Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert
Operations Research \& Information Engineering, Cornell University

Feb 4, 2011

Collaborators

- Matt Wand, University of Wollongong
- Raymond Carroll, Texas A\&M University University
- Yingxing (Amy) Li, Cornell University
- Tanya Apanosovich, Thomas Jefferson Medical College
- Xiao Wang, Purdue University
- Jinglai Shen, University of Maryland, Baltimore County
- Luo Xiao, Cornell University

Two parts

- Old: overview of the book Semiparametric Regression by Ruppert, Wand, and Carroll (2003)
- Still an active area: 314 papers referenced in Semiparametric Regression During 2003-2007 (EJS, 2009)
- New: asymptotics of penalized splines

Intellectual impairment and blood lead

Example I (courtesy of Rich Canfield, Nutrition, Cornell)

- blood lead and intelligence measured on children
- Question: how do low doses of lead affect IQ?
- important - doses decreasing since lead no longer added to gasoline
- several IQ measurements per child
- so longitudinal
- nine "confounders"
- e. g., maternal IQ
- need to adjust for them
- effect of lead appears nonlinear
- important conclusion

Dose-response curve

Thanks to Rich Canfield for data and estimates

Spinal bone mineral density example

Example II (in Ruppert, Wand, Carroll (2003), Semiparametric Regression

- age and spinal bone mineral density measured on girls and young women
- several measurements on each subject
- increasing but nonlinear curves

Spinal bone mineral density data

What is needed to accommodate these examples

We need a model with

- potentially many variables
- possibility of nonlinear effects
- random subject-specific effects

The model should be one that can be fit with readily available software such as SAS, Splus, or R.

Underlying philosophy

(1) minimalist statistics

- keep it as simple as possible
- but need to accommodate features such as correlated data and confounders
(2) build on classical parametric statistics
(3) modular methodology
- so we can add components to accommodate special features in data sets

Outline of the approach

- Start with linear mixed model
- allows random subject-specific effects
- fine for variables that enter linearly
- Expand the basis for those variables that have nonlinear effects
- we will use a spline basis
- treat the spline coefficients as random effects to induce empirical Bayes shrinkage $=$ smoothing
- End result
- linear mixed model from a software perspective, but
- nonlinear from a modeling perspective

Example: pig weights (random effects)

Example III [from Ruppert, Wand, and Carroll (2003)]

Random intercept model

$$
Y_{i j}=\left(\beta_{0}+b_{0 i}\right)+\beta_{1} \text { week }_{j}
$$

- $Y_{i j}=$ weight of i th pig at the j th week
- β_{0} is the average intercept for pigs
- $b_{0 i}$ is an offset for i th pig
- So $\left(\beta_{0}+b_{0 i}\right)$ is the intercept for the i th pig

Are random intercepts enough?

Example III

Random lines model

$$
Y_{i j}=\left(\beta_{0}+b_{0 i}\right)+\left(\beta_{1}+b_{1 i}\right) \text { week }_{j}
$$

- β_{1} is the average slope
- $b_{i i}$ is an adjustment to slope of the i th pig
- So $\left(\beta_{1}+b_{1 i}\right)$ is the slope for the i th pig
- $b_{0 i}$ and $b_{1 i}$ seem positively correlated
- makes sense: faster growing pigs should be larger at the start of data collection

General form of linear mixed model

- Model is:

$$
Y_{i}=\mathbf{X}_{i}^{\top} \beta+\mathbf{Z}_{i}^{\top} \mathbf{b}+\epsilon_{i}
$$

- $\mathbf{X}_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)$ and $\mathbf{Z}_{i}=\left(Z_{i 1}, \ldots, Z_{i q}\right)$ are vectors of predictor variables
- $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$ is a vector of fixed effects
- $\mathbf{b}=\left(b_{1}, \ldots, b_{q}\right)$ is a vector of random effects
- $\mathbf{b} \sim M V N\{0, \Sigma(\theta)\}$
- θ is a vector of variance components

Estimation in linear mixed models

- β and θ are the parameter vectors
- estimated by
- ML (maximum likelihood), or
- REML (maximum likelihood with degrees of freedom correction)
- \mathbf{b} is a vector of random variables
- predicted by a BLUP (Best linear unbiased predictor)
- BLUP is shrunk towards zero (mean of \mathbf{b})
- amount of shrinkage depends on $\widehat{\boldsymbol{\theta}}$

Estimation in linear mixed models, cont.

