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Outline

• Multiple functional time series.
• Two examples.

• Yield curves in four economies
• Local field potentials measured in rats’ brains

• Bayesian dynamic factor model.
• Constrained spline modeling of factor loading curves
• Markov switching model for the effects of changes in US yield

curves on the yield curves of the other economies
• Stochastic volatility
• Time-frequency analysis of the local field potentials.



A Major Theme of This Talk

In my experience, a Bayesian analysis is the best approach to a

complex problem with many latent variables.

• I am not a Bayesian, but I use Bayesian methodology.

– Tom Loredo, astrostatistician



Data

Assume that we observe multiple time series of functional data:

Y (c)
t (τ).

(a) For each c and t, Y (c)
t (τ) is a function of τ ∈ T ;

(b) For each c and τ , Y (c)
t (τ) is a time series for t = 1, . . . ,T ; and

(c) For each t and τ , Y (c)
t (τ) is a multivariate observation with

outcomes c = 1, . . . ,C .

• T ⊆ Rd is a compact set.

• d = 1 and T = [0, 1] are typical.



Example: yield curves

First example:

Y (c)
t (τ) is the yield curve (function of maturity τ) in tth week and

cth economy.

• 1 unit of currency invested in week t will grow to

exp{(τ/12)Y (c)
t (τ)} units in τ months.

• Therefore, Y (c)
t (τ) is the average yearly interest rate that is

earned on a zero-coupon bond maturing in τ months and

purchased during the tth week.



Multi-economy yield curves

We have yield curves from

1 Federal Reserve (Fed)

2 Bank of England (BOE)

3 European Central Bank (ECB)

4 Bank of Canada (BOC)

So C = 4.



Yield Curves on Two Dates
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Example: time-frequency analysis

• Suppose we observe C times series.

• Bin the time dimension into T bins.

• Within each bin, and for each time series, compute the

Fourier transform to obtain a function of frequency τ .

• t is the bin index

• Y (c)
t (τ) is the smoothed Fourier transform (spectrum) of the

cth series in the tth bin.



Local Field Potential Data

Our example: local field potential (LFP) data collected on rats at
two brain locations.

• A pair of electrodes is placed in each brain region.

• In feature binding, a rat’s brain must amalgamate distinct
sensory information into a single neural representation.

• There is interest in the synchronization between the regions,
in particular, whether

• synchronization is increased during feature binding.

• c = 1 or 2 indicates brain region.

• t is the bin index.

• τ is frequency.



MFDLM

Define
Yt(τ) =

[
Y (1)

t (τ),Y (2)
t (τ), . . . ,Y (C)

t (τ)
]′
.

The multivariate functional dynamic linear model (MFDLM) is:

Yt(τ) = F(τ)βt + εt(τ),
[
εt(τ)

∣∣Et
] indep∼ N (0,Et)

βt = Xtθt + νt ,
[
νt
∣∣Vt

] indep∼ N (0,Vt)

θt = Gtθt−1 + ωt ,
[
ωt
∣∣Wt

] indep∼ N (0,Wt)∫
T F′(τ)F(τ) dτ = IKC×KC for identifiability.

We will look more closely at each of the four equations in this
model.



Factor Model

The first equation is:

Yt(τ)︸ ︷︷ ︸
C×1

= F(τ)︸︷︷︸
C×KC

βt︸︷︷︸
KC×1

+εt(τ),
[
εt(τ)

∣∣Et
] indep∼ N (0,Et)

• The KC columns of F(τ) are factor loading curves, K for each
outcome.

• βt contains KC factors, K for each outcome.

F(τ) =



F(1)(τ)︸ ︷︷ ︸
1×K

0 . . . 0

0 F(2)(τ) · · · 0

0 0
. . . 0

0 0 · · · F(C)(τ)


and βt =


β

(1)
t︸︷︷︸

K×1
...

β
(C)
t





Factor Model, continued

From the previous frame:

Yt(τ)︸ ︷︷ ︸
C×1

= F(τ)︸ ︷︷ ︸
C×KC

βt︸︷︷︸
KC×1

+εt(τ),
[
εt(τ)

∣∣Et
] indep∼ N (0,Et)

The covariance matrix Et could be

• constant (independent of t), or

• might follow a stochastic volatility model.



Covariates

The second equation is:

βt︸︷︷︸
KC×1

= Xt︸︷︷︸
KC×p

θt︸︷︷︸
p×1

+νt ,
[
νt
∣∣Vt

] indep∼ N (0,Vt)

• Xt is a matrix of known covariates that might affect βt .

• θt contains the p regression coefficients.

• Again, the covariance matrix Vt could be constant.



Dynamic Model for Regression Coefficients

The third equation is what makes the model dynamic and is:

θt︸︷︷︸
p×1

= Gt︸︷︷︸
p×p

θt−1︸ ︷︷ ︸
p×1

+ωt ,
[
ωt
∣∣Wt

] indep∼ N (0,Wt).

Gt is an evolution matrix.

• Gt might be independent of t or could follow its own dynamic

model.

• If Gt ≡ G, then θt is a VAR(1) process.



Orthonormal Factor Loading Curves

The fourth equation is:

∫
T

F′(τ)F(τ) dτ = IKC×KC for identifiability.

This is a typical constraint used in factor models.

• For example, in PCA.



Modeling the factor loading curves

We model the factor loading curves with splines:

fk(τ) = φ′(τ)dk

• fk(τ) is the loading curve for the kth factor and for all
outcomes.

• for simplicity, in our examples we assume the same loading

curves across all outcomes

• φ(τ) is a vector of spline basis functions.

• dk is a vector of spline coefficients for the kth loading curve.



Spline Penalty

We use a penalty

P(dk) = d ′kΩφdk =
∫
τ∈T

[
f̈k(τ)

]2
dτ (1)

In our Bayesian approach, the penalty is implemented by an
O’Sullivan spline basis (Wand and Ormerod, 2008) .

• The first two basis functions are 1 (constant) and x.

• The remaining basis functions are orthogonal to the first two.
(Nonlinear)

• Penalty (1) is equal to the sum of squared coefficients of the
nonlinear basis functions.

• The prior on dk is N (0, diag(106, 106, λ−1
k , . . . , λ−1

k )).



Selecting a Penalty Parameter

Three common methods for selecting tuning parameter:

1 CV, GCV, AIC, or Mallow Cp.

2 Mixed model/REML (empirical Bayes).

3 Fully Bayes.

• There was been considerable research comparing 1. and 2.
starting with Wahba (1985).

• See Krivobokov (2013) for a review and recent results.

• The tuning parameter selected by 1. is more variable and more
likely to undersmooth compared to 2. or 3.

• Approach 3. accounts for uncertainty in the smoothing
parameter when making inference about other parameters.



Fitting the MFDLM

We used a rather standard approach to a Bayesian analysis:

• Noninformative priors mostly, but

• hierarchical priors for the splines

• Gibbs sampling, with

• Metropolis steps where needed.



Yield Curves

There is an extensive literature on yield curve modeling:

• Nelson-Siegel (1987): three-parameter parametric model

• Svensson (1994): four-parameter extension of Nelson-Siegel

model

• Hays et al. (2012): functional dynamic model—for single

economies

These will be discussed in more detail later.



Yield Curves: Advantages of MFDLM

With the multivariate functional dynamic linear model it is easy to:

• handle multiple economies, especially interactions between

them,

• add a hidden Markov model for regime-switching,

• add covariates, e.g., indicators of changes in government

policies,

• allow conditional heteroscedasticity, e.g., with stochastic

volatility models.



Common loading curves

We assume common functional loading curves, f1, . . . , fK , so that

the conditional expectation of the yield curve for economy c,

conditional on past information, is

µ
(c)
t (τ) ≡

K∑
k=1

β
(c)
k,t fk(τ)



Estimates of Common Loading Curves

0 50 100 150 200 250 300 350

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Common Factor Loading Curves

Maturity (months)

Y
ie

ld
 (

%
)

k = 1
k = 2
k = 3
k = 4

• k = 1: parallel shifts
• k = 1: changes in slope
• k = 3: changes in convexity (curvature)



Common Trend Hidden Markov Model

Recall the general form of our model:

Yt(τ) = F(τ)βt + εt(τ),
[
εt(τ)

∣∣Et
] indep∼ N (0,Et)

βt = Xtθt + νt ,
[
νt
∣∣Vt

] indep∼ N (0,Vt)

θt = Gtθt−1 + ωt ,
[
ωt
∣∣Wt

] indep∼ N (0,Wt)∫
T

F′(τ)F(τ) dτ = IKC×KC for identifiability.

We will eliminate θt by assuming that Xt is the identity matrix

and Vt = 0 so that βt = θt .



The Dynamic Model

c = 1 is the Fed. We will investigate how this dominant economy

affects the other three economies. Our model is

∆β(1)
k,t = ω

(1)
k,t (1)

∆β(c)
k,t = s(c)

k,t (γ(c)
k ∆β(1)

k,t ) + ω
(c)
k,t c = 2, . . . ,C (2)

In equation (1):

• ∆ is the differencing operator

• The ω(c)
k,t are AR(r) processes

• so β(1)
k,t is an ARIMA(1,1,0) process



The Dynamic Model

From the previous frame:

∆β(1)
k,t = ω

(1)
k,t (1)

∆β(c)
k,t = s(c)

k,t (γ(c)
k ∆β(1)

k,t ) + ω
(c)
k,t c = 2, . . . ,C (2)

In the equation (2):

•
{

s(c)
k,t : t = 1, . . . ,T

}
is a discrete Markov chain with states

{0, 1}.

• s(c)
k,t = 1 implies that at time t, the kth factor for the cth
economy is affected by the kth factor of the US economy.

• γ
(c)
k ∈ R is the economy-specific slope term for the kth factor.



The Dynamic Model

From the previous frame:

∆β(1)
k,t = ω

(1)
k,t (3)

∆β(c)
k,t = s(c)

k,t (γ(c)
k ∆β(1)

k,t ) + ω
(c)
k,t c = 2, . . . ,C (4)

• This is the autoregressive regime switching model of Albert

and Chib (1993) and McCulloch and Tsay (1993).

• Define q(c)
ii′,k to be the probability of switching from state i to

state i ′, i, i ′ ∈ {0, 1}.



Posterior estimates of P(s(c)
k,t = 1).
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We see that changes in the first factor for the US economy are
associated with similar changes in the first factor for the other
three economies, especially BOE and BOC.



Stochastic Volatility

Recall the dynamic model:

∆β(c)
k,t = s(c)

k,t (γ(c)
k ∆β(1)

k,t ) + ω
(c)
k,t , c = 2, . . . ,C .

We modeled the noise ω(c)
k,t as AR(r) with stochastic volatility:

ω
(c)
k,t =

r∑
i=1

ψ
(c)
k,i ω

(c)
k,t−i + σk,(c),t z(c)

k,t

where, following Kim et al. (1998) and Chib et al. (2002),

• log(σk,(c),t) is an AR(1) process.



Other Factor Models: Jungbacker et al.

Jungbacker et al. (2014) also use splines for the factor loading

curves

• They use Wald, Lagrange multiplier, and likelihood ratio tests

to reduce the number of knots.

• They work with only the US economy.

• They assume constant conditional volatility.



Other Factor Models: Nelson-Siegel Model

The Nelson-Siegel (1987) model for the yield curve is:

Y (τ) = θ0 + (θ1 + θ2τ) exp(−θ3τ).

• This model is widely used in the banking industry.

• Empirically, it does not fit as well as spline models, which are

also widely used.

Svensson’s (1994) model adds θ4τ exp(−θ5τ) to the Nelson-Siegel

model.

• This improves the fit, but still not as much as using splines.



Diebold and Li (2006)

Nelson and Siegel formulated their model as a static one.

• Diebold and Li (2006) reformulated the Nelson-Siegel model

in dynamic form.

• λ determines the location of the maximum of the third factor
loading curve.

• Diebold and Li fixed λ in advance so that the location of this

maximum was sensible.

• With λ fixed, the Nelson-Siegel model is linear.



Nelson-Siegel Model in Factor Form

The Nelson-Siegel model can be expressed as a dynamic model
with three parametric factor loading curves:

1 (constant)

1− exp(−λτ)
λt

1− exp(−λτ)
λτ

− exp(−λτ).

Here λ = θ3 is fixed and the factors are linear combinations of θ0,
θ1, and θ2.
Recall: The Nelson-Siegel model is θ0 + (θ1 + θ2τ) exp(−θ3τ).



Empircal Versus Nelson-Siegel Factor Loading Curves

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maturity (months)

fa
ct

or
 lo

ad
in

g 
cu

rv
e

f1
f2
f3

Nelson-Siegel with
λ = 0.4/12

0 50 100 150 200 250 300 350

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Common Factor Loading Curves

Maturity (months)

Y
ie

ld
 (

%
)

k = 1
k = 2
k = 3
k = 4

Empirical from the MFDLM



Hays et al. (2012

Hays et al. (2012) developed a functional dynamic factor model
and applied it to yield curve forecasting.

