots+b_{K}\left(x-\kappa_{K}\right)_{+}
$$

- slope jumps by b_{k} at κ_{k}

Fitting interest-rate data with plus functions

Generalization

$$
m(x)=\beta_{1} x+\cdots+\beta_{p} x^{p}+b_{1}\left(x-\kappa_{1}\right)_{+}^{p}+\cdots+b_{K}\left(x-\kappa_{K}\right)_{+}^{p}
$$

- p th derivative jumps by $p!b_{k}$ at κ_{k}
- first $p-1$ derivatives are continuous

Ordinary Least Squares

Penalized least-squares

Minimize

$$
\sum_{i=1}^{n} \omega_{i}^{2}\left\{Y_{i}-\left(\mathbf{W}_{i}^{\top} \boldsymbol{\beta}_{W}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}_{X}+\boldsymbol{B}^{\top}\left(X_{i}\right) \boldsymbol{b}\right)\right\}^{2}+\lambda \boldsymbol{b}^{\top} \boldsymbol{D} \boldsymbol{b}
$$

E.g.,

$$
\begin{gathered}
\boldsymbol{D}=\boldsymbol{I} \\
\omega_{i}=1 / \widehat{\sigma}\left(Y_{i} \mid \mathbf{W}_{i}, X_{i}\right)
\end{gathered}
$$

Penalized Least Squares - Non-adaptive

Ridge Regression

From previous slide:

$$
\sum_{i=1}^{n} \omega_{i}^{2}\left\{Y-\left(\mathbf{W}_{i}^{\top} \boldsymbol{\beta}_{W}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}_{X}+\boldsymbol{B}^{\top}\left(X_{i}\right) \boldsymbol{b}\right)\right\}^{2}+\lambda \boldsymbol{b}^{\top} \boldsymbol{D} \boldsymbol{b}
$$

Let \mathcal{X} have row $\left(\mathbf{W}_{i}^{\top} \quad \boldsymbol{X}_{i}^{\top} \quad \boldsymbol{B}^{\top}\left(X_{i}\right)\right)$. Then

$$
\left(\begin{array}{c}
\widehat{\boldsymbol{\beta}}_{W} \\
\widehat{\boldsymbol{\beta}}_{X} \\
\widehat{\boldsymbol{b}}
\end{array}\right)=\left\{\mathcal{X}^{\top} \Omega \mathcal{X}+\lambda \operatorname{blockdiag}(\mathbf{0}, \mathbf{0}, \boldsymbol{D})\right\}^{-1} \mathcal{X}^{\top} \Omega \boldsymbol{Y},
$$

where

$$
\Omega=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right)
$$

Penalized LSE is also

- a BLUP in a mixed model
- $\left(\boldsymbol{\beta}_{W}, \boldsymbol{\beta}_{X}\right)$ is the fixed effect vector
- \boldsymbol{b} is the random effect vector
- λ is a ratio of variance components
- empirical Bayes estimator.

Selecting λ

1. cross-validation (CV)
2. generalized cross-validation (GCV)
3. ratio of variance components estimated by ML or REML in mixed model framework
4. as in 3., but estimated in a fully Bayesian framework
5. $\mathrm{EBBS}=$ empirical bias bandwidth selection

- useful if $m^{\prime}(x)$ is of primary interest

Selecting the Knots Locations

1. I use sample-quantiles of X so there are (approximately) an equal number of observations between any pair of consecutive knots
2. Some prefer equal-spaced knots
3. and 2. give similar results, except in extreme cases.

Selecting the Number of Knots

(b) MASE comparisons

$$
n=200
$$

(a) SpaHetLS, $\mathrm{j}=3, \mathrm{n}=2,000$

(b) MASE comparisons

$$
n=2,000
$$

$n=10,000,20$ knots, quadratic spline

Additive Models

Model:

$$
Y_{i}=m_{1}\left(X_{1}\right)+\cdots+m_{p}\left(X_{p}\right)+\epsilon_{i}
$$

Basis functions:
$\boldsymbol{X}_{i, j}^{\top}=\left(\begin{array}{lll}X_{i, j} & \cdots & X_{i, j}^{p}\end{array}\right)$ and $\boldsymbol{B}_{j}^{\top}(x)=\left\{\begin{array}{llll}\left(x-\kappa_{1, j}\right)_{+}^{p} & \cdots & \left(x-\kappa_{K_{j}, j}\right)_{+}^{p}\end{array}\right\}$

Let \mathcal{X} have row

$$
\left(\begin{array}{lllllll}
\mathbf{W}_{i}^{\top} & \boldsymbol{X}_{i, 1}^{\top} & \ldots & \boldsymbol{X}_{i, p}^{\top} & \boldsymbol{B}_{1}^{\top}\left(X_{i, 1}\right) & \ldots & \boldsymbol{B}_{p}^{\top}\left(X_{i, p}\right)
\end{array}\right)
$$

