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Two parts

e Old: overview of the book Semiparametric Regression by
Ruppert, Wand, and Carroll (2003)

o Still an active area: 314 papers referenced in Semiparametric

Regression During 2003-2007 (EJS, 2009)

e New: asymptotics of penalized splines



Intellectual impairment and blood lead

Example | (courtesy of Rich Canfield, Nutrition, Cornell)

blood lead and intelligence measured on children
Question: how do low doses of lead affect 1Q?

e important — doses decreasing since lead no longer added to
gasoline

several 1Q measurements per child
e so longitudinal
e nine “confounders”

e e. g., maternal 1Q
e need to adjust for them

effect of lead appears nonlinear

important conclusion



Dose- response curve
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Thanks to Rich Canfield for data and estimates



Spinal bone mineral density example

Example Il (in Ruppert, Wand, Carroll (2003), Semiparametric
Regression
e age and spinal bone mineral density measured on girls and
young women

e several measurements on each subject

e increasing but nonlinear curves
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What is needed to accommodate these examples

We need a model with
e potentially many variables
e possibility of nonlinear effects

e random subject-specific effects

The model should be one that can be fit with readily available
software such as SAS, Splus, or R.



Underlying philosophy

@ minimalist statistics
e keep it as simple as possible
e but need to accommodate features such as correlated data and
confounders
® build on classical parametric statistics
® modular methodology

e so we can add components to accommodate special features in

data sets



Outline of the approach

e Start with linear mixed model
e allows random subject-specific effects

e fine for variables that enter linearly

e Expand the basis for those variables that have nonlinear
effects
e we will use a spline basis
e treat the spline coefficients as random effects to induce
empirical Bayes shrinkage = smoothing
e End result

e linear mixed model from a software perspective, but

e nonlinear from a modeling perspective



Example: pig weights (random effects)

Example Il [from Ruppert, Wand, and Carroll (2003)]

(a) (b)
H g E ; E g : /séi%ggi/ g
3 | : 3 /%E g
i1 #

2 4 6 8 2 4 6 8
number of weeks number of weeks



Random intercept model

Yii = (Bo + boi) + Brweek;

e Y;; = weight of ith pig at the jth week

e [y is the average intercept for pigs

e bp; is an offset for ith pig

e So (Bo + bo;) is the intercept for the ith pig



Are random intercepts enough?

Example 11l
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Random lines model

Yii = (Bo + boi) + (81 + by;) week;

e [ is the average slope

e b; is an adjustment to slope of the ith pig
e So (31 + by;) is the slope for the ith pig

e by; and by; seem positively correlated

e makes sense: faster growing pigs should be larger at the start
of data collection



General form of linear mixed model

e Model is:
Vi =X/B+Z/b+¢
e X; = (Xp,...,Xyp) and Z; = (Z;, ..., Z;,) are vectors
of predictor variables
e f=(b1,...,05,) is a vector of fixed effects
e b= (by,...,b,) is a vector of random effects

o b~ MVN{0,(0)}

e ( is a vector of variance components



Estimation in linear mixed models

e 3 and @ are the parameter vectors
e estimated by
e ML (maximum likelihood), or
e REML (maximum likelihood with degrees of freedom
correction)
e b is a vector of random variables
o predicted by a BLUP (Best linear unbiased predictor)
e BLUP is shrunk towards zero (mean of b)

e amount of shrinkage depends on 0



Estimation in linear mixed models, cont.

e Random intercepts example:

Yii = (Bo + boi) + Brweek;

e high variability among the intercepts = less shrinkage of by;
towards 0

e extreme case: intercepts are fixed effects
e |ow variability among the intercepts = more shrinkage

® extreme case: common intercept (a simpler fixed effects

model)



Comparison between fixed and random effects modeling

o fixed effects models allow only the two extremes:
e no shrinkage
e common intercept
o mixed effects modeling allows all possibilities between

these extremes



Splines

polynomials are excellent for local approximation of

functions

in practice, polynomials are relatively poor at global
approximation
a spline is made by joining polynomials together

o takes advantage of polynomials' strengths without inheriting

their weaknesses

splines have "maximal smoothness"



Piecewise linear spline model

“Positive part” notation:

ry = z,ifzx>0 (1)
= 0,ifz<0 (2)

Linear spline:

m(z) = {Bo —i—ﬂlm} +{bi(z— K1)y + -+ bg(z — K/K)J,_}

® Ki,...,kg are “knots”

e bi,..., bk are the spline coefficients
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Linear spline

m(z) = fo+ Bz + bi(z — K1)y + -+ bg(z — ki) ¢

e slope jumps by by at kg, k=1,..., K
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Generalization: higher degree splines

m(z) = Po+ Pz + - - + Bpa”

+b1(z — k1)L 4+ + b (z — KK)Y

e pth derivative jumps by p! by at kg

e first p — 1 derivatives are continuous



LIDAR data: ordinary Least Squares
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Penalized least-squares

e Use matrix notation:
m(X;) = Bo + b1 X; + -+ Bp XY
+01(X; — k) + -+ 4 b (X — ki)Y
= X]Bx+B'(X)b
e Minimize

Zn: {vi- (XTBx+BT(X; )lo)}2 +Ab'Db.
=1



Penalized least-squares, cont.

