David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

### Large Sample Theory of Penalized Splines

#### David Ruppert

Operations Research and Information Engineering Cornell University

(Joint work with Yingxing Li)

July 30, 2007

### Main Results

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- P-spline estimators are approximately binned Nadaraya-Watson kernel estimators
- The number of knots is not important, provided it is grows fast enough (confirms folklore)
- The degree of the spline does not affect the rate of convergence (surprising to me)
- Order of equivalent kernel and rate of convergence of estimator depend on the order of the penalty

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Univariate nonparametric regression

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

#### Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### • Assume a univariate nonparametric model

$$y_i = f(x_i) + \epsilon_i, \ i = 1, \dots, n$$

・ロト・日本・日本・日本・日本・日本

# Splines

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

#### Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- A spline is a piecewise polynomial
  - its polynomial form changes at "knots"
  - p-1 derivatives are continuous at knots
  - *p*th derivative jumps at knots
  - nonparametric if the knots become dense

# Three methods of spline fitting

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- Regression splines
  - fit by ordinary (unweighted) least squares
- Smoothing splines
  - knot at each unique value of x
  - excessive number of knots can be a problem with more complex models

- Penalized splines
  - knots, degree, and penalty chosen independently

# Why Penalized Splines Have Become Popular

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- Reasonably easy to understand
- Work well in practice
- Combines nicely with parametric models to form semiparametric models, e.g., the partially linear model

$$y_i = m(x_i) + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{z}_i + \epsilon_i$$

# Why Penalized Splines Have Become Popular

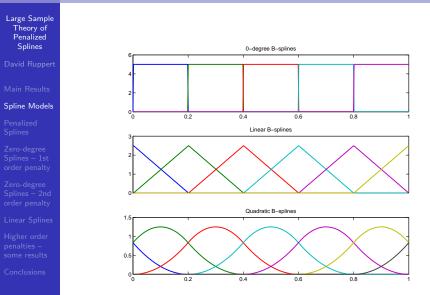
- Large Sample Theory of Penalized Splines
- David Ruppert
- Main Results
- Spline Models
- Penalized Splines
- Zero-degree Splines – 1st order penalty
- Zero-degree Splines – 2nd order penalty
- Linear Splines
- Higher order penalties – some results
- Conclusions

- Can be fit using parametric statistical software
  - by MCMC using, say, WinBUGS
  - by mixed model software
  - using Matt Wand's "SemiPar" package in R (a front-end to R's mixed model software)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• for generalized regression by GLMM software





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

# p-degree spline model

Large Sample Theory of Penalized Splines

• The model:

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

$$f(x) = \sum_{k=1}^{K+p} b_k B_k(x), \ x \in (0,1)$$

• *p*th degree B-spline basis:

$$\{B_k: k=1,\ldots,K+p\}$$

knots:

$$\kappa_0 = 0 < \kappa_1 < \ldots < \kappa_K = 1$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

#### Penalized least-squares

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

• Penalized least-squares minimizes

$$\sum_{i=1}^{n} \left\{ y_i - \sum_{k=1}^{K+p} \widehat{b}_k B_i(x_i) \right\}^2 + \lambda \sum_{k=m+1}^{K+p} \{\Delta^m(\widehat{b}_k)\}^2,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• 
$$\Delta b_k = b_k - b_{k-1}$$
 and  $\Delta^m = \Delta(\Delta^{m-1})$ 

•  $\Delta=1\Rightarrow$  constant functions are unpenalized

•  $\Delta=2\Rightarrow$  linear functions are unpenalized

$$p = 0, m = 1$$

David Rupper

Main Results

Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Assume:

• 
$$x_1 = 1/n, x_2 = 2/n, \dots, x_n = 1$$

• 
$$\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \dots, \kappa_K = 1$$

・ロト ・四ト ・ヨト ・ヨト

æ.

$$p = 0, m = 1$$

David Rupper

Main Results

Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Assume:

• 
$$x_1 = 1/n, x_2 = 2/n, \dots, x_n = 1$$

• 
$$\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \dots, \kappa_K = 1$$

• 
$$B_k(x) = I\{\kappa_{k-1} < x \le \kappa_k\}, \ 1 \le k \le K$$

・ロト ・四ト ・ヨト ・ヨト

æ.

$$p = 0, m = 1$$

David Rupper

Main Results

Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Assume:

• 
$$x_1 = 1/n, x_2 = 2/n, \dots, x_n = 1$$

• 
$$\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \dots, \kappa_K = 1$$

• 
$$B_k(x) = I\{\kappa_{k-1} < x \le \kappa_k\}, \ 1 \le k \le K$$

ヘロト 人間ト 人間ト 人間ト

æ.

