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Two parts

• Old: overview of the book Semiparametric Regression by
Ruppert, Wand, and Carroll (2003)

• Still an active area: 314 papers referenced in Semiparametric

Regression During 2003–2007 (EJS, 2009)

• New: asymptotics of penalized splines



Intellectual impairment and blood lead

Example I (courtesy of Rich Canfield, Nutrition, Cornell)
• blood lead and intelligence measured on children
• Question: how do low doses of lead affect IQ?

• important – doses decreasing since lead no longer added to
gasoline

• several IQ measurements per child
• so longitudinal

• nine “confounders”
• e. g., maternal IQ
• need to adjust for them

• effect of lead appears nonlinear
• important conclusion



Dose-response curve

0 5 10 15 20 25 30 35
60

70

80

90

100

110

120

130

lead (microgram/deciliter)

IQ

Quadratic 

Spline 

Thanks to Rich Canfield for data and estimates



Spinal bone mineral density example

Example II (in Ruppert, Wand, Carroll (2003), Semiparametric
Regression

• age and spinal bone mineral density measured on girls and
young women

• several measurements on each subject
• increasing but nonlinear curves



Spinal bone mineral density data
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What is needed to accommodate these examples

We need a model with
• potentially many variables
• possibility of nonlinear effects
• random subject-specific effects

The model should be one that can be fit with readily available
software such as SAS, Splus, or R.



Underlying philosophy

1 minimalist statistics
• keep it as simple as possible

• but need to accommodate features such as correlated data and

confounders

2 build on classical parametric statistics

3 modular methodology
• so we can add components to accommodate special features in

data sets



Outline of the approach

• Start with linear mixed model
• allows random subject-specific effects
• fine for variables that enter linearly

• Expand the basis for those variables that have nonlinear
effects

• we will use a spline basis
• treat the spline coefficients as random effects to induce

empirical Bayes shrinkage = smoothing

• End result
• linear mixed model from a software perspective, but
• nonlinear from a modeling perspective



Example: pig weights (random effects)

Example III [from Ruppert, Wand, and Carroll (2003)]
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Random intercept model

Yij = (β0 + b0i) + β1weekj

• Yij = weight of ith pig at the jth week
• β0 is the average intercept for pigs
• b0i is an offset for ith pig
• So (β0 + b0i) is the intercept for the ith pig



Are random intercepts enough?

Example III
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Random lines model

Yij = (β0 + b0i) + (β1 + b1i) weekj

• β1 is the average slope
• bii is an adjustment to slope of the ith pig
• So (β1 + b1i) is the slope for the ith pig
• b0i and b1i seem positively correlated

• makes sense: faster growing pigs should be larger at the start
of data collection



General form of linear mixed model

• Model is:
Yi = XT

i βββ + ZT
i b + εi

• Xi = (Xi1, . . . ,Xip) and Zi = (Zi1, . . . ,Ziq) are vectors
of predictor variables

• βββ = (β1, . . . , βp) is a vector of fixed effects
• b = (b1, . . . , bq) is a vector of random effects

• b ∼ MVN{0,Σ(θ)}
• θ is a vector of variance components



Estimation in linear mixed models

• βββ and θθθ are the parameter vectors
• estimated by

• ML (maximum likelihood), or
• REML (maximum likelihood with degrees of freedom

correction)

• b is a vector of random variables
• predicted by a BLUP (Best linear unbiased predictor)
• BLUP is shrunk towards zero (mean of b)
• amount of shrinkage depends on θ̂θθ



Estimation in linear mixed models, cont.

• Random intercepts example:

Yij = (β0 + b0i) + β1weekj

• high variability among the intercepts ⇒ less shrinkage of b0i

towards 0
• extreme case: intercepts are fixed effects

• low variability among the intercepts ⇒ more shrinkage
• extreme case: common intercept (a simpler fixed effects

model)



Comparison between fixed and random effects modeling

• fixed effects models allow only the two extremes:
• no shrinkage

• common intercept

• mixed effects modeling allows all possibilities between

these extremes



Splines

• polynomials are excellent for local approximation of

functions

• in practice, polynomials are relatively poor at global

approximation
• a spline is made by joining polynomials together

• takes advantage of polynomials’ strengths without inheriting

their weaknesses

• splines have "maximal smoothness"



Piecewise linear spline model

“Positive part” notation:

x+ = x, if x > 0 (1)
= 0, if x ≤ 0 (2)