- Random intercepts example:

$$
Y_{i j}=\left(\beta_{0}+b_{0 i}\right)+\beta_{1} \text { week }_{j}
$$

- high variability among the intercepts \Rightarrow less shrinkage of $b_{0 i}$ towards 0
- extreme case: intercepts are fixed effects
- low variability among the intercepts \Rightarrow more shrinkage
- extreme case: common intercept (a simpler fixed effects model)

Comparison between fixed and random effects modeling

- fixed effects models allow only the two extremes:
- no shrinkage
- common intercept
- mixed effects modeling allows all possibilities between these extremes

Splines

- polynomials are excellent for local approximation of functions
- in practice, polynomials are relatively poor at global approximation
- a spline is made by joining polynomials together
- takes advantage of polynomials' strengths without inheriting their weaknesses
- splines have "maximal smoothness"

Piecewise linear spline model

"Positive part" notation:

$$
\begin{align*}
x_{+} & =x, \text { if } x>0 \tag{1}\\
& =0, \text { if } x \leq 0 \tag{2}
\end{align*}
$$

Linear spline:

$$
m(x)=\left\{\beta_{0}+\beta_{1} x\right\}+\left\{b_{1}\left(x-\kappa_{1}\right)_{+}+\cdots+b_{K}\left(x-\kappa_{K}\right)_{+}\right\}
$$

- $\kappa_{1}, \ldots, \kappa_{K}$ are "knots"
- b_{1}, \ldots, b_{K} are the spline coefficients

Linear "plus" function with $\kappa=1$

Linear spline

$$
m(x)=\beta_{0}+\beta_{1} x+b_{1}\left(x-\kappa_{1}\right)_{+}+\cdots+b_{K}\left(x-\kappa_{K}\right)_{+}
$$

- slope jumps by b_{k} at $\kappa_{k}, k=1, \ldots, K$

Fitting LIDAR data with plus functions

Generalization: higher degree splines

$$
\begin{aligned}
& m(x)=\beta_{0}+\beta_{1} x+\cdots+\beta_{p} x^{p} \\
& \quad+b_{1}\left(x-\kappa_{1}\right)_{+}^{p}+\cdots+b_{K}\left(x-\kappa_{K}\right)_{+}^{p}
\end{aligned}
$$

- p th derivative jumps by $p!b_{k}$ at κ_{k}
- first $p-1$ derivatives are continuous

LIDAR data: ordinary Least Squares

Penalized least-squares

- Use matrix notation:

$$
\begin{aligned}
& m\left(X_{i}\right)=\beta_{0}+\beta_{1} X_{i}+\cdots+\beta_{p} X_{i}^{p} \\
& \quad+b_{1}\left(X_{i}-\kappa_{1}\right)_{+}^{p}+\cdots+b_{K}\left(X_{i}-\kappa_{K}\right)_{+}^{p} \\
& \quad=\mathbf{X}_{i}^{\top} \boldsymbol{\beta}_{X}+\mathbf{B}^{\top}\left(X_{i}\right) \mathbf{b}
\end{aligned}
$$

- Minimize

$$
\sum_{i=1}^{n}\left\{Y_{i}-\left(\mathbf{X}_{i}^{\top} \boldsymbol{\beta}_{X}+\mathbf{B}^{\top}\left(X_{i}\right) \mathbf{b}\right)\right\}^{2}+\lambda \mathbf{b}^{\top} \mathbf{D} \mathbf{b}
$$

Penalized least-squares, cont.