From previous slide: minimize

Sy, {Yi~ (XIBy + BT(X)b)}" + AbTDb.
=1

AbTDb is a penalty that prevents overfitting

D is a positive semidefinite matrix
e so the penalty is non-negative
e Example:
D=I
A controls that amount of penalization

the choice of A is crucial



Penalized Least Squares
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Selecting A

To choose A use:

@ one of several model selection criteria:
e cross-validation (CV)
e generalized cross-validation (GCV)
e AIC
o Cp

® ML or REML in mixed model framework
e convenient because one can add other random effects

e also can use standard mixed model software

©® Bayesian MCMC



spinal bone mineral density
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Modeling the blood lead and IQ data

For the jth measurements on the ith subject:

IQij = m(leadij) + bz + 51Xi1j + -+ 5LX1§/ + €ij

e m(-) is a spline

e include the population average intercept
e b; is a random subject-specific intercept
E(b;) =0
e model assumes parallel curves

e b; models within-subject correlation

e X' is the value of the (th confounder, /¥ =1,....L



Summary (overview of semiparametric regression)

Semiparametric philosophy

e use nonparametric models where needed

e but only where needed

LMMs and GLMMs are fantastic tools, but (apparently)
totally parametric

By basis expansion, LMMs and GLMMs become

semiparametric
Low-rank splines eliminate computational bottlenecks

Smoothing parameters can be estimated as ratios of

variance components



Linear Smoothers

A smoother is linear if:

=)

=HY

e Y is the data vector
e Y contains the fitted values

e H is the smoother (or hat) matrix and does not depend on Y

Note that

n
~

Yi=> Hy;Yj
j=1

e (H;1,...,H;y) [the ith row of H] can be viewed as the finite
sample kernel for estimation of E(Y;|X;) = f(X))



Nadaraya-Watson kernel estimator

(nha) ™ S V(X = X0) /I

f(X) =
) (nhy) =1 320 K{<Xj_Xi)/hn}

K () is the kernel—it is symmetric about 0
h,, is the bandwidth and h, — 0 as n — oo

The denominator is a kernel density estimator
Many smoother are asymptotically equivalent to a N-W
estimator.

e Then we want to find the “equivalent kernel” and “equivalent

bandwidth” of penalized splines

The “equivalent kernel” and “equivalent bandwidth” can be
used to compare different estimators, for example, splines,
kernel regression, and local regression



K is an mth order kernel if

Sy K (y)dy

£

1
0
0

The order of a kernel

if k=0
ifO0<k<m
if k=m

e m must be even because K is symmetric so that all odd

moments are zero.

e m = 2 if K is nonnegative. Example: local linear

regression



Kernel order and bias

Assume that X, ..., X,, are iid uniform(0,1). Then for the
numerator we have

1Zn: VK { (X5 = Xi) | =

1if { (X; — X)}z

J=1

/f(x — hp2)K(2)dz =~
f@)+ 121 @) [ 7K ()

e The bias is of order O(h") as n — oo



Framework for large-sample theory of penalized splines

¢ p-degree spline model:

K+p

f(il?) = Z kak(.'L‘), T e (0, 1)
k=1
e pth degree B-spline basis:
{By(z) : k=1,..., K+ p}

e knots:
kKo=0<r <...<kg=1
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Summary of main results

Penalized spline estimators are approximately binned
Nadaraya-Watson kernel estimators

The order of the N-W kernel depends solely on m (order
of penalty)

e this was surprising to us
order of kernel is 2m in the interior

order is m at boundaries



Summary of main results, continued

The spline degree p does not affect the asymptotic

distribution, but

p determines the type of binning and the minimum rate at

which K — oo
p = 0 = usual binning

p = 1 = linear binning



Summary of main results, continued

e a higher value of p means that less knots are needed
e because there is less modeling bias
e modeling bias = binning bias

e The rate at which K — oo has no effect

e except that it must be above a minimum rate



Penalized least-squares

e Penalized least-squares minimizes

2

n K+p/\ K+p N
D %wi— D eBi(m) p + X Y {AT (b)),
=1 k=1 k=m-+1

o Aby, = by — bp_1 and A™ = A(Amfl)
e m = 1 = constant functions are unpenalized

e m = 2 = linear functions are unpenalized



Initial assumptions

Assume:
e =1/n,m=2/n,...,2, =1
L HOZO,Iilz1/K,I€2:2/K,...7I{K:1

e assume that n/K := M is an integer



Estimating equations

T T n_ T
(BB, + X DyDn)b=(BY)