Linear spline:

m(x) =
{
β0 + β1x

}
+
{
b1(x − κ1)+ + · · ·+ bK (x − κK )+

}

• κ1, . . . , κK are “knots”
• b1, . . . , bK are the spline coefficients



Linear “plus” function with κ = 1
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Linear spline

m(x) = β0 + β1x + b1(x − κ1)+ + · · ·+ bK (x − κK )+

• slope jumps by bk at κk , k = 1, . . . ,K



Fitting LIDAR data with plus functions
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Generalization: higher degree splines

m(x) = β0 + β1x + · · ·+ βpxp

+b1(x − κ1)p
+ + · · ·+ bK (x − κK )p

+

• pth derivative jumps by p! bk at κk

• first p − 1 derivatives are continuous



LIDAR data: ordinary Least Squares
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Penalized least-squares

• Use matrix notation:

m(Xi) = β0 + β1Xi + · · ·+ βpXp
i

+b1(Xi − κ1)p
+ + · · ·+ bK (Xi − κK )p

+

= XT
i βββX + BT(Xi)b

• Minimize
n∑

i=1

{
Yi − (XT

i βββX + BT(Xi)b)
}2

+ λbTDb.



Penalized least-squares, cont.

• From previous slide: minimize
n∑

i=1

{
Yi − (XT

i βββX + BT(Xi)b)
}2

+ λbTDb.

• λbTDb is a penalty that prevents overfitting
• D is a positive semidefinite matrix

• so the penalty is non-negative
• Example:

D = I

• λ controls that amount of penalization
• the choice of λ is crucial



Penalized Least Squares
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Selecting λ

To choose λ use:

1 one of several model selection criteria:
• cross-validation (CV)

• generalized cross-validation (GCV)

• AIC

• CP

2 ML or REML in mixed model framework
• convenient because one can add other random effects

• also can use standard mixed model software

3 Bayesian MCMC



Return to spinal bone mineral density study

age (years)

sp
in

al
 b

on
e 

m
in

er
al

 d
en

si
ty

10 15 20 25

0.
6

0.
8

1.
0

1.
2

1.
4

SBMDi,j = Ui + m(agei,j) + εi,j ,

i = 1, . . . ,m = 230, j = i, . . . ,ni .



Fixed effects

X =



1 age11
...

...
1 age1n1...

...
1 agem1
...

...
1 agemnm





Random effects

Z =



1 · · · 0 (age11 − κ1)+ · · · (age11 − κK )+
... . . . ...

... . . . ...
1 · · · 0 (age1n1 − κ1)+ · · · (age1n1 − κK )+
...

...
...

... . . . ...
0 · · · 1 (agem1 − κ1)+ · · · (agem1 − κK )+
... . . . ...

... . . . ...
0 · · · 1 (agemnm − κ1)+ · · · (agemnm − κK )+





Random effects

u =



U1
...

Um
b1
...

bK





Random effects
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Modeling the blood lead and IQ data

For the jth measurements on the ith subject:

IQij = m(leadij) + bi + β1X 1
ij + · · ·+ βLXL

ij + εij

• m(·) is a spline
• include the population average intercept

• bi is a random subject-specific intercept
• E(bi) = 0
• model assumes parallel curves
• bi models within-subject correlation

• X `
ij is the value of the `th confounder, ` = 1, . . . ,L



Summary (overview of semiparametric regression)

• Semiparametric philosophy
• use nonparametric models where needed
• but only where needed

• LMMs and GLMMs are fantastic tools, but (apparently)
totally parametric

• By basis expansion, LMMs and GLMMs become
semiparametric

• Low-rank splines eliminate computational bottlenecks
• Smoothing parameters can be estimated as ratios of
variance components



Linear Smoothers

A smoother is linear if:

Ŷ = HY

• Y is the data vector
• Ŷ contains the fitted values
• H is the smoother (or hat) matrix and does not depend on Y

Note that
Ŷi =

n∑
j=1

Hi,jYj

• (Hi,1, . . . ,Hi,n) [the ith row of H] can be viewed as the finite
sample kernel for estimation of E(Yi |Xi) = f (Xi)



Nadaraya-Watson kernel estimator

f̂ (Xi) =
(nhn)−1∑n

j=1 YjK
{

(Xj −Xi)/hn
}

(nhn)−1∑n
j=1 K

{
(Xj −Xi)/hn

}
• K (·) is the kernel—it is symmetric about 0
• hn is the bandwidth and hn → 0 as n →∞
• The denominator is a kernel density estimator
• Many smoother are asymptotically equivalent to a N-W
estimator.

