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Main Results

P-spline estimators are approximately binned
Nadaraya-Watson kernel estimators

The number of knots is not important, provided it is
grows fast enough (confirms folklore)

The degree of the spline does not affect the rate of
convergence (surprising to me)

Order of equivalent kernel and rate of convergence of
estimator depend on the order of the penalty
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Univariate nonparametric regression

Assume a univariate nonparametric model

yi = f (xi) + εi , i = 1, . . . , n
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Splines

A spline is a piecewise polynomial

its polynomial form changes at “knots”

p − 1 derivatives are continuous at knots

pth derivative jumps at knots

nonparametric if the knots become dense
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Three methods of spline fitting

Regression splines
fit by ordinary (unweighted) least squares

Smoothing splines
knot at each unique value of x
excessive number of knots can be a problem with more
complex models

Penalized splines
knots, degree, and penalty chosen independently
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Why Penalized Splines Have Become Popular

Reasonably easy to understand

Work well in practice

Combines nicely with parametric models to form

semiparametric models, e.g., the partially linear model

yi = m(xi) + βββTzi + εi
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Why Penalized Splines Have Become Popular

Can be fit using parametric statistical software
by MCMC using, say, WinBUGS

by mixed model software

using Matt Wand’s “SemiPar” package in R (a front-end

to R’s mixed model software)

for generalized regression by GLMM software
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B-splines
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p-degree spline model

The model:

f (x) =
K+p∑
k=1

bkBk(x), x ∈ (0, 1)

pth degree B-spline basis:

{Bk : k = 1, . . . , K + p}

knots:
κ0 = 0 < κ1 < . . . < κK = 1
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Penalized least-squares

Penalized least-squares minimizes

n∑
i=1

{
yi −

K+p∑
k=1

b̂kBi(xi)

}2

+ λ

K+p∑
k=m+1

{∆m(b̂k)}2,

∆bk = bk − bk−1 and ∆m = ∆(∆m−1)

∆ = 1 ⇒ constant functions are unpenalized
∆ = 2 ⇒ linear functions are unpenalized
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p = 0, m = 1

Assume:

x1 = 1/n, x2 = 2/n, . . . , xn = 1

κ0 = 0, κ1 = 1/K , κ2 = 2/K , . . . , κK = 1

Bk(x) = I{κk−1 < x ≤ κk}, 1 ≤ k ≤ K

assume that n/K is an integer

then XTX = MIK where IK
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p = 0, m = 1, continued

Assume further:

m = 1
Then

DTD =

0
BBBBBBBBB@

1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1

1
CCCCCCCCCA
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p = 0, m = 1, PLS estimator

The PLS estimator solves:

Λb̂ = z = y/(1 + 2λ)

where

Λ =



θ η 0 0 · · · 0 0
η 1 η 0 · · · 0 0
0 η 1 η · · · 0 0
0 0 η 1 · · · 0 0
... ... ... ... . . . ... ...
0 0 0 0 · · · 1 η

0 0 0 0 · · · η θ


, η = − λ

1 + 2λ
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p = 0, m = 1, PLS estimator, page 2

Let ρ ∈ (0, 1) be a root of

η + ρ + ηρ2 = 0.

Then

ρ =
1−

√
1− 4η2

−2η
=

1 + 2λ−
√

1 + 4λ

2λ
.

Define

Ti = (ρi−1, ρi−2, . . . , ρ, 1, ρ, ρ2, . . . , ρK−i)T

Ti is orthogonal to all columns of Λ except the first, last,
and ith
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Finite-sample kernel

Finite-sample kernel:

f̂ (x) =
K∑

j=1

H (x , x j)yi
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Three kernels corresponding to first-order penalty
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point” (here fixed at 0.4)

finite-sample kernel is linear
combination of three kernels

double exponential kernel
centered at x

boundary kernels are exp(−x)

and exp(x)

weights for the boundary kernels
are asymptotically negligible

all kernels can be re-scaled by a
bandwidth
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Finite-sample kernels, first-order penalty
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Connection with smoothing splines

We get the same equivalent kernel as for smoothing splines
with a penalty on the first derivative
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Finding b̂i – interior case

Suppose i/K → x ∈ (0, 1) (non-boundary case)

After some algebra:

b̂i ∼
∑K

j=1 ρ|i−j|yj∑K
j=1 ρ|i−j|

.

Note that
f̂ (x) = b̂i

for x in the ith bin
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Equivalence to N-W kernel estimator

After some more algebra

ρ|i−j| ∼ exp
{
−|x i − x j |

hn−1/5

}
Thus, f̂n is asymptotically equivalent to the
Nadaraya-Watson estimator with

double exponential kernel H (x) = (1/2) exp(−|x|)
bandwidth hn−1/5
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Nadaraya-Watson kernel estimators

Model:

yi = f (xi) + εi

Nadaraya-Watson estimator:

f̂ (x) =

∑n
i=1 H{(xi − x)/hn}yi∑n

i=1 H{(xi − x)/hn}

H (·) is called the kernel function

hn is the bandwidth
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Binned Nadaraya-Watson kernel estimators

Binned Nadaraya-Watson estimator:

range of the xi divided into K subintervals (bins)

x j is average of xi in ith bin

yj is average of yi such that xi is in the ith bin

f̂ (x) =

∑K
j=1 H{(x j − x)/hn}yj∑K

j=1 H{(x i − x)/hn}
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P-spline equivalent to a Nadaraya-Watson kernel
estimator

Thus, f̂n is asymptotically equivalent to a binned
Nadaraya-Watson estimator with

double exponential kernel H (x) = (1/2) exp(−|x|)

bandwidth hn−1/5

binned bias is negligible if K = Cnγ for γ > 2/5 and

C > 0

“negligible” means o(n−2/5)
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Selecting λ to achieve desired bandwidth

To get bandwidth hn−1/5 we need
λ chosen as

λ ∼ {(Cnγ)(hn−1/5)}2 = (# knots × bandwidth)2



Large Sample
Theory of
Penalized
Splines

David Ruppert

Main Results

Spline Models

Penalized
Splines

Zero-degree
Splines – 1st
order penalty

Zero-degree
Splines – 2nd
order penalty

Linear Splines

Higher order
penalties –
some results

Conclusions

Asymptotic Distribution

For x ∈ (0, 1), as n →∞ we have

n2/5{f̂n(x)− f (x)} ⇒ N{B(x),V(x)}

where

B(x) = h2f (2)(x)

V(x) = 2−1h−1σ2(x)
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Some folklore

Folklore: The number of knots is not important,
provided that it is large enough.

Confirmation:

K ∼ Cnγ with C > 0 and γ > 2/5. (1)

Folklore: The value of the penalty parameter is crucial.

Confirmation:

λ ∼ C 2h2n2γ−2/5 = (# knots × bandwidth)2 (2)

for some h > 0.
Folklore: Modeling bias is small.

Confirmation: Modeling bias does not appear in
asymptotic bias provided (1) and (2) hold.
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Order of a kernel and bias

Moments: kth moment is
∫

xkH (x)dx

Order of kernel: A kernel is of kth order if the first
non-zero moment is the kth

Non-negative kernel: order is at most 2

Bias: bias = O{(bandwidth)k}

Variance:
variance = O

( 1
n×bandwidth

)
and
optimal RMSE = O(n−k/(2k+1))
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2nd order-penalty gives 4th order kernel (in
interior)

Now let m = 2 (2nd order difference penalty)
Assume:

K ∼ Cnγ with C > 0 and γ > 4/9
λ ∼ 4C 4h4n4γ−4/9 ∼ 4(Khn−1/9)4.

Then for any x ∈ (0, 1), when n →∞, we have

n4/9{f̂n(x)− f (x)} ⇒ N{B1(x),V1(x)},

where

B1(x) = (1/24)h4f (4)(x)
∫

x4T (x)dx
V1(x) = h−1 {∫

T 2(x)dx
}

σ2(x)

T (x) is a fourth order kernel
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Mathematical approach

Main technical device uses roots of the polynomial

w(ξ) = λ(1−4ξ+6ξ2−4ξ3+ξ4)+ξ2 = λ(1−ξ)4+ξ2, λ > 0

No real roots and no roots of modulus one

Roots are: r , conj(r), r−1, conj(r)−1 (all distinct)

Use the conjugate pair with modulus less than one
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Asymptotic Kernel

The asymptotic kernel is a linear combination of

exp(−|x|) cos(x) and exp(−|x|) sin(|x|)

Same equivalent kernel as for smoothing splines with a

penalty on the second derivative
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Finite-sample kernels, second-order penalty
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Linear splines need less knots

Assume m = 1 (1st-order difference penalty).

If p = 1 (linear), then require
K ∼ Cnγ with C > 0 and γ > 1/5

When p was 0 (piecewise constant), we required
γ > 2/5

Otherwise, results are the same as for 0-degree and
linear splines

A similar result holds for m = 2.
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Conjectures

Conjecture: For x in the interior:

P-spline ∼ N-W estimator with an 2m-order kernel

Recall: m is order of difference penalty
Kernel order independent of p = degree of spline
Shown to hold for m = 1, 2 and p = 0, 1

p = 1 requires less knots than p = 0
What happens for p > 1?
Conjecture: Still less knots are needed
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Unequally spaced X

Assume G(xt) = t/n for a smooth G with g = G ′

Fit a spline to (Yt , ut) with regression function f ◦G−1

evaluate this estimate at G(x) to estimate f (x)

Equally spaced knots for (Yt , ut) implies knots at sample
quantiles for (Yt , xt)
asymptotic bias is

h2(f ◦G−1)(2){G(x)} =
h2

g2(x)

{
f (2)(x)− f ′(x)g′(x)

g(x)

}
Nadaraya-Watson bias is

h2
{

f (2)(x) +
2f ′(x)g′(x)

g(x)

}
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Additive Models

Talk by Yingxing Li on bivariate additive model:

Session 543

Thursday morning
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We use only one of two potential smoothing
parameters

Both K and λ are potential smoothing parameters

In our asymptotic theory, only λ plays the role of a

smoothing parameter

Could develop a theory where only K plays this role
would be similar to regression spline (λ = 0) theory

One could also choose K and λ so that both have a

non-negligible effect

Our theory mimics actual practice
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Summary

P-spline estimators ≈ binned N-W kernel estimators

The number of knots unimportant if above a minimum
Degree of spline

determines minimum convergence rate for number of knots
does not affect rate of convergence

Order of penalty determines
order of equivalent kernel
convergence rate of estimator

mth order penalty ⇔ smoothing spline with penalty on
mth difference
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Thanks for coming
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