- From previous slide: minimize

$$
\sum_{i=1}^{n}\left\{Y_{i}-\left(\mathbf{X}_{i}^{\top} \boldsymbol{\beta}_{X}+\mathbf{B}^{\top}\left(X_{i}\right) \mathbf{b}\right)\right\}^{2}+\lambda \mathbf{b}^{\top} \mathbf{D} \mathbf{b}
$$

- $\lambda \mathbf{b}^{\top} \mathbf{D b}$ is a penalty that prevents overfitting
- \mathbf{D} is a positive semidefinite matrix
- so the penalty is non-negative
- Example:

$$
\mathbf{D}=\mathbf{I}
$$

- λ controls that amount of penalization
- the choice of λ is crucial

Penalized Least Squares

Selecting λ

To choose λ use:
(1) one of several model selection criteria:

- cross-validation (CV)
- generalized cross-validation (GCV)
- AIC
- C_{P}
(2) ML or REML in mixed model framework
- convenient because one can add other random effects
- also can use standard mixed model software
(3) Bayesian MCMC

Return to spinal bone mineral density study

Fixed effects

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & \text { age }_{11} \\
\vdots & \vdots \\
1 & \text { age }_{1 n_{1}} \\
\vdots & \vdots \\
1 & \text { age }_{m 1} \\
\vdots & \vdots \\
1 & \text { age }_{m n_{m}}
\end{array}\right]
$$

Random effects

$$
\mathbf{Z}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & \left(\text { age }_{11}-\kappa_{1}\right)_{+} & \cdots & \left(\text { age }_{11}-\kappa_{K}\right)_{+} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \cdots & 0 & \left(\text { age }_{1 n_{1}}-\kappa_{1}\right)_{+} & \cdots & \left(\text { age }_{1 n_{1}}-\kappa_{K}\right)_{+} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & \left(\text { age }_{m 1}-\kappa_{1}\right)_{+} & \cdots & \left(\text { age }_{m 1}-\kappa_{K}\right)_{+} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & \left(\text { age }_{m n_{m}}-\kappa_{1}\right)_{+} & \cdots & \left(\text { age }_{m n_{m}}-\kappa_{K}\right)_{+}
\end{array}\right]
$$

Random effects

$$
\mathbf{u}=\left[\begin{array}{c}
U_{1} \\
\vdots \\
U_{m} \\
b_{1} \\
\vdots \\
b_{K}
\end{array}\right]
$$

Random effects

Variability bars on \widehat{m} and estimated density of U_{i}

Modeling the blood lead and IQ data

For the j th measurements on the i th subject:

$$
\mathrm{IQ}_{i j}=m\left(\operatorname{lead}_{i j}\right)+b_{i}+\beta_{1} X_{i j}^{1}+\cdots+\beta_{L} X_{i j}^{L}+\epsilon_{i j}
$$

- $m(\cdot)$ is a spline
- include the population average intercept
- b_{i} is a random subject-specific intercept
- $E\left(b_{i}\right)=0$
- model assumes parallel curves
- b_{i} models within-subject correlation
- $X_{i j}^{\ell}$ is the value of the ℓ th confounder, $\ell=1, \ldots, L$

Summary (overview of semiparametric regression)

- Semiparametric philosophy
- use nonparametric models where needed
- but only where needed
- LMMs and GLMMs are fantastic tools, but (apparently) totally parametric
- By basis expansion, LMMs and GLMMs become semiparametric
- Low-rank splines eliminate computational bottlenecks
- Smoothing parameters can be estimated as ratios of variance components

Linear Smoothers

A smoother is linear if:

$$
\widehat{\mathbf{Y}}=\mathbf{H Y}
$$

- \mathbf{Y} is the data vector
- $\widehat{\mathbf{Y}}$ contains the fitted values
- \mathbf{H} is the smoother (or hat) matrix and does not depend on \mathbf{Y}

Note that

$$
\widehat{Y}_{i}=\sum_{j=1}^{n} H_{i, j} Y_{j}
$$

- $\left(H_{i, 1}, \ldots, H_{i, n}\right)$ [the i th row of \mathbf{H}] can be viewed as the finite sample kernel for estimation of $E\left(Y_{i} \mid X_{i}\right)=f\left(X_{i}\right)$

Nadaraya-Watson kernel estimator

$$
\widehat{f}\left(X_{i}\right)=\frac{\left(n h_{n}\right)^{-1} \sum_{j=1}^{n} Y_{j} K\left\{\left(X_{j}-X_{i}\right) / h_{n}\right\}}{\left(n h_{n}\right)^{-1} \sum_{j=1}^{n} K\left\{\left(X_{j}-X_{i}\right) / h_{n}\right\}}
$$