• assume that n/K is an integer

$$p = 0, m = 1$$

David Rupper

Main Results

Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nc order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Assume:

• 
$$x_1 = 1/n, x_2 = 2/n, \dots, x_n = 1$$

• 
$$\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \dots, \kappa_K = 1$$

• 
$$B_k(x) = I\{\kappa_{k-1} < x \le \kappa_k\}, \ 1 \le k \le K$$

ヘロト 人間ト 人間ト 人間ト

æ.

• assume that n/K is an integer

• then 
$$X^{\mathsf{T}}X = MI_K$$
 where  $I_K$ 

# p=0, m=1, continued

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Assume further:

• m = 1

Then

$$D^{\mathsf{T}}D = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix},$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$p = 0, m = 1$$
, PLS estimator

David Ruppert

Main Results Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nc order penalty

Linear Splines

Higher order penalties – some results

Conclusions

The PLS estimator solves:

$$\Lambda \widehat{\mathbf{b}} = \mathbf{z} = \overline{\mathbf{y}} / (1 + 2\lambda)$$

where

$$\Lambda = \begin{pmatrix} \theta & \eta & 0 & 0 & \cdots & 0 & 0 \\ \eta & 1 & \eta & 0 & \cdots & 0 & 0 \\ 0 & \eta & 1 & \eta & \cdots & 0 & 0 \\ 0 & 0 & \eta & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & \eta \\ 0 & 0 & 0 & 0 & \cdots & \eta & \theta \end{pmatrix}, \quad \eta = -\frac{\lambda}{1+2\lambda}$$

$$p=0,\,\,m=1$$
, PLS estimator, page 2

David Ruppert

Main Results Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nc order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Let 
$$\rho \in (0,1)$$
 be a root of

$$\eta + \rho + \eta \rho^2 = 0.$$

Then

$$\rho = \frac{1 - \sqrt{1 - 4\eta^2}}{-2\eta} = \frac{1 + 2\lambda - \sqrt{1 + 4\lambda}}{2\lambda}.$$

#### Define

$$T_i = (\rho^{i-1}, \rho^{i-2}, \dots, \rho, 1, \rho, \rho^2, \dots, \rho^{K-i})^{\mathsf{T}}$$

 $T_i$  is orthogonal to all columns of  $\Lambda$  except the first, last, and  $i{\rm th}$ 

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

#### Finite-sample kernel

Large Sample Theory of Penalized Splines

David Ruppert

Main Results Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Finite-sample kernel:

 $\widehat{f}(x) = \sum_{j=1}^{K} H(x, \overline{x}_j) \overline{y}_i$ 

(日) (四) (日) (日) (日)

# Three kernels corresponding to first-order penalty





Penalized Splines

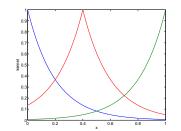
#### Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

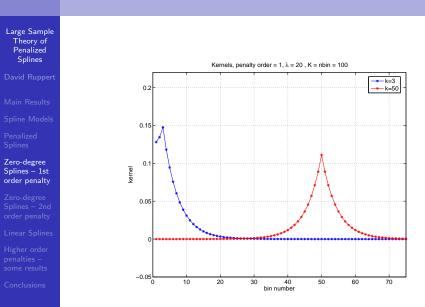


 x is an "estimation point" (here fixed at 0.4)

- finite-sample kernel is linear combination of three kernels
- double exponential kernel centered at x
- boundary kernels are  $\exp(-x)$ and  $\exp(x)$
- weights for the boundary kernels are asymptotically negligible
- all kernels can be re-scaled by a bandwidth

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Finite-sample kernels, first-order penalty



▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

#### Connection with smoothing splines

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

We get the same equivalent kernel as for smoothing splines with a penalty on the first derivative

# Finding $\hat{b}_i$ – interior case

Large Sample Theory of Penalized Splines

David Ruppert

Main Results Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- Suppose  $i/K \to x \in (0,1)$  (non-boundary case)
- After some algebra:

$$\widehat{b}_i \sim \frac{\sum_{j=1}^K \rho^{|i-j|} \overline{y}_j}{\sum_{j=1}^K \rho^{|i-j|}}.$$

Note that

$$\widehat{f}(x) = \widehat{b}_i$$

(日) (四) (日) (日) (日)

for x in the *i*th bin

## Equivalence to N-W kernel estimator

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

• After some more algebra

$$\rho^{|i-j|} \sim \exp\left\{-\frac{|\overline{x}_i - \overline{x}_j|}{hn^{-1/5}}\right\}$$

- Thus,  $\widehat{f}_n$  is asymptotically equivalent to the Nadaraya-Watson estimator with
  - double exponential kernel  $H(x) = (1/2) \exp(-|x|)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• bandwidth  $hn^{-1/5}$ 

