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OUTLINE

e Smoothing can be done using standard mixed models

software because
e Splines can be viewed as BLUPs in mixed models
¢ This random-effects spline model extends to:

e Semiparametric models (allows parametric submodels)
e Longitudinal data

e nested families of curves



EXAMPLE

e Rick Canfield and Chuck Henderson, Jr. at Cornell are
working on effects of low-level lead exposure on IQ of

children.

e They have a mixed model but the dose-response curve

should be modeled nonparametrically.



EXAMPLE — CONT

e They asked SAS is a "PROC GAMMIXED” would be avail-

able someday.
e short answer was "no”

e Then, they found Matt Wand’s work and then contacted

me.
e Now they know that GAMMIXED c GLMMIXED.

e SAS has GAMMIXED and does not know it!



TESTING IN THIS FRAMEW ORK

e In principle, likelihood ratio tests (LRTs) could be used to

test for effects of interest

e E.g., hypothesis that a curve is linear or that an effect is
Zero < a variance component (and possibly a fixed

effect) Is zero

e allows an elegant, unified theory



TESTING — CONT
e However, the distribution theory of LRTs is complex:

e the null hypothesis is on the boundary of the parame-
ter space, so “standard theory” suggests chi-squared

mixtures as the asympototic distribution.

e but standard asymptotics do not apply because of cor-
relation
e for the case of one variance component, we now have

asymptotics that do apply



UNIVARIATE NONPARAMETRIC REGRESSION

e model
i = flzi) + ¢
e letting f be a spline
D K
fl@) =" Bea® + > bple — mp)h
k=0 k=1
e by,...,br Wil be treated as “random effects”
o assume they are iid N(0, o7)
e Size of QW controls the amount of shrinkage or smooth-

Ing.
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NONPARAMETRIC MODELS FOR LONGITUDIN AL DATA

e y;; IS jth observation on ith subject

e consider the nonparametric model
yij = f(xi5) + fi(xij) + €ij
e model the “population” curve f as a spline:
p K
k
fla)=> B+ bylz— k)

k=0 k=1

e model the “ith subject” curve f; as another spline:

p . K
file) = > ulab + 3" o (@ — )P
k=0 k=1



POPULATION CURVE

e Recall:
p K
fl@) =) B+ bple — rp)f
k=0 k=1
* 5y, ..., 0Bp will be treated as “fixed effects”
e by,...,bx Wil be treated as “random effects”

o assume they are iid N(0, 07 5,) (P = “population”)
e this assumption can be viewed as a Bayesian model

e somewhat different that usual interpretation of random

effects
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SUBJECT CURVES

e Recall:
p . K
fi(x) = MU :Mv&\a + MU @MVA& — Kt
k=0 k=1
o :%vv . “:m.v will be treated as “random effects”

o assume they are iid N(0,02)

e this Is a typical “random effects” assumption
o &@u . u&w will also be treated as “random effects”

o assume they are iid N (0, o7 o) (S = “subject”)



NULL HYPOTHESESOF INTEREST

e Recall:
p . K
fi(x) = MU QMV&\A + MU @Mv@ — Kt
k=0 k=1
* 0y, = 03 ¢ = 0 <= no subject effects

o QW ¢ =0 <= subject effects are pth degree polynomials
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RELATED WORK

e Brumback and Rice (1998)
e Zhang, Lin, Raz, and Sowers (1998)
e Lin and Zhang (1999)

¢ Rice and Wu (2001)

See references at end.
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BALANCE 1-WAY ANOVA

e model:

Yij=p+0b+¢€4 i=1,... Jandj=1,.

and
b; ~ N(0,07)
¢ null hypothesis:

mouﬁwHo.
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o If I — oo with J fixed, then

—2log(LR) — x4 + 3x5.