- $K(\cdot)$ is the kernel-it is symmetric about 0
- h_{n} is the bandwidth and $h_{n} \rightarrow 0$ as $n \rightarrow \infty$
- The denominator is a kernel density estimator
- Many smoother are asymptotically equivalent to a N-W estimator.
- Then we want to find the "equivalent kernel" and "equivalent bandwidth" of penalized splines
- The "equivalent kernel" and "equivalent bandwidth" can be used to compare different estimators, for example, splines, kernel regression, and local regression

The order of a kernel

K is an m th order kernel if

$$
\begin{aligned}
\int y^{k} K(y) d y & =1 \quad \text { if } k=0 \\
& =0 \quad \text { if } 0<k<m \\
& \neq 0 \quad \text { if } k=m
\end{aligned}
$$

- m must be even because K is symmetric so that all odd moments are zero.
- $m=2$ if K is nonnegative. Example: local linear regression

Kernel order and bias

Assume that X_{1}, \ldots, X_{n} are iid uniform(0,1). Then for the numerator we have

$$
\begin{aligned}
& E\left[\left(n h_{n}\right)^{-1} \sum_{j=1}^{n} Y_{j} K\left\{h_{n}^{-1}\left(X_{j}-X_{i}\right)\right\}\right]= \\
&\left(n h_{n}\right)^{-1} \sum_{j=1}^{n} f\left(X_{j}\right) K\left\{h^{-1}\left(X_{j}-X_{i}\right)\right\} \approx \\
& h_{n}^{-1} \int f(x) K\left\{h^{-1}\left(x-X_{i}\right)\right\} d x= \\
& \int f\left(x-h_{n} z\right) K(z) d z \approx \\
& f(x)+h_{n}^{m} f^{(m)}(x) \int z^{m} K(z) d z
\end{aligned}
$$

- The bias is of order $O\left(h_{n}^{m}\right)$ as $n \rightarrow \infty$

Framework for large-sample theory of penalized splines

- p-degree spline model:

$$
f(x)=\sum_{k=1}^{K+p} b_{k} B_{k}(x), x \in(0,1)
$$

- p th degree B-spline basis:

$$
\left\{B_{k}(x): k=1, \ldots, K+p\right\}
$$

- knots:

$$
\kappa_{0}=0<\kappa_{1}<\ldots<\kappa_{K}=1
$$

B－splines

Summary of main results

- Penalized spline estimators are approximately binned Nadaraya-Watson kernel estimators
- The order of the N-W kernel depends solely on m (order of penalty)
- this was surprising to us
- order of kernel is $2 m$ in the interior
- order is m at boundaries

Summary of main results, continued

- The spline degree p does not affect the asymptotic distribution, but
- p determines the type of binning and the minimum rate at which $K \rightarrow \infty$
- $p=0 \Rightarrow$ usual binning
- $p=1 \Rightarrow$ linear binning

Summary of main results, continued

- a higher value of p means that less knots are needed
- because there is less modeling bias
- modeling bias $=$ binning bias
- The rate at which $K \rightarrow \infty$ has no effect
- except that it must be above a minimum rate

Penalized least-squares

- Penalized least-squares minimizes

$$
\sum_{i=1}^{n}\left\{y_{i}-\sum_{k=1}^{K+p} \widehat{b}_{k} B_{k}\left(x_{i}\right)\right\}^{2}+\lambda \sum_{k=m+1}^{K+p}\left\{\Delta^{m}\left(\widehat{b}_{k}\right)\right\}^{2}
$$

- $\Delta b_{k}=b_{k}-b_{k-1}$ and $\Delta^{m}=\Delta\left(\Delta^{m-1}\right)$
- $m=1 \Rightarrow$ constant functions are unpenalized
- $m=2 \Rightarrow$ linear functions are unpenalized

Initial assumptions

Assume:

- $x_{1}=1 / n, x_{2}=2 / n, \ldots, x_{n}=1$
- $\kappa_{0}=0, \kappa_{1}=1 / K, \kappa_{2}=2 / K, \ldots, \kappa_{K}=1$
- assume that $n / K:=M$ is an integer

Estimating equations

$$
(\underbrace{B_{p}^{T} B_{p}}_{\mathrm{B}-\text { splines }}+\underbrace{\lambda}_{\rightarrow \infty} \underbrace{D_{m}^{T} D_{m}}_{\text {penalty }}) \hat{\mathbf{b}}=\underbrace{\left(B_{p}^{T} \mathbf{Y}\right)}_{\text {binned } Y_{\mathrm{s}}}
$$