• Then we want to find the “equivalent kernel” and “equivalent
bandwidth” of penalized splines

• The “equivalent kernel” and “equivalent bandwidth” can be
used to compare different estimators, for example, splines,
kernel regression, and local regression



The order of a kernel

K is an mth order kernel if∫
ykK (y)dy = 1 if k = 0

= 0 if 0 < k < m
6= 0 if k = m

• m must be even because K is symmetric so that all odd
moments are zero.

• m = 2 if K is nonnegative. Example: local linear
regression



Kernel order and bias

Assume that X1, . . . ,Xn are iid uniform(0,1). Then for the
numerator we have

E

(nhn)−1
n∑

j=1
YjK

{
h−1

n (Xj −Xi)
} =

(nhn)−1
n∑

j=1
f (Xj)K

{
h−1(Xj −Xi)

}
≈

h−1
n

∫
f (x)K

{
h−1(x −Xi)

}
dx =∫

f (x − hnz)K (z)dz ≈

f (x) + hm
n f (m)(x)

∫
zmK (z)dz

• The bias is of order O(hm
n ) as n →∞



Framework for large-sample theory of penalized splines

• p-degree spline model:

f (x) =
K+p∑
k=1

bkBk(x), x ∈ (0, 1)

• pth degree B-spline basis:

{Bk(x) : k = 1, . . . ,K + p}

• knots:
κ0 = 0 < κ1 < . . . < κK = 1



B-splines
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Summary of main results

• Penalized spline estimators are approximately binned

Nadaraya-Watson kernel estimators
• The order of the N-W kernel depends solely on m (order
of penalty)

• this was surprising to us

• order of kernel is 2m in the interior

• order is m at boundaries



Summary of main results, continued

• The spline degree p does not affect the asymptotic

distribution, but

• p determines the type of binning and the minimum rate at

which K →∞

• p = 0⇒ usual binning

• p = 1⇒ linear binning



Summary of main results, continued

• a higher value of p means that less knots are needed

• because there is less modeling bias

• modeling bias = binning bias

• The rate at which K →∞ has no effect

• except that it must be above a minimum rate



Penalized least-squares

• Penalized least-squares minimizes

n∑
i=1

yi −
K+p∑
k=1

b̂kBk(xi)


2

+ λ
K+p∑

k=m+1
{∆m(b̂k)}2,

• ∆bk = bk − bk−1 and ∆m = ∆(∆m−1)

• m = 1⇒ constant functions are unpenalized

• m = 2⇒ linear functions are unpenalized



Initial assumptions

Assume:

• x1 = 1/n, x2 = 2/n, . . . , xn = 1

• κ0 = 0, κ1 = 1/K , κ2 = 2/K , . . . , κK = 1

• assume that n/K := M is an integer



Estimating equations

( BT
p Bp︸ ︷︷ ︸

B−splines

+ λ︸︷︷︸
→∞

DT
mDm︸ ︷︷ ︸

penalty

) b̂ =
(
BT

p Y
)

︸ ︷︷ ︸
binned Y s

After dividing by M :

( Σp︸︷︷︸
O(1)

+ λ︸︷︷︸
→∞

DT
mDm︸ ︷︷ ︸
O(1)

) b̂ =
(
BT

p Y/M
)

︸ ︷︷ ︸
bin averages: OP(1)



Solving for b̂: first step

From previous slide:

( Σp︸︷︷︸
O(1)

+ λ︸︷︷︸
→∞

DT
mDm︸ ︷︷ ︸
O(1)

) b̂ =
(
BT

p Y/M
)

︸ ︷︷ ︸
bin averages: OP(1)

We will (approximately) invert Σp + λDT
mDm (symmetric,

banded)



Solving for b̂

Inverting: Σp + λDT
mDm

q := max(m, p) = (# of bands above diagonal)

Typical column of Σp + λDT
mDm is

(0, · · · , 0, ωq, · · · , ω1, ω0, ω1, · · · , ωq, 0, · · · , 0)T



The polynomial that determines the asymptotic
distribution

Define P(x) as

P(x) = ωq + ωq−1x + · · ·+ ω0xm + · · ·+ ωq−1x2q−1 + ωqx2q.