#### Nadaraya-Watson kernel estimators

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Model

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

#### Model:

$$y_i = f(x_i) + \epsilon_i$$

Nadaraya-Watson estimator:

$$\widehat{f}(x) = \frac{\sum_{i=1}^{n} H\{(x_i - x)/h_n\}y_i}{\sum_{i=1}^{n} H\{(x_i - x)/h_n\}}$$

(日) (四) (日) (日) (日)

•  $H(\cdot)$  is called the kernel function

•  $h_n$  is the bandwidth

# Binned Nadaraya-Watson kernel estimators

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Binned Nadaraya-Watson estimator:

- range of the  $x_i$  divided into K subintervals (bins)
- $\overline{x}_i$  is average of  $x_i$  in *i*th bin
- $\overline{y}_i$  is average of  $y_i$  such that  $x_i$  is in the *i*th bin

$$\widehat{f}(x) = \frac{\sum_{j=1}^{K} H\{(\overline{x}_j - x)/h_n\}\overline{y}_j}{\sum_{j=1}^{K} H\{(\overline{x}_i - x)/h_n\}}$$

# P-spline equivalent to a Nadaraya-Watson kernel estimator

- Large Sample Theory of Penalized Splines
- David Ruppert
- Main Results
- Spline Models
- Penalized Splines
- Zero-degree Splines – 1st order penalty
- Zero-degree Splines – 2nd order penalty
- Linear Splines
- Higher order penalties – some results
- Conclusions

- Thus, f<sub>n</sub> is asymptotically equivalent to a binned Nadaraya-Watson estimator with
  - double exponential kernel  $H(x) = (1/2) \exp(-|x|)$
  - bandwidth  $hn^{-1/5}$
- binned bias is negligible if  $K = C n^{\gamma}$  for  $\gamma > 2/5$  and C > 0

• "negligible" means  $o(n^{-2/5})$ 

# Selecting $\lambda$ to achieve desired bandwidth

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

• To get bandwidth  $hn^{-1/5}$  we need  $\lambda$  chosen as

$$\lambda \sim \{(Cn^{\gamma})(hn^{-1/5})\}^2 = (\# \text{ knots } \times \text{ bandwidth})^2$$

### Asymptotic Distribution

Large Sample Theory of Penalized Splines

David Ruppert

Main Results Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

For 
$$x \in (0,1)$$
, as  $n \to \infty$  we have

$$n^{2/5}{\hat{f}_n(x) - f(x)} \Rightarrow N{\mathcal{B}(x), \mathcal{V}(x)}$$

ヘロト 人間ト 人間ト 人間ト

æ.

#### where

• 
$$\mathcal{B}(x) = h^2 f^{(2)}(x)$$

• 
$$\mathcal{V}(x) = 2^{-1}h^{-1}\sigma^2(x)$$

# Some folklore

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

• Folklore: The number of knots is not important, provided that it is large enough.

• Confirmation:

 $K \sim Cn^{\gamma}$  with C > 0 and  $\gamma > 2/5$ . (1)

• Folklore: The value of the penalty parameter is crucial.

#### • Confirmation:

 $\lambda \sim C^2 h^2 n^{2\gamma - 2/5} = (\# \text{ knots } \times \text{ bandwidth})^2$  (2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for some h > 0.

- Folklore: Modeling bias is small.
  - Confirmation: Modeling bias does not appear in asymptotic bias provided (1) and (2) hold.

# Order of a kernel and bias

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Penalized Splines

Zero-degree Splines – 1s order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Moments: kth moment is  $\int x^k H(x) dx$ 

Order of kernel: A kernel is of kth order if the first non-zero moment is the kth

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Non-negative kernel: order is at most 2

Bias: bias =  $O\{(bandwidth)^k\}$ 

#### Variance:

$$\mathsf{variance} = O\left(rac{1}{n imes \mathsf{bandwidth}}
ight)$$
and

optimal RMSE  $= O(n^{-k/(2k+1)})$ 

# 2nd order-penalty gives 4th order kernel (in interior)

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1s order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Now let m = 2 (2nd order difference penalty) • Assume:

• 
$$K \sim Cn^{\gamma}$$
 with  $C > 0$  and  $\gamma > 4/9$   
•  $\lambda \sim 4C^4h^4n^{4\gamma-4/9} \sim 4(Khn^{-1/9})^4$ .