After dividing by M :

$$
(\underbrace{\Sigma_{p}}_{O(1)}+\underbrace{\lambda}_{\rightarrow \infty} \underbrace{D_{m}^{T} D_{m}}_{O(1)}) \hat{\mathbf{b}}=\underbrace{\left(B_{p}^{T} \mathbf{Y} / M\right)}_{\text {bin averages: } O_{P}(1)}
$$

Solving for \hat{b} : first step

From previous slide:

$$
(\underbrace{\Sigma_{p}}_{O(1)}+\underbrace{\lambda}_{\rightarrow \infty} \underbrace{D_{m}^{T} D_{m}}_{O(1)}) \hat{\mathbf{b}}=\underbrace{\left(B_{p}^{T} \mathbf{Y} / M\right)}_{\text {bin averages: } O_{P}(1)}
$$

We will (approximately) invert $\Sigma_{p}+\lambda D_{m}^{T} D_{m}$ (symmetric, banded)

Solving for $\hat{\mathrm{b}}$

Inverting: $\Sigma_{p}+\lambda D_{m}^{T} D_{m}$

$$
q:=\max (m, p)=(\# \text { of bands above diagonal })
$$

Typical column of $\Sigma_{p}+\lambda D_{m}^{T} D_{m}$ is

$$
\left(0, \cdots, 0, \omega_{q}, \cdots, \omega_{1}, \omega_{0}, \omega_{1}, \cdots, \omega_{q}, 0, \cdots, 0\right)^{\top}
$$

The polynomial that determines the asymptotic

 distributionDefine $P(x)$ as
$P(x)=\omega_{q}+\omega_{q-1} x+\cdots+\omega_{0} x^{m}+\cdots+\omega_{q-1} x^{2 q-1}+\omega_{q} x^{2 q}$.
ρ is a root of $P(x)$ and

$$
\mathbf{T}_{i}(\rho)=\left(\rho^{|1-i|}, \cdots, \rho, 1, \rho, \cdots, \rho^{|K-i|}\right)
$$

$\mathbf{T}_{i}(\rho)$ orthogonal to columns of $\left(\Sigma_{p}+\lambda D_{m}^{T} D_{m}\right)$ except

- first and last q
- j th such that $|i-j| \leq q$

Solving for $\hat{\mathbf{b}}$: next step

We can find a_{1}, \ldots, a_{q} and $\rho_{1}, \ldots, \rho_{q}$ such that
$\mathbf{S}_{i}=\sum_{k=1}^{q} a_{k} \mathbf{T}_{i}\left(\rho_{k}\right)$ is orthogonal to all columns of
$\left(\Sigma_{p}+\lambda D_{m}^{T} D_{m}\right)$ except
(1) i th
(2) first and last q

For each $k, \rho_{k} \rightarrow 0$ or $\left|\rho_{k}\right| \uparrow 1$ sufficiently slowly, so \mathbf{S}_{i} is asymptotically orthogonal to all columns except the i th

Finding \widehat{b}_{i}

From earlier slides:

$$
\left(\Sigma_{p}+\lambda D_{m}^{T} D_{m}\right) \hat{\mathbf{b}}=\left(B_{p}^{T} \mathbf{Y} / M\right)
$$

\mathbf{S}_{i} is (asymptotically) orthogonal to all columns of $\left(\Sigma_{p}+\lambda D_{m}^{T} D_{m}\right)$ except the i th

Therefore

$$
b_{i} \approx \mathbf{S}_{i}\left(B_{p}^{T} \mathbf{Y} / M\right)
$$

$\therefore \mathbf{S}_{i}$ is (almost) the finite-sample kernel

Roots of $P(x)$

Need explicit expression for \mathbf{S}_{i}, which depends on the roots of:

$$
P(x)=\omega_{q}+\omega_{q-1} x+\cdots+\omega_{0} x^{m}+\cdots+\omega_{q-1} x^{2 q-1}+\omega_{q} x^{2 q} .
$$