- —00
B—splines penalty binned Ys

After dividing by M:

(% + A DID.)b= (B]Y/M)
~~ :g; ~—— N
o(1) o) bin averages: Op(1)



Solving for b: first step

From previous slide:

Y, + A DID.)b= (B'Y/M
<\£, =~ ,) (P /)

o) bin averages: Op(1)

We will (approximately) invert 3, + AD! D,, (symmetric,
banded)



Solving for b

Inverting: ¥, + ADLD,,

q := max(m, p) = (# of bands above diagonal)
Typical column of ¥, + ADI'D,, is

T
(07 aoqua"' , W1, Wo, Wi, " - 7wq707"' 70)



The polynomial that determines the asymptotic
distribution

Define P(z) as
P(z) = wy+ w1+ +wor™ + - + w177 + w, .
p is a root of P(z) and

Ti(p) = (pll—il’ e p L,y 7p\K*i|)

T;(p) orthogonal to columns of (X, + ADZLD,,) except
e first and last ¢
e jth such that |i — j| < ¢



Solving for b: next step

We can find a,...,a, and py, ..., p, such that
S; =>1_1 aTi(py) is orthogonal to all columns of
(X, + ADLD,,) except

O ith

® first and last ¢

For each k, pr, — 0 or |pi| 1 1 sufficiently slowly, so S; is

asymptotically orthogonal to all columns except the ith



Finding b;

From earlier slides:

(3, +ADLDy) b= (B]Y/M)
S; is (asymptotically) orthogonal to all columns of
(X, + ADLD,,) except the ith

Therefore
b~ Si (B Y/M)

. S; is (almost) the finite-sample kernel



Roots of P(x)

Need explicit expression for S;, which depends on the roots of:

P(z) =wy+ w1+ +woz™ + - + w177 + w

No roots have |p| =1 or p = 0.

If p is a root, then so is p~.

So roots come in pairs (p, p~').

q roots have |p| < 1



Roots of P(x)

o For previous page: ¢ roots have |p| < 1

o of these, m of them converges upwards to 1

e if ¢ > m, then ¢ — m of them converge to 0



Asymptotic kernel (interior): m even

If m is even, then

m/2 )
() = 3 { 2 exp( ol cos{e)

422 exp(—aa;|7|) Sin(ﬁ?i’“ﬂ)}
m

o+ Biv/—1,i=1,...,m, are
e roots of %™ + (—1)™ =0

e with a;; > 0 (so magnitude > 1)



Asymptotic kernel (interior): m odd

If m is odd, then

) = )43 22 xp(a ol cos(la)

2m i=1

+ﬂm2i exp(—aw||) Sin(ﬁ?i’“ﬂ)}



Asymptotic kernel (interior)

For any m:
/kam(:zr)dxzo for k=1,....2m—1

and

/Hm(x)dx =1
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CLT for penalized splines

Under assumptions (later) for any = € (0, 1) [interior points],

we have

2m

nT{ji(2) — p(x)} — N {(2), V(2)}, as n — oo,

where .
fi(z) = Wﬂ(zm)($>h§m/t2m[{m(t)dt
and

V(z) = hylo?(z) / H2(1)dt



Assumptions

e The assumptions of the theorem confirm some folklore



Some folklore: # knots

e Folklore:

Number of knots not important, provided large enough.

e Confirmation:
K ~ Kyn”, where
e Kp>0
o 7> 2m/ {(dm + 1)}
o (:=min(2m,p+1)



Some folklore: penalty parameter

e Folklore:

Value of the penalty parameter crucial.

e Confirmation:

A ~ (Kh)?™ where h ~ hon” Tt



Some folklore: bias

e Folklore:

Modeling bias small.

e Confirmation:

Modeling bias does not appear in asymptotic bias



Comparison with Local Polynomial Regression

e Local polynomial regression (odd degree):

e same order kernel at boundary and interior

e order = degree + 1
e Penalized spline estimation
o Kernel order lower at boundary
e 2m in interior and m in boundary region
e Why haven't we noticed serious problems when using

splines?



Comparison with Local Linear Regression

Let's look at the choices most used in practice

Local linear:

e 2nd order kernel everywhere

Penalized spline with m = 2:
e 2nd order kernel at boundary

e 4th order kernel in interior



Some more recent work

e Wang, Shen, and Ruppert (2011, EJS) obtain the
asymptotic kernel using Green's function

e Luo, Li, and Ruppert (2010, arXiv) show that a bivariate
P-spline is asymptotically equivalent to a N-W estimator
with a product kernel

e they introduce a modified penalty to obtain this result

e the new penalty also allows a much faster algorithm



End of Talk

Thanks for your attention
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