(Self and Liang, 1987; Stram and Lee, 1994)

e This Is the iid case if we take the subjects as “observa-

tions”

Note: The equivalent fixed effects hypothesisis b1 = - =
by = 0.
e Then the LR test is equivalent to the F-test

o —2log(LR) — x4_, under H
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o If J — oo with I fixed, then
—2log(LR) = I {X]_{—1— _omﬁﬂnlbwﬁuﬁﬁv& u
and

—2log(RLR) = (I — ){X;_1 — 1 —1log(X7_1)} I x, 1}

X7 X7
where X;_ | ~ F= and X7 | ~ ==

(Crainiceanu and Ruppert, 2002)
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Pinheiro and Bates (2000, p. 87)
e sSimulated the LRT

e found some empirical evidence that the .mxmfmxm mixture

is better replaced by pox2 + (1 — po)x3 for pg > .5.

These theoretical results help explain their findings.
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PENALIZED SPLINES
e model:
y; = m(x;) + ¢ ,

e null hypothesis:

Hy: m(z)=0Bo+ Bz + ...+ Bpr1—q2’ 4, ¢ > 0.

e alternative hypothesis:

K

Hy: m(x) Hho._.mg._..:._.Q@&@._.MUSAQIELW g
k=1
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e Notation:
0 = (Bo, ..., Bp, b1, s )
e penalized least squares:
minimize

n
> {yi—m(x;0)} + 20" L6
i=1

with
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e same as BLUP iIn a linear mixed model with

Cov(b) = 0; %
and

Ty

(Brumback, Ruppert, and Wand, 1999)
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e new form of null:

fg=20

or, if ¢ > 0,

Bpgii=-=PB=0 and oj =0.
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Example: (Crainiceanu and Ruppert, 2002)
e 1;'s equally spaced
¢ 20 equally spaced knots

ep = g = 0 (constant mean versus piecewise constant

mean)
Then,

lim Pp {log(RLR) =0} =.6567, not.5

n— o0

and

lim Pp {log(LR) = 0} = .9545, not.5

n—oo
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ORTHOGONALIZA TION

e one can apply Gram-Schmidt to the “design matrix”
e power functions are replaced by orthogonal polynomi-
als
¢ “Plus functions” are replaced by spline basis functions

that are orthogonal to polynomials

e The asymptotics of the LRT are changed by this reparametriza-

tion
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e Asymptotics are essentially the same as for 1-way ANOVA
with
o | (=#levels) = K (= # knots) +1

E.g., 5 levels is like 4 knots



Probability
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Comparisonof LRT with other tests
Reference: Crainiceanu, Ruppert, Aerts, Claeskens, and

Wand (2002, in preparation)
e Results in next table are for testing
e constant mean
VErsus

e general alternative

piecewise constant spline, or

linear spline
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e The comparisons are made with an

e Increasing,

e concave, and

e periodic

mean function, chosen so that good tests had power ap-

proximately 0.8



e R-test is from Cantoni and Hastie (2002)
e F-test Is as in Hastie and Tibshirani (1990)
¢ “C” means alternative is a piecewise constant function

¢ ‘I’ means alternative is a linear spline
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¢ “1” means estimate under alternative has DF one greater

than under null

¢ “ML” means smoothing parameter under alternative is cho-

sen by ML

¢ “GCV” means smoothing parameter under alternative is

chosen by GCV



Test

Average power

Maximum power

Minimum Power

RLRT-C 0.8885 0.9660 0.8166
R-GCV-L 0.8737 0.9910 0.7188
R-ML-C 0.8615 0.9916 0.7022
F-ML-L 0.8569 0.8796 0.8328
R-ML-L 0.8569 0.8796 0.8328
F-ML-C 0.8534 0.9928 0.6708
F-GCV-L 0.8482 0.9946 0.6634
LRT-L 0.7561 0.8466 0.6832
F-1-C 0.7087 0.8442 0.4816
F-1-L 0.6775 0.9414 0.3012
R-1-L 0.6239 0.9126 0.1462
R-GCV-C 0.6144 0.9284 0.3392
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Conclusions

e Standard asymptotics are, in general, not suitable

e Better asymptotics for one variance component are fea-

sible

e For more than one variance component, one might need

to use simulation to get p-values
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