- No roots have $|\rho|=1$ or $\rho=0$.
- If ρ is a root, then so is ρ^{-1}.
- So roots come in pairs $\left(\rho, \rho^{-1}\right)$.
- q roots have $|\rho|<1$
- For previous page: q roots have $|\rho|<1$
- of these, m of them converges upwards to 1
- if $q>m$, then $q-m$ of them converge to 0

Asymptotic kernel (interior): m even

If m is even, then

$$
\begin{aligned}
H_{m}(x) & =\sum_{i=1}^{m / 2}\left\{\frac{\alpha_{2 i}}{m} \exp \left(-\alpha_{2 i}|x|\right) \cos \left(\beta_{2 i}|x|\right)\right. \\
+ & \left.\frac{\beta_{2 i}}{m} \exp \left(-\alpha_{2 i}|x|\right) \sin \left(\beta_{2 i}|x|\right)\right\}
\end{aligned}
$$

$\alpha_{k}+\beta_{k} \sqrt{-1}, i=1, \ldots, m$, are

- roots of $x^{2 m}+(-1)^{m}=0$
- with $\alpha_{i}>0$ (so magnitude >1)

Asymptotic kernel (interior): m odd

If m is odd, then

$$
\begin{gathered}
H_{m}(x)=\frac{\exp (-|x|)}{2 m}+\sum_{i=1}^{\frac{m-1}{2}}\left\{\frac{\alpha_{2 i}}{m} \exp \left(-\alpha_{2 i}|x|\right) \cos \left(\beta_{2 i}|x|\right)\right. \\
\left.+\frac{\beta_{2 i}}{m} \exp \left(-\alpha_{2 i}|x|\right) \sin \left(\beta_{2 i}|x|\right)\right\}
\end{gathered}
$$

Asymptotic kernel (interior)

For any m :

$$
\int x^{k} H_{m}(x) d x=0 \quad \text { for } \quad k=1, \ldots, 2 m-1
$$

and

$$
\int H_{m}(x) d x=1
$$

Equivalent kernels for $m=1,2$, and 3 (interior)

CLT for penalized splines

Under assumptions (later) for any $x \in(0,1)$ [interior points], we have

$$
n^{\frac{2 m}{4 m+1}}\{\hat{\mu}(x)-\mu(x)\} \rightarrow N\{\tilde{\mu}(x), V(x)\}, \text { as } n \rightarrow \infty
$$

where

$$
\tilde{\mu}(x)=\frac{1}{(2 m)!} \mu^{(2 m)}(x) h_{0}^{2 m} \int t^{2 m} H_{m}(t) d t
$$

and

$$
V(x)=h_{0}^{-1} \sigma^{2}(x) \int H_{m}^{2}(t) d t
$$

Assumptions

- The assumptions of the theorem confirm some folklore

Some folklore: \# knots

- Folklore:

Number of knots not important, provided large enough.

- Confirmation:
$K \sim K_{0} n^{\gamma}$, where
- $K_{0}>0$
- $\gamma>2 m /\{\ell(4 m+1)\}$
- $\ell:=\min (2 m, p+1)$

Some folklore: penalty parameter

- Folklore:

Value of the penalty parameter crucial.

- Confirmation:
$\lambda \sim(K h)^{2 m}$ where $h \sim h_{0} n^{-\frac{1}{4 m+1}}$

Some folklore: bias

- Folklore:

Modeling bias small.

- Confirmation:

Modeling bias does not appear in asymptotic bias

Comparison with Local Polynomial Regression

- Local polynomial regression (odd degree):
- same order kernel at boundary and interior
- order $=$ degree +1
- Penalized spline estimation
- Kernel order lower at boundary
- $2 m$ in interior and m in boundary region
- Why haven't we noticed serious problems when using splines?

Comparison with Local Linear Regression

Let's look at the choices most used in practice
Local linear:

- 2nd order kernel everywhere

Penalized spline with $m=2$:

- 2nd order kernel at boundary
- 4th order kernel in interior

Some more recent work

- Wang, Shen, and Ruppert (2011, EJS) obtain the asymptotic kernel using Green's function
- Luo, Li, and Ruppert (2010, arXiv) show that a bivariate P -spline is asymptotically equivalent to a $\mathrm{N}-\mathrm{W}$ estimator with a product kernel
- they introduce a modified penalty to obtain this result
- the new penalty also allows a much faster algorithm

End of Talk

Thanks for your attention