ρ is a root of P(x) and

Ti(ρ) =
(
ρ|1−i|, · · · , ρ, 1, ρ, · · · , ρ|K−i|

)
Ti(ρ) orthogonal to columns of (Σp + λDT

mDm) except
• first and last q
• jth such that |i − j| ≤ q



Solving for b̂: next step

We can find a1, . . . , aq and ρ1, . . . , ρq such that

Si = ∑q
k=1 akTi(ρk) is orthogonal to all columns of

(Σp + λDT
mDm) except

1 ith

2 first and last q

For each k, ρk → 0 or |ρk | ↑ 1 sufficiently slowly, so Si is

asymptotically orthogonal to all columns except the ith



Finding b̂i

From earlier slides:

(Σp + λDT
mDm) b̂ =

(
BT

p Y/M
)

Si is (asymptotically) orthogonal to all columns of
(Σp + λDT

mDm) except the ith

Therefore
bi ≈ Si

(
BT

p Y/M
)

∴ Si is (almost) the finite-sample kernel



Roots of P(x)

Need explicit expression for Si , which depends on the roots of:

P(x) = ωq + ωq−1x + · · ·+ ω0xm + · · ·+ ωq−1x2q−1 + ωqx2q.

• No roots have |ρ| = 1 or ρ = 0.

• If ρ is a root, then so is ρ−1.

• So roots come in pairs (ρ, ρ−1).

• q roots have |ρ| < 1



Roots of P(x)

• For previous page: q roots have |ρ| < 1

• of these, m of them converges upwards to 1

• if q > m, then q −m of them converge to 0



Asymptotic kernel (interior): m even

If m is even, then

Hm(x) =
m/2∑
i=1

{
α2i

m exp(−α2i |x|) cos(β2i |x|)

+β2i

m exp(−α2i |x|) sin(β2i |x|)
}

αk + βk
√
−1, i = 1, . . . ,m, are

• roots of x2m + (−1)m = 0

• with αi > 0 (so magnitude > 1)



Asymptotic kernel (interior): m odd

If m is odd, then

Hm(x) = exp(−|x|)
2m +

m−1
2∑

i=1

{
α2i

m exp(−α2i |x|) cos(β2i |x|)

+β2i

m exp(−α2i |x|) sin(β2i |x|)
}



Asymptotic kernel (interior)

For any m:

∫
xkHm(x)dx = 0 for k = 1, . . . , 2m − 1

and ∫
Hm(x)dx = 1



Equivalent kernels for m = 1, 2, and 3 (interior)
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CLT for penalized splines

Under assumptions (later) for any x ∈ (0, 1) [interior points],
we have

n
2m

4m+1{µ̂(x)− µ(x)} → N {µ̃(x),V (x)} , as n →∞,

where
µ̃(x) = 1

(2m)!µ
(2m)(x)h2m

0

∫
t2mHm(t)dt

and
V (x) = h−1

0 σ2(x)
∫

H 2
m(t)dt



Assumptions

• The assumptions of the theorem confirm some folklore



Some folklore: # knots

• Folklore:

Number of knots not important, provided large enough.

• Confirmation:
K ∼ K0nγ, where

• K0 > 0

• γ > 2m/ {`(4m + 1)}

• ` := min(2m, p + 1)



Some folklore: penalty parameter

• Folklore:

Value of the penalty parameter crucial.

• Confirmation:

λ ∼ (Kh)2m where h ∼ h0n−
1

4m+1



Some folklore: bias

• Folklore:

Modeling bias small.

• Confirmation:

Modeling bias does not appear in asymptotic bias



Comparison with Local Polynomial Regression

• Local polynomial regression (odd degree):
• same order kernel at boundary and interior

• order = degree + 1

• Penalized spline estimation
• Kernel order lower at boundary

• 2m in interior and m in boundary region

• Why haven’t we noticed serious problems when using

splines?



Comparison with Local Linear Regression

Let’s look at the choices most used in practice

Local linear:

• 2nd order kernel everywhere

Penalized spline with m = 2:
• 2nd order kernel at boundary
• 4th order kernel in interior



Some more recent work

• Wang, Shen, and Ruppert (2011, EJS) obtain the

asymptotic kernel using Green’s function
• Luo, Li, and Ruppert (2010, arXiv) show that a bivariate
P-spline is asymptotically equivalent to a N-W estimator
with a product kernel

• they introduce a modified penalty to obtain this result

• the new penalty also allows a much faster algorithm



End of Talk

Thanks for your attention
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