Estimation: Minimize

$$
\sum_{i=1}^{n} \omega_{i}^{2}\left\{Y-\left(\mathbf{W}_{i}^{\top} \boldsymbol{\beta}_{W}+\sum_{j=1}^{p} \boldsymbol{X}_{i, j}^{\top} \boldsymbol{\beta}_{X, j}+\boldsymbol{B}_{j}^{\top}\left(X_{i, j}\right) \boldsymbol{b}_{j}\right)\right\}^{2}+\sum_{j=1}^{p} \lambda_{j} \boldsymbol{b}_{j}^{\top} \boldsymbol{D}_{j} \boldsymbol{b}_{j} .
$$

Adaptive Penalties

- the penalty $\lambda(\cdot)$ is allowed to vary with spatial position
- see Ruppert and Carroll (2000), Australian and New Zealand Journal of Statistics
$-\lambda(\cdot)$ is itself a spline
Minimize:

$$
\sum_{i=1}^{n} \omega_{i}^{2}\left\{Y-\left(\mathbf{W}_{i}^{\top} \boldsymbol{\beta}_{W}+\sum_{j=1}^{p} \boldsymbol{X}_{i, j}^{\top} \boldsymbol{\beta}_{X, j}+\boldsymbol{B}_{j}^{\top}\left(X_{i, j}\right) \boldsymbol{b}_{j}\right)\right\}^{2}+\sum_{j=1}^{p} \boldsymbol{b}_{j}^{\top} \boldsymbol{D}_{j} \boldsymbol{b}_{j} .
$$

where

$$
\boldsymbol{D}_{j}=\operatorname{diag}\left(\begin{array}{lll}
\lambda\left(\kappa_{1, j}\right) & \cdots & \lambda\left(\kappa_{K_{j}, j}\right)
\end{array}\right)
$$

Partial Spline Model

$$
\Delta R_{t}=m_{1}\left(R_{t}\right)+m_{2}(t)+\sigma\left(R_{t}, t\right) \epsilon_{i}
$$

Additive fit to ΔR_{t}

Penalties for adaptive, weighted fit to ΔR_{t}

Partial Spline Model

$$
\Delta R_{t}=\beta_{1} R_{t}+m_{2}(t)+\sigma\left(t, R_{t}\right) \epsilon_{i}
$$

Output:

- $\widehat{\beta}_{1}$
- $\widehat{m}_{2}(t)+\widehat{\beta}_{1} \overline{R_{t}}$

Corresponds to model with drift:

$$
a\left\{\theta(t)-R_{t}\right\}
$$

where

$$
a=-\beta_{1} \quad \text { and } \quad \theta(t)=-\frac{m_{2}(t)}{\beta_{1}}
$$

Multiplicative Models for Volatility

$$
\operatorname{Var}\left(Y_{t}\right)=\sigma_{0}^{2} s_{1}^{2}\left(X_{1}\right) \cdots s_{p}^{2}\left(X_{p}\right)
$$

Example:

$$
\operatorname{Var}\left\{\left(\Delta R_{t}\right)\right\}=\sigma_{0}^{2} \sigma_{1}^{2}\left(R_{t-1}\right) \sigma_{2}^{2}(t)
$$

Backfitting algorithm:

Assume the Y_{t} has mean zero, e.g., are residuals.

1. fit a model $s_{1}^{2}\left(X_{1}\right)$ for Y_{t}^{2} as a function of X_{1}

- "de-volatilize": replace Y_{t} by $y_{t} / s_{1}\left(X_{1}\right)$

2. fit a model $s_{2}^{2}\left(X_{2}\right)$ for Y_{t}^{2} as a function of X_{2}

- "de-volatilize": replace Y_{t} by $Y_{t} / s_{x}\left(X_{2}\right)$

3. fit a model $s_{p}^{2}\left(X_{p}\right)$ for Y_{t}^{2} as a function of X_{p}

- "de-volatilize": divide Y_{t} by $s_{1}\left(X_{1}\right) \cdots s_{p}\left(X_{p}\right)$

4. either STOP or go back to 1 .

Weighting is built into the algorithm.

$\left\{\Delta\left(R_{t}\right)\right\}^{2}$ regressed on R_{t-1} and t

- each row is one iteration
- effect of R_{t-1} on left
- effect of t on right
- \# of knots $=\min \left(5^{*}\right.$ iteration number, 20)

Plots of de-volatilized changes versus explanatory variables

Normal plot of de-volatilized changes

Estimating the Term Structure of Corporate Debt with a Semiparametric Model

Joint work with:

- Bob Jarrow (Cornell)
- Yan Yu (University of Cincinnati)

Bond prices and the forward rate

- $t=$ time to maturity
- $P(t)=$ price of zero-coupon bond at current time $(t=0)$
- $D(t)=$ discount function
- $y(t)=$ yield to maturity
- $f(t)=$ forward rate

$$
\frac{P(t)}{\mathrm{PAR}}=D(t)=\exp \{-F(t)\}=\exp \{-t y(t)\}=\exp \left\{-\int_{0}^{t} f(s) d s\right\}
$$

Estimation of the forward rate

Suppose the i th bond pays $C_{i}\left(t_{i, j}\right)$ and time $t_{i, j}$

- $i=1, \ldots, n$
- $j=1, \ldots, z_{i}$

Let $f(s, \boldsymbol{\delta})=\boldsymbol{\delta}^{\prime} \boldsymbol{B}(s)$ be a spline model for the forward rate.

Model for price of i th bond:

$$
\widehat{P}_{i}(\boldsymbol{\delta})=\sum_{j=1}^{z_{i}} C_{i}\left(t_{i, j}\right) \exp \left\{-\boldsymbol{\delta}^{\prime} \boldsymbol{B}^{I}\left(t_{i, j}\right)\right\}
$$

where

$$
\boldsymbol{B}^{I}(t):=\int_{0}^{t} \boldsymbol{B}(s) d s=\left(\begin{array}{llllll}
t & \ldots & \frac{t^{p+1}}{p+1} & \frac{\left(t-\kappa_{1}\right)_{+}^{p+1}}{p+1} & \ldots & \frac{\left(t-\kappa_{K}\right)_{+}^{p+1}}{p+1}
\end{array}\right)^{\prime} .
$$

Estimate δ by minimizing

$$
Q_{n, \lambda}(\boldsymbol{\delta})=\frac{1}{n} \sum_{i=1}^{n}\left\{P_{i}-\sum_{j=1}^{z_{i}} C_{i}\left(t_{i, j}\right) \exp \left\{-\boldsymbol{\delta}^{\prime} \boldsymbol{B}^{I}\left(t_{i, j}\right)\right\}\right\}^{2}+\lambda \boldsymbol{\delta}^{\prime} \mathbf{G} \boldsymbol{\delta} .
$$

Selection of λ

- Estimation of λ by GCV did not work well
- GCV targets MSE of the estimated regression function
- But the forward rate is the derivative of the (log of) the regression function
- Derivatives require a different amount of smoothing

Corporate Bonds

- Problem: often there are not enough bonds to fit a fully nonparametric model
- Jarrow, Ruppert, and Yu solve this by using a semiparametric model

Algorithm

Step 1: Nonparametric spline fit of a forward rate to US Treasury bonds.

- $\boldsymbol{\delta}$ is estimated by minimizing $Q_{n, \lambda}(\boldsymbol{\delta})$
- λ is chosen by GCV, RSA, or EBBS
- $\widehat{f}_{T r}(t)=\widehat{\boldsymbol{\delta}}^{\prime} \boldsymbol{B}(t)$, where $\widehat{\boldsymbol{\delta}}$ are the estimated spline coefficients

Step 2: Parametric estimation to obtain the forward rate curve for a corporation's bonds.

- credit spread is parametric with parameter α
- for example, if the credit spread is a constant, then

$$
f_{C}(t)=\widehat{f}_{T r}(t)+\alpha=\hat{\boldsymbol{\delta}}^{\prime} \boldsymbol{B}(t)
$$

- fix $\hat{\boldsymbol{\delta}}$ at value from Step 1 and estimate α by OLS

-Log-prices (as fraction of PAR)

Estimates of forward rate
θ was used by Fisher, Nychka and Zervos (1995) to induce more smoothing -

$$
G C V(\lambda)=\frac{n^{-1} \sum_{i=1}^{n}\left\{P_{i}-\widehat{P}_{i}(\boldsymbol{\delta})\right\}^{2}}{\left\{1-n^{-1} \theta \operatorname{tr} \boldsymbol{A}(\lambda)\right\}^{2}}
$$

where $\boldsymbol{A}(\lambda)$ is the "hat" or "smoother" matrix: $\widehat{\mathbf{P}}=\boldsymbol{A}(\lambda) \mathbf{P}$

Estimates of Treasury and AT\&T forward rates

Summary

- Statisticians and financial engineers would each benefit from more collaboration
- Calibration of financial models is an interesting and challenging problem in statistics and data analysis
- transformation and weighting can be important
- Penalized splines are an attractive method for semiparametric modeling

