# Fast Covariance Estimation for High-dimensional Functional Data

David Ruppert Apr 7, 2015



# The Team

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Joint work with

- Luo Xiao, postdoc, going to NC State in Fall
  - Primary contributor to this work
- Vadim Zipunnikov, assistant professor
- Ciprian Crainiceanu, professor
  - Is encountering huge data sets.
  - Once gave a presentation "My first 100 Tb of data."
  - Major interest in fast computations with "big data."

All at Johns Hopkins University, Biostatistics.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Example: EEG from Sleep Heart Health Study
- Functional Data
- Splines
- Sandwich Smoother
- FACE (FAst Covariance Estimator)
- SVDS (Singular Value Decomposition Smoothed)
- Return to Example
- Simulation Study
- R implementations

# EEG Example

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Sleep Heart Health Study (SHHS)

- Large-scale study of sleep and its association with health outcomes.
- Thousands of subjects underwent two in-home polysomnograms at multiple visits.
  - Includes EEG at 125 observations/second.
- $\delta$ -power, a summary measure, recorded at 5-second intervals for 4 hours.
  - So we have functional data.
- 12/minute × 60 minutes/hour × 4 hours = 2880 measurements/function.

# Matched Pairs and Missing Data

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- There were 50 matched pairs of controls and sleep apnea cases.
- There are periods of missing data when subjects are awake.

# Mean-Centered Curves for Three Matched Pairs



▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q (2)

# Functional Data

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose we observe  $Y_i(t)$  on the *i*th subject, i = 1, ..., n.

- This function is defined on some interval, say, [0,1].
- The observations are on a fine grid,  $t_1, \ldots, t_J$ .
  - $t_j = (j-1)/(J-1).$
- J = 2880 in our example.
- The observations are the sum of a signal and noise so we see Y<sub>i</sub>(t) = X<sub>i</sub>(t) + ε<sub>i</sub>(t).
  - $X_i$  is the function of interest.
  - $\epsilon_i$  is white noise, that is, uncorrelated, and has variance  $\sigma^2$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mean function:  $\mu(t) = E\{X_i(t)\}$ 

Covariance function of X:  $K(s, t) = cov \{X_i(s), X_i(t)\}$ 

#### Covariance function of Y:

$$cov{Y_i(s), Y_i(t)} = K(s, t) + \sigma^2 I(s = t)$$

• If J is large: can ignore  $\sigma^2$ .

Topic of this talk: Estimation of  $K(\cdot, \cdot)$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Let $\hat{\mu}$ be a smooth estimate of $\mu$ .

Let  $\widehat{\mathbf{K}}$  be the  $J \times J$  sample covariance matrix.

$$\widehat{\mathbf{K}} = n^{-1} \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{\mathsf{T}}$$

where  $\mathbf{Y}_{i} = \left(\{Y_{i}(t_{1}) - \hat{\mu}(t_{1})\}, \dots, \{Y_{i}(t_{J}) - \hat{\mu}(t_{J})\}\right)^{\mathsf{T}}$ .

# Problems with High-dimensional Functional Data

- $\widehat{\mathbf{K}}$  is singular if J > n.
- For large J,  $\widehat{\mathbf{K}}$  may not fit in a computer's memory.
- Smoothing  $\widehat{\mathbf{K}}$  to remove noise can be very computationally intensive.

Solution: PCA: Extract relatively few principal components (eigenvectors).

- The PC's may be of interest in themselves.
- They are also used, for example, in functional regression.

Because of the noise, some type of smoothing is needed in conjunction with PCA. Three possible approaches:

- smooth the principal components of the sample covariance matrix
- smooth the sample covariance matrix before performing PCA
- ${f 3}$  smooth the  $Y_i$  and use the sample covariance of  $\widehat{Y}_i$

Our approach connects (2) and (3).

• In fact, they are equivalent under our approach.

# Smoothing the Sample Covariance Matrix

- We can apply a bivariate smoother to  $\widehat{\mathbf{K}}.$
- Until recently, no bivariate smoother could handle J > 500.
- The recently introduced sandwich smoother can smooth a  $500 \times 500$  matrix but is not adapted to handle, say, J = 10,000.
- This talk introduces FACE = FAst Covariance Estimator.
- FACE is a implementation of the sandwich smoother designed for high-dimensional covariance matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The sandwich smoother and FACE are both spline estimators.

- Splines are piecewise polynomial.
- The polynomial form changes at knots.
- With the degree and knots fixed, splines form a vector space.
- B-splines are a numerically stable basis.

# B-splines of Degree 0, 1, and 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



Each B-spline is a different color.

# Univariate P-splines

Assume: 
$$y_i = m(x_i) + \epsilon_i$$

- Model:  $m(x) = \sum_{k=1}^{c} \beta_k B_k(x)$ 
  - $\beta_k$ ,  $k = 1, \ldots, c$ , are spline coefficients
  - $(B_1(x), \ldots, B_c(x))$  is a B-spline basis
- Estimate by penalized least-squares.
- The penalty is  $\lambda \mathcal{P}$ .
- $\mathcal{P}$  is a difference penalty such as
  - $\mathcal{P} = \sum_{k=2}^{c} (\beta_k \beta_{k-1})^2$  [first differences], or
  - $\mathcal{P} = \sum_{k=3}^{c} \{ (\beta_k \beta_{k-1}) (\beta_{k-1} \beta_{k-2}) \}^2$  [second differences].
- $\lambda$  is a smoothing parameter.

# Penalized Least Squares

The penalized least-squares estimate is  $\hat{\boldsymbol{\beta}} = (\mathbf{B}^{\mathsf{T}}\mathbf{B} + \lambda \mathbf{D}^{\mathsf{T}}\mathbf{D})^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{y}.$ 

- y is the vector of  $y_i$ 's.
- B is the "design matrix."
  - The i, jth element of **B** is the jth basis function evaluated at  $x_i$ .
- D is a matrix such that Dβ contains the differences (of the chosen order) of the vector β.

• So  $\mathcal{P} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{D}^{\mathsf{T}} \mathbf{D} \boldsymbol{\beta}$ .

- $\mathbf{S} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B} + \lambda \mathbf{D}^{\mathsf{T}}\mathbf{D})^{-1}\mathbf{B}^{\mathsf{T}}$  is the smoother (or hat) matrix.
  - The vector of fitted values is  $\widehat{\mathbf{y}} = \mathbf{S}\mathbf{y}$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Bivariate Regression:  $y_i = m(s_i, t_i) + \epsilon_i$ 

Tensor product spline:  $m(s,t) = \sum_{k=1}^{c} \sum_{\ell=1}^{c} \beta_{k,\ell} B_k(s) B_\ell(t)$ 

- $B_1, \ldots, B_c$  is a univariate basis
- In some applications, one needs different bases in the two variables.
- Using the same basis is appropriate for covariance functions where the two variables are the same.

Estimation is by penalized least squares.

# Eilers and Marx's Bivariate P-splines: Penalties

Eilers and Marx's bivariate P-spline uses row penalties and column penalties:

- Arrange the  $\beta_{k,\ell}$  in a matrix.
- The row penalty is a univariate difference penalty applied to each row and then summed over rows.
- The column penalty is analogous.

Penalty can be written as

 $\boldsymbol{\beta}^{\mathsf{T}}(\lambda_1 \mathbf{I} \otimes \mathbf{D}^{\mathsf{T}} \mathbf{D} + \lambda_2 \mathbf{D}^{\mathsf{T}} \mathbf{D} \otimes \mathbf{I}) \boldsymbol{\beta}$  where  $\boldsymbol{\beta}$  is the column vector of the  $\beta_{k,\ell}$ .

# Sandwich Smoother

Suppose the  $y_{ij}$  are observed on a  $J_1 \times J_2$  rectangular grid, e.g., a covariance matrix where  $J_1 = J_2 = J$ .

- Put the  $y_{i,j}$  in a matrix **Y**.
- The sandwich smoother is  $\widehat{\mathbf{Y}} = \mathbf{S}_1 \mathbf{Y} \mathbf{S}_2$ . (Xiao et al., 2013, *JRSS-B*).
- Here  $\mathbf{S}_1$  and  $\mathbf{S}_2$  are univariate smoother matrices.
- Luo discovered the sandwich smoother when studying the asymptotic behavior of the Eilers-Marx bivariate smoother.
- By modifying the Eilers-Marx penalty, the spline estimator was easier to study.
  - The estimator with the modified penalty is equivalent to the sandwich smoother.

### Two Representations of the Sandwich Smoother

Sandwich smoother in matrix notation:

$$\widehat{\mathbf{Y}} = \mathbf{S}_1 \mathbf{Y} \mathbf{S}_2.$$

where  $\widehat{\mathbf{Y}}$  and  $\mathbf{Y}$  are rectangular matrices.

Sandwich smoother in vector notation:

$$\widehat{\mathbf{y}} = (\mathbf{S}_2 \otimes \mathbf{S}_1)\mathbf{y}$$

where  $\mathbf{y} = \operatorname{vec}(\mathbf{Y})$  and  $\widehat{\mathbf{y}} = \operatorname{vec}(\widehat{\mathbf{Y}})$ .

## The Sandwich Formula Penalty

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\begin{aligned} \mathbf{S}_2 \otimes \mathbf{S}_1 &= \left\{ \mathbf{B}_2 (\mathbf{B}_2^T \mathbf{B}_2 + \lambda_2 \mathbf{D}_2^T \mathbf{D}_2)^{-1} \mathbf{B}_2^T \right\} \\ &\otimes \left\{ \mathbf{B}_1 (\mathbf{B}_1^T \mathbf{B}_1 + \lambda_1 \mathbf{D}_1^T \mathbf{D}_1)^{-1} \mathbf{B}_1^T \right\} \\ &= (\mathbf{B}_2 \otimes \mathbf{B}_1) \{ \mathbf{B}_2^T \mathbf{B}_2 \otimes \mathbf{B}_1^T \mathbf{B}_1 + \lambda_1 \mathbf{B}_2^T \mathbf{B}_2 \otimes \mathbf{D}_1^T \mathbf{D}_1 \\ &+ \lambda_2 \mathbf{D}_2^T \mathbf{D}_2 \otimes \mathbf{B}_1^T \mathbf{B}_1 + \lambda_1 \lambda_2 \mathbf{D}_2^T \mathbf{D}_2 \otimes \mathbf{D}_1^T \mathbf{D}_1 \}^{-1} (\mathbf{B}_2 \otimes \mathbf{B}_1)^T. \end{aligned}$ 

The contributions due to the penalty are in red.

## Comparison of the Penalties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For simplicity, assume  $D_1 = D_2 = D$ .

Eilers-Marx penalty matrix:

$$\lambda_1 \mathbf{I} \otimes \mathbf{D}^\mathsf{T} \mathbf{D} + \lambda_2 \mathbf{D}^\mathsf{T} \mathbf{D} \otimes \mathbf{I}$$

Sandwich smoother penalty matrix:

 $\mathbf{P} = \lambda_1 \mathbf{B}_2^T \mathbf{B}_2 \otimes \mathbf{D}^T \mathbf{D} + \lambda_2 \mathbf{D}^T \mathbf{D} \otimes \mathbf{B}_1^T \mathbf{B}_1 + \lambda_1 \lambda_2 \mathbf{D}^T \mathbf{D} \otimes \mathbf{D}^T \mathbf{D}$ 

### Sandwich Smoother for Covariance Matrices

Let  $\widehat{\mathbf{K}}$  be the sample covariance matrix. Recall that

$$\widehat{\mathbf{K}} = \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{\mathsf{T}}$$
(1)

where 
$$\mathbf{Y}_{i} = \{y_{i}(t_{1}) - \hat{\mu}(t_{1}), \dots, y_{i}(t_{J}) - \hat{\mu}(t_{J})\}^{\mathsf{T}}.$$

Applying the sandwich smoother to  $\widehat{\mathbf{K}},$  we obtain

$$\widetilde{\mathbf{K}} = \mathbf{S}\widehat{\mathbf{K}}\mathbf{S}.$$
 (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Substituting (1) into (2), we obtain

$$\widetilde{\mathbf{K}} = \sum_{i=1}^{n} (\mathbf{S}\mathbf{Y}_{i}) (\mathbf{S}\mathbf{Y}_{i})^{\mathsf{T}}.$$

Recall the three possible approaches to smooth PCA:

- smooth the principal components of the sample covariance matrix
- Smooth the sample covariance matrix before performing PCA
- **3** smooth the  $Y_i$  and use the sample covariance of  $\widehat{Y}_i$

From previous frame:

$$\widetilde{\mathbf{K}} = \sum_{i=1}^{n} (\mathbf{S}\mathbf{Y}_i) (\mathbf{S}\mathbf{Y}_i)^{\mathsf{T}}.$$

With the sandwich smoother approaches, (2) and (3) are equivalent.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The sandwich smoother was discovered while studying the asymptotic distribution of bivariate spline estimators.
- It was soon realized that the sandwich estinator could speed computations considerably.
- For fixed smoothing parameters, a bivariate spline can be computed as a generalized linear array model (GLAM) (Currie, Durban, and Eilers, 2006, JRSS-B)
- The bottleneck was in computing the effective degrees of freedom (DF) needed for GCV (Generalized Cross Validtion) to select the smoothing parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The fitted values are computed as

$$\widehat{\mathbf{y}} = \mathbf{S}\mathbf{y}.$$

Here  $\mathbf y$  and  $\widehat{\mathbf y}$  are vectors and  $\mathbf S$  is the smoother matrix.

The degrees of freedom of the smoother is defined as

$$DF = tr(S).$$

For OLS: tr(S) equals the dimension of the model when there is no penalty.

PenLS: tr(S) < dimension of model.

• Because of the penalty, there are effectively less parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Recall: Sandwich smoother in vector notation:

$$\widehat{\mathbf{y}} = (\mathbf{S}_2 \otimes \mathbf{S}_1)\mathbf{y},$$

where  $\mathbf{y} = \operatorname{vec}(\mathbf{Y})$  and  $\widehat{\mathbf{y}} = \operatorname{vec}(\widehat{\mathbf{Y}})$ .

From the vector notation, we see that  $\mathsf{DF} = \mathsf{tr}(\mathbf{S}_2\otimes \mathbf{S}_1) = \mathsf{tr}(\mathbf{S}_2)\mathsf{tr}(\mathbf{S}_1)$ : fast to compute

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The smoother matrix of a univariate spline can be diagonalized

$$\mathbf{S} = \mathbf{O} \operatorname{\mathsf{diag}}\{(1 + \lambda \kappa_k)^{-1}\}\mathbf{O}^\mathsf{T}$$

where O is  $n \times c$ , has orthogonal columns, and does not depend on  $\lambda$ , so

$$\operatorname{tr}(\mathbf{S}) = \operatorname{tr}\left\{\operatorname{diag}\left\{(1+\lambda\kappa_k)^{-1}\right\}\mathbf{O}\mathbf{O}^{\mathsf{T}}\right\} = \sum_{k=1}^{c}(1+\lambda\kappa_k)^{-1}.$$

The diagonalization is performed once and then this sum computes tr(S) for all values of  $(\lambda_1, \lambda_2)$ .

The sandwich estimator applies this method to  $S_1$  and  $S_2$ .

# Computation Time Comparison

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

| $J^2$     | $c_1 c_2$ | Sandwich smoother | E-M/GLAM           | TPRS    |
|-----------|-----------|-------------------|--------------------|---------|
|           |           |                   |                    |         |
| $20^{2}$  | $10^{2}$  | 0.06(0.24)        | 4.09(19.74)        | 0.53    |
| $40^{2}$  | $20^{2}$  | 0.08(0.30)        | 94.76(344.13)      | 19.50   |
| $80^{2}$  | $35^{2}$  | 0.13(0.45)        | 1379.21(5487.33)   | 1032.07 |
| $300^{2}$ | $42^{2}$  | 0.18(0.58)        | 3798.23(15192.92)  | -       |
| $500^{2}$ | $57^{2}$  | 0.32(0.89)        | 21023.44(84093.76) | -       |

For the sandwich smoother and E-M/GLAM, the times are for a  $20 \times 20$   $(40 \times 40)$  grid of  $\lambda$ . The covariance matrix is  $J \times J$ .  $c_i$  is the dimension of the *i*th basis.

TPRS = thin-plate regression spline using bam() (faster version of gam()) in the mgcv package.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall the sandwich smoother of the sample covariance matrix:

 $\widetilde{\mathbf{K}} