NONPARAMETRIC RANDOM EFFECTS MODELS AND

LIKELIHOOD RATIO TESTS

Oct 11, 2002

David Ruppert

Cornell University

www.orie.cornell.edu/~davidr

(These transparencies and preprints available

link to "Recent Talks" and "Recent Papers")

Work done jointly with

Ciprian Crainiceanu, Cornell University

OUTLINE

Smoothing can be done using standard mixed models

software because

- Splines can be viewed as BLUPs in mixed models
- This random-effects spline model extends to:
- Semiparametric models (allows parametric submodels)
- Longitudinal data
- nested families of curves

EXAMPLE

Rick Canfield and Chuck Henderson, Jr. at Cornell are working on effects of low-level lead exposure on IQ of children.

They have a mixed model but the dose-response curve should be modeled nonparametrically.

EXAMPLE — CONT

- They asked SAS is a "PROC GAMMIXED" would be avail-
- able someday.
- short answer was "no"
- Then, they found Matt Wand's work and then contacted

Me.

- Now they know that GAMMIXED ⊂ GLMMIXED.
- SAS has GAMMIXED and does not know it!

4

TESTING IN THIS FRAMEWORK

In principle, likelihood ratio tests (LRTs) could be used to

test for effects of interest

E.g., hypothesis that a curve is linear or that an effect is effect) is zero zero \iff a variance component (and possibly a fixed

allows an elegant, unified theory

TESTING — CONT

- However, the distribution theory of LRTs is complex:
- the null hypothesis is on the boundary of the parameter space, so "standard theory" suggests chi-squared mixtures as the asympototic distribution.
- but standard asymptotics do not apply because of correlation
- for the case of one variance component, we now have asymptotics that do apply

UNIVARIATE NONPARAMETRIC REGRESSION

model

$$y_i = f(x_i) + \epsilon_i$$

letting f be a spline

$$f(x) = \sum_{k=0}^p eta_k x^k + \sum_{k=1}^K b_k (x - \kappa_k)_+^p$$
 h_- will be treated as "random effects"

- b_1, \ldots, b_K will be treated as "random effects"
- ullet assume they are iid $N(0,\sigma_b^2)$
- size of σ_b^2 controls the amount of shrinkage or smooth-

ing.

a

NONPARAMETRIC MODELS FOR LONGITUDINAL DATA

- y_{ij} is jth observation on ith subject
- consider the nonparametric mode

$$y_{ij} = f(x_{ij}) + f_i(x_{ij}) + \epsilon_{ij}$$

model the "population" curve f as a spline:

$$f(x) = \sum_{k=0}^{p} \beta_k x^k + \sum_{k=1}^{K} b_k (x - \kappa_k)_+^p$$

model the "ith subject" curve f_i as another spline:

$$f_i(x) = \sum_{k=0}^{p} u_k^{(i)} x^k + \sum_{k=1}^{K} b_k^{(i)} (x - \kappa_k)_+^p$$

9

POPULATION CURVE

Recall:

$$f(x) = \sum_{k=0}^{p} \beta_k x^k + \sum_{k=1}^{K} b_k (x - \kappa_k)_+^p$$

- $oldsymbol{eta}_0,\ldots,eta_p$ will be treated as "fixed effects"
- b_1,\ldots,b_K will be treated as "random effects"
- assume they are iid $N(0, \sigma_{b,P}^2)$ (P = "population")
- this assumption can be viewed as a Bayesian model
- somewhat different that usual interpretation of random

effects

SUBJECT CURVES

Recall:

$$f_i(x) = \sum_{k=0}^{p} u_k^{(i)} x^k + \sum_{k=1}^{K} b_k^{(i)} (x - \kappa_k)_+^p$$

- $u_0^{(i)}, \dots, u_p^{(i)}$ will be treated as "random effects"
- ullet assume they are iid $N(0,\sigma_u^2)$
- this is a typical "random effects" assumption
- $b_1^{(i)}, \dots, b_K^{(i)}$ will also be treated as "random effects"
- assume they are iid $N(0, \sigma_{b,S}^2)$ (S = "subject")

NULL HYPOTHESES OF INTEREST

Recall:

$$f_i(x) = \sum_{k=0}^{p} u_k^{(i)} x^k + \sum_{k=1}^{K} b_k^{(i)} (x - \kappa_k)_+^p$$

 $\sigma_u^2 = \sigma_{b,S}^2 = 0 \Longleftrightarrow$ no subject effects

 $\sigma_{b,S}^2 = 0 \Longleftrightarrow$ subject effects are pth degree polynomials

11

RELATED WORK

- Brumback and Rice (1998)
- Zhang, Lin, Raz, and Sowers (1998)
- Lin and Zhang (1999)
- Rice and Wu (2001)

See references at end.

-

BALANCE 1-WAY ANOVA

model:

$$Y_{ij} = \mu + b_i + \epsilon_{ij}, \ i = 1, \dots, I \text{ and } j = 1, \dots, J.$$

and

$$b_i \sim N(0, \sigma_b^2)$$

null hypothesis:

$$H_0: \sigma_b^2 = 0.$$

• If $I \to \infty$ with J fixed, then

$$-2\log(LR) \to \frac{1}{2}\chi_0^2 + \frac{1}{2}\chi_1^2$$
.

(Self and Liang, 1987; Stram and Lee, 1994)

tions" This is the iid case if we take the subjects as "observa-

Note: The equivalent fixed effects hypothesis is $b_1=\cdots$

$$b_I = 0$$
.

Then the LR test is equivalent to the F-test

•
$$-2\log(LR) \to \chi^2_{I-1}$$
 under H_0

If $J \to \infty$ with I fixed, then

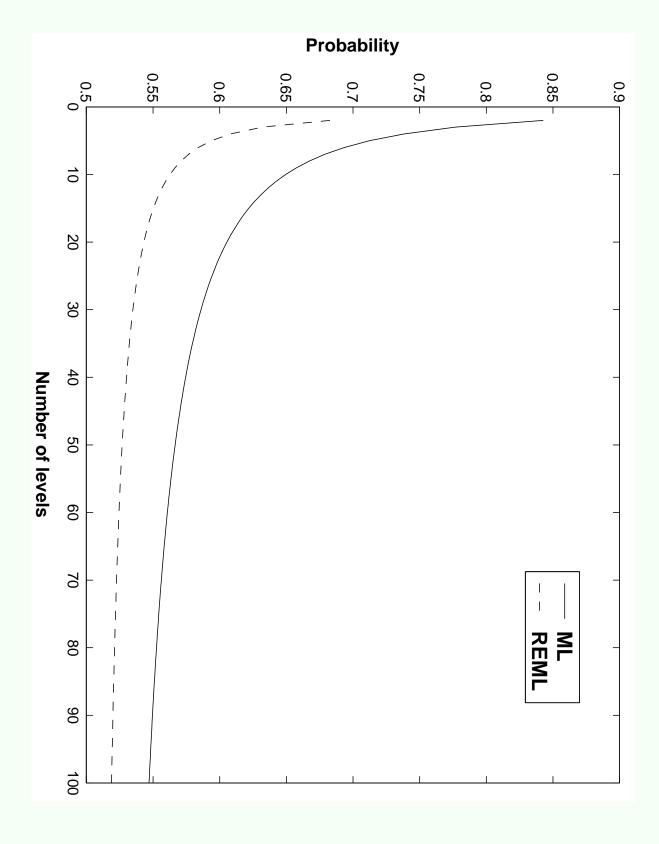
$$-2\log(LR) \Rightarrow I\left\{X_{I-1}^* - 1 - \log(X_{I-1}^*)\right\} \mathcal{I}_{\{X_{I-1}^* > 1\}},\,$$

and

$$-2\log(RLR) \Rightarrow (I-1)\left\{X_{I-1}-1-\log(X_{I-1})\right\}\mathcal{I}_{\{X_{I-1}>1\}}\,,$$
 where $X_{I-1}\sim\frac{\chi_{I-1}^2}{I-1}$ and $X_{I-1}^*\sim\frac{\chi_{I-1}^2}{I}$.

(Crainiceanu and Ruppert, 2002)

1-Way ANOVA: $\lim_{n\to\infty} P_{H_0}\{\log(LR)=0\}$

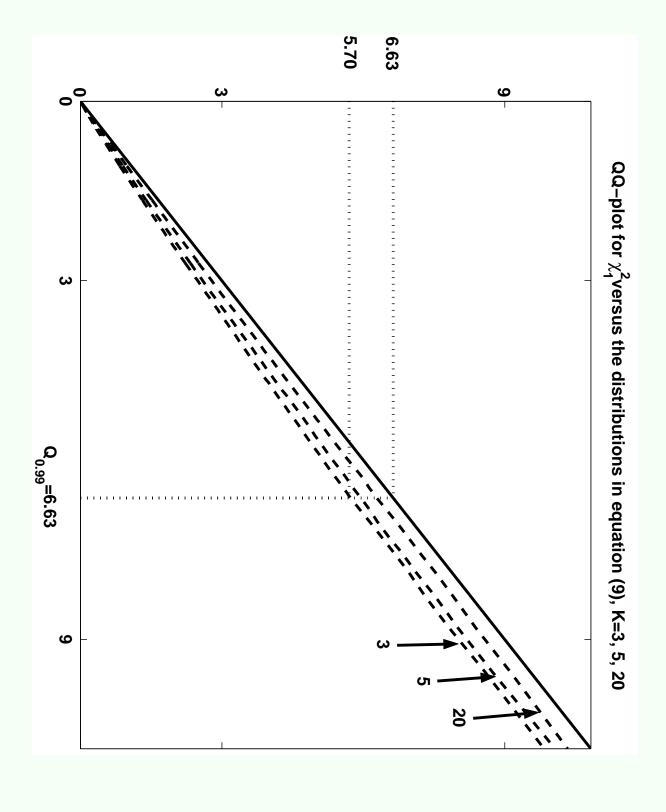


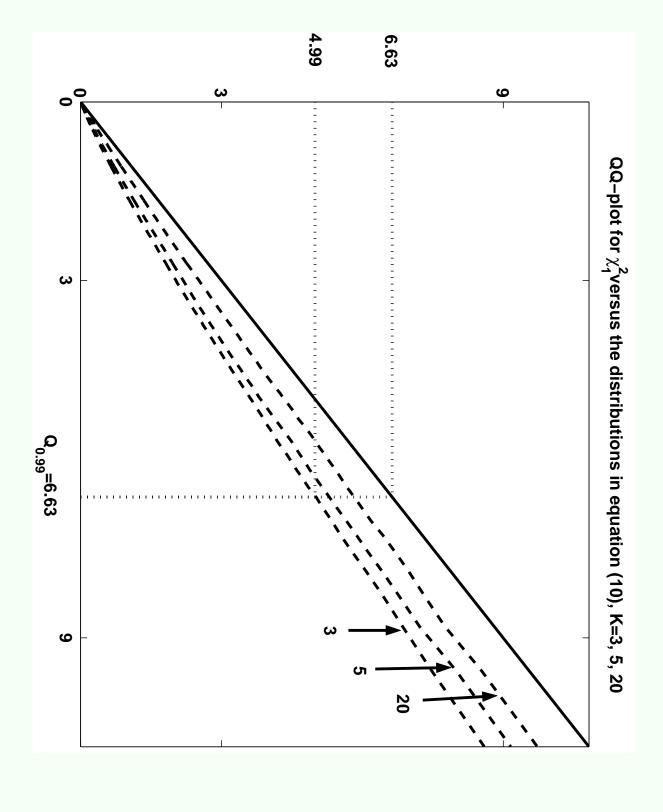
Pinheiro and Bates (2000, p. 87)

- simulated the LRT
- found some empirical evidence that the $.5\chi_0^2+.5\chi_1^2$ mixture

is better replaced by $p_0\chi_0^2+(1-p_0)\chi_1^2$ for $p_0>.5$.

These theoretical results help explain their findings.





PENALIZED SPLINES

model:

$$y_i = m\left(x_i\right) + \epsilon_i \;,$$

• null hypothesis:

$$H_0: m(x) = \beta_0 + \beta_1 x + \dots + \beta_{p+1-q} x^{p-q}, q \ge 0.$$

alternative hypothesis:

$$H_A: m(x) = \beta_0 + \beta_1 x + \dots + \beta_p x^p + \sum_{k=1}^K b_k (x - \kappa_k)_+^p,$$

notation:

$$\boldsymbol{\theta} = (\beta_0, ..., \beta_p, b_1, ..., b_K)^T$$

penalized least squares: minimize

$$\sum_{i=1}^{n} \{y_i - m(x_i; \boldsymbol{\theta})\}^2 + \lambda \boldsymbol{\theta}^T \boldsymbol{L} \boldsymbol{\theta},$$

with

$$\mathbf{L} = \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{\Sigma}^{-1} \end{bmatrix},$$

same as BLUP in a linear mixed model with

$$\mathbf{Cov}(\boldsymbol{b}) = \sigma_b^2 \boldsymbol{\Sigma}$$

and

$$\lambda = rac{\sigma_{\epsilon}^2}{\sigma_h^2}$$

(Brumback, Ruppert, and Wand, 1999)

new form of null:

if
$$q = 0$$

$$\sigma_b^2 = 0$$

or, if
$$q > 0$$
,

$$\beta_{p-q+1}=\cdots=\beta_p=0 \quad \text{and} \quad \sigma_b^2=0.$$

Example: (Crainiceanu and Ruppert, 2002)

- x_i 's equally spaced
- 20 equally spaced knots
- $p\,=\,q\,=\,0$ (constant mean versus piecewise constant

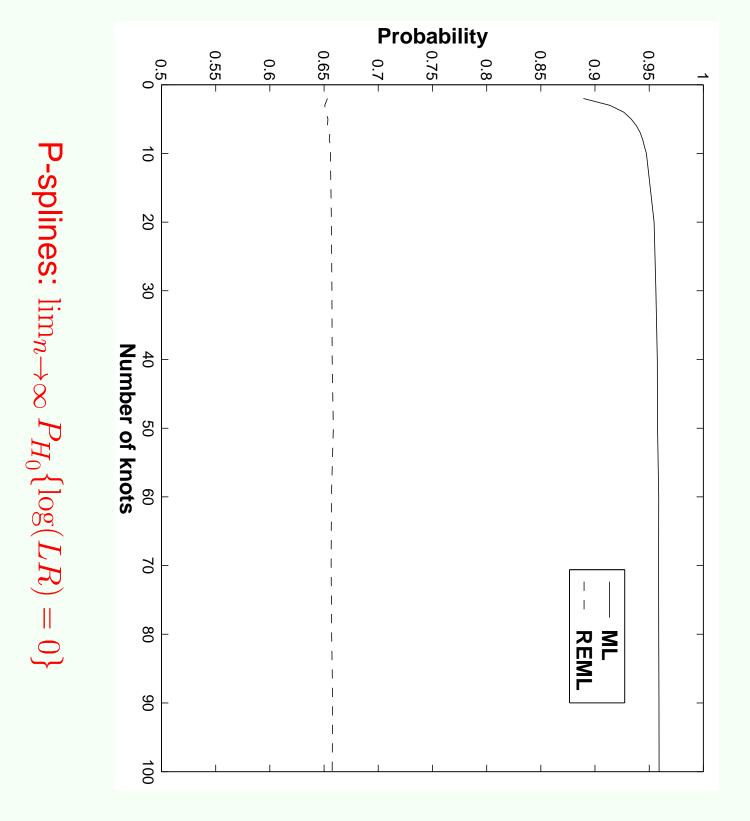
mean)

Then,

$$\lim_{n \to \infty} P_{H_0} \{ \log(RLR) = 0 \} = .6567, \quad \text{not .5}$$

and

$$\lim_{n \to \infty} P_{H_0} \{ \log(LR) = 0 \} = .9545, \quad \text{not } .5$$



ORTHOGONALIZATION

- one can apply Gram-Schmidt to the "design matrix"
- power functions are replaced by orthogonal polynomi-

<u>al</u>s

- "Plus functions" are replaced by spline basis functions that are orthogonal to polynomials
- The asymptotics of the LRT are changed by this reparametriza-

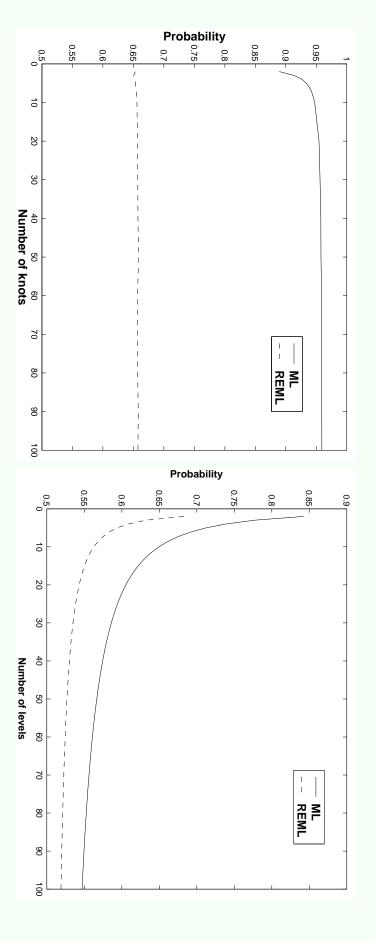
tion

Asymptotics are essentially the same as for 1-way ANOVA

with

•
$$I (= \# \text{ levels}) = K (= \# \text{ knots}) + 1$$

E.g., 5 levels is like 4 knots



P-splines

Orthogonalized = 1-way ANOVA

Asymptotic null probabilities that log-LR is zero

Quantiles of distributions 4.20 5.32 1.74 n=100 n=50 $\mathbf{q}_{0.95}$ Quantiles of the asymptotic distribution (n=∞) **q**_{0.99} **q**_{0.995}

Comparison of finite-sample and asymptotic quantiles

Hypotheses: linear trend versus 20-knot linear spline

Comparison of LRT with other tests

Reference: Crainiceanu, Ruppert, Aerts, Claeskens, and

Wand (2002, in preparation)

- Results in next table are for testing
- constant mean

versus

- general alternative
- piecewise constant spline, or
- linear spline

- The comparisons are made with an
- increasing,
- concave, and
- periodic

mean function, chosen so that good tests had power ap-

proximately 0.8

- R-test is from Cantoni and Hastie (2002)
- F-test is as in Hastie and Tibshirani (1990)
- "C" means alternative is a piecewise constant function
- "L" means alternative is a linear spline

"1" means estimate under alternative has DF one greater

than under null

"ML" means smoothing parameter under alternative is cho-

sen by ML

"GCV" means smoothing parameter under alternative is

chosen by GCV

Test	Average power	Maximum power	Minimum Power
RLRT-C	0.8885	0.9660	0.8166
R-GCV-L	0.8737	0.9910	0.7188
R-ML-C	0.8615	0.9916	0.7022
F-ML-L	0.8569	0.8796	0.8328
R-ML-L	0.8569	0.8796	0.8328
F-ML-C	0.8534	0.9928	0.6708
F-GCV-L	0.8482	0.9946	0.6634
LRT-L	0.7561	0.8466	0.6832
F-1-C	0.7087	0.8442	0.4816
F-1-L	0.6775	0.9414	0.3012
R-1-L	0.6239	0.9126	0.1462
R-GCV-C	0.6144	0.9284	0.3392

Conclusions

- Standard asymptotics are, in general, not suitable
- Better asymptotics for one variance component are fea-

sible

For more than one variance component, one might need

to use simulation to get p-values

References

- Brumback, B., and Rice, J., (1998), Smoothing spline models for the analsysi of nested and crossed samples of curves, JASA, 93, 944-961
- Brumback, B., Ruppert, D., and Wand, M.P., (1999). Comment on "Variable selection and function estimation in additive nonparametric regression using data-based prior" by Shively, Kohn, and Wood, JASA, 94, 794-797.
- Cantoni, E., and Hastie, T.J., 2002. Degrees of freedom tests for smoothing splines, Biometrika, 89. 251-263
- Crainiceanu, C. M., and Ruppert, D., (2002), Asymptotic distribution of likelihood ratio tests in linear mixed models, submitted
- Crainiceanu, C. M., Ruppert, D., and Vogelsang, T. J., (2002). Probability that the mle of a variance component is zero with applications to likelihood ratio Tests,

manuscript

- Crainiceanu, C. M., Ruppert, D., Aerts, M., Claeskens, G., and Wand, M., (2002),
- Tests of rolynomial regression against a general alternative, in preparation.
- Hastie, T.J., Tibshirani, R., 1990. Generalized Additive Models, London: Chapman and Hall
- Lin, X., and Zhang, D. (1999), Inference in generalized additive mixed models by using smoothing splines, JRSS-B, 61, 381-400.
- Pinheiro, J., and Bates, D., (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York
- Rice, J., and Wu, C., (2001), Nonparametric mixed effects models for unequally sampled noisy curves," Biometrics, 57, 253-259
- Self, S., and Liang, K., (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions, JASA, 82, 605-610.

Stram, D., Lee, J., (1994). "Variance Components Testing in the Longitudinal Mixed Effects Model," Biometrics, 50, 1171–1177.

Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998), Semi-parametric stochastic mixed models for longitudinal data, JASA, 93, 710-719