Then for any  $x \in (0, 1)$ , when  $n \to \infty$ , we have

$$n^{4/9}\{\widehat{f}_n(x) - f(x)\} \Rightarrow N\{\mathcal{B}_1(x), \mathcal{V}_1(x)\},$$

イロト 不得 トイヨト イヨト ニヨー

#### where

- $\mathcal{B}_1(x) = (1/24)h^4 f^{(4)}(x) \int x^4 T(x) dx$ •  $\mathcal{V}_1(x) = h^{-1} \{ \int T^2(x) dx \} \sigma^2(x)$ 
  - T(x) is a fourth order kernel

## Mathematical approach

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Main technical device uses roots of the polynomial  $w(\xi) = \lambda(1-4\xi+6\xi^2-4\xi^3+\xi^4)+\xi^2 = \lambda(1-\xi)^4+\xi^2, \ \lambda > 0$ 

- No real roots and no roots of modulus one
- Roots are: r, conj(r),  $r^{-1}$ ,  $conj(r)^{-1}$  (all distinct)
- Use the conjugate pair with modulus less than one

# Asymptotic Kernel

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalt

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

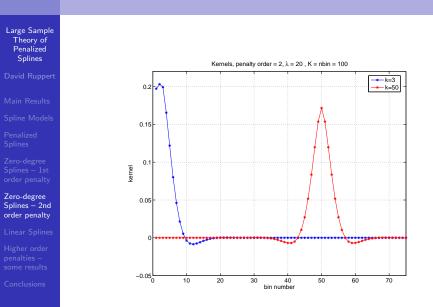
• The asymptotic kernel is a linear combination of

 $\exp(-|x|)\cos(x)$  and  $\exp(-|x|)\sin(|x|)$ 

• Same equivalent kernel as for smoothing splines with a penalty on the second derivative

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Finite-sample kernels, second-order penalty



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Linear splines need less knots

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

#### Linear Splines

Higher order penalties – some results

Conclusions

Assume m = 1 (1st-order difference penalty). • If p = 1 (linear), then require  $K \sim Cn^{\gamma}$  with C > 0 and  $\gamma > 1/5$ 

- When p was 0 (piecewise constant), we required  $\gamma>2/5$
- Otherwise, results are the same as for 0-degree and linear splines

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A similar result holds for m = 2.

### Conjectures

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

• Conjecture: For *x* in the interior:

P-spline  $\,\sim\,$  N-W estimator with an 2m-order kernel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Recall: m is order of difference penalty
- Kernel order independent of p = degree of spline
- Shown to hold for m = 1, 2 and p = 0, 1
- p = 1 requires less knots than p = 0
  - What happens for p > 1?
  - Conjecture: Still less knots are needed

# Unequally spaced X

Large Sample Theory of Penalized Splines

David Ruppert

Main Result

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- Assume  $G(x_t) = t/n$  for a smooth G with g = G'
- Fit a spline to  $(Y_t, u_t)$  with regression function  $f \circ G^{-1}$ 
  - evaluate this estimate at G(x) to estimate f(x)
- Equally spaced knots for  $(\,Y_t,\,u_t)$  implies knots at sample quantiles for  $(\,Y_t,\,x_t)$
- asymptotic bias is

$$h^{2}(f \circ G^{-1})^{(2)} \{ G(x) \} = \frac{h^{2}}{g^{2}(x)} \left\{ f^{(2)}(x) - \frac{f'(x)g'(x)}{g(x)} \right\}$$

Nadaraya-Watson bias is

$$h^{2}\left\{f^{(2)}(x) + \frac{2f'(x)g'(x)}{g(x)}\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Additive Models

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Talk by Yingxing Li on bivariate additive model:

イロト 不得 トイヨト イヨト

3

• Session 543

• Thursday morning

# We use only one of two potential smoothing parameters

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

Both K and  $\lambda$  are potential smoothing parameters

- In our asymptotic theory, only  $\lambda$  plays the role of a smoothing parameter
- Could develop a theory where only K plays this role
  - would be similar to regression spline ( $\lambda = 0$ ) theory
- One could also choose K and  $\lambda$  so that both have a non-negligible effect

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Our theory mimics actual practice

# Summary

Large Sample Theory of Penalized Splines

David Ruppert

Main Results

Spline Models

Penalized Splines

Zero-degree Splines – 1st order penalty

Zero-degree Splines – 2nd order penalty

Linear Splines

Higher order penalties – some results

Conclusions

- P-spline estimators  $\approx$  binned N-W kernel estimators
- The number of knots unimportant if above a minimum
- Degree of spline
  - determines minimum convergence rate for number of knots
  - does not affect rate of convergence
- Order of penalty determines
  - order of equivalent kernel
  - convergence rate of estimator
- *m*th order penalty ⇔ smoothing spline with penalty on *m*th difference

| Large Sample<br>Theory of<br>Penalized<br>Splines |
|---------------------------------------------------|
| David Ruppert                                     |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
| Conclusions                                       |

#### Thanks for coming