• We view our work at least somewhat as a generalization of
theirs.

• They worked with one economy.
• Their analysis is non-Bayesian.

• A stochastic EM-algorithm was used.
• Smoothing parameters were fit by GCV.
• Stochastic volatility and covariates seem more difficult to add

compared to within a Bayesian analysis.

• They found that their model outperformed a dynamic
Nelson-Siegel in terms of forecasting accuracy.



Local Field Potentials

• Neural activity in a region of the brain can be detected by

recording from a pair of electrode in that region.

• The electrodes measure the local field potential (LFP) in the

region.

• Usually done with rodents.

• Performed on humans only rarely and only for medical reasons.

• LFP data are similar to data obtained from EEG where

electrodes are placed on the scalp.

• LPF signals are more localized than EEG signals.



Our Data

• LFP data are usually analyzed in the frequency domain.

• Our data were collected by PhD student Vladmir Ljubojevic
working with Professor Eve De Rosa at U. Toronto.

• They are now both at Cornell where Vlad is a postdoc.

• Pairs of electrodes where placed in two locations:
• prefrontal cortex (PFC)
• posterior parietal cortex (PPC)

• These two regions have been proposed as the neural substrate

of attention.

• Sampling was at 4000 Hertz.



FS and FC

• There were two experimental conditions:

• feature singleton (FS) — the rat processes a single stimulus.

• feature conjunction (FC) — the rat must integrate two stimuli.

• In the experiments, the rat attempts to select the one of two
bowls with a treat.

• In FS, the correct bowl is indicated by a single smell.

• In FC, the correct bowl is indicated by two smells.

• FS serves as a baseline.

• We are interested in synchronization of the two brain regions

during FC.



Data Processing

• Tasks are repeated for 20 trials per rat for each of FS and FC.

• For each trial, we look at a 3 sec window centered at the time

the rat makes a decision.

• The data are binned into 15 time bins.

• Each is of length 3/8 sec.

• 50% overlap.



LFP Signals from a Single Trial



Spectra

• The periodgram (discrete Fourier transform) of the bivariate

time series is computed in each bin.

• The periodgrams are smoothed with a modified Daniell kernel

to obtain spectra.

• Ĩ (c)
t (τ) is
• the spectrum of PFC for c = 1,
• the spectrum of PPC for c = 2,
• the cross-spectrum for c = 3.

• The squared coherence is

κ2
t (τ) ≡ |Ĩ (3)

t (τ)|2

Ĩ (1)
t (τ)Ĩ (2)

t (τ)



Time-frequency Analysis

• Y (c)
t (τ) = log

(
Ĩ (c)
t (τ)

)
for c = 1, 2.

• 0 ≤ κ2
t (τ) ≤ 1

• Let Y (3)
t (τ) = Φ−1(κ2

t (τ))
• The link function Φ−1 is the standard normal quantile function.

The indices are:
• t = 1, . . . , 15.
• c = 1, 2, 3.
• τ ranges from 0.1 to 80 Hertz.

• 30 observation points after truncation above 80 Hertz.
• There were about 750 frequencies, but most were above 80

Hertz and not of interest.



Time-frequency Plots for FS Trials



MFDLM Specification

We assume

• common factor loading curves, and

• a random walk model for the factors.

Y (c)
i,s,t(τ) =

K∑
k=1

β
(c)
k,i,s,t fk(τ) + ε

(c)
i,s,t(τ),

[
ε

(c)
i,s,t(τ)

∣∣σ2
(c)

]
indep∼ N (0, σ2

(c))

βk,i,s,t = βk,i,s,t−1 + ωk,i,s,t ,
[
ωk,i,s,t

∣∣Wk
] indep∼ N (0,Wk)

• i = 1, . . . , 8 is the rat index.

• s = 1, . . . , 40 is the index of the trial within a rat.

• t = 1, . . . , 15 is the index of the time bins.

• c = 1, 2, 3 is the outcome index.

• k = 1, . . . ,K is factor index.



Comparing FS and FC

• DIC selected K = 10 factors.

• µ
(c)
i,s,t(τ) ≡

∑10
k=1 β

(c)
k,i,s,tfk(τ) is the estimated mean for the ith

rat, sth trial within that rat, and tth time bin.

• We focused on the difference in squared coherence between

FC and FS.



Posterior and 95% HPD Confidence Intervals for Difference
in Squared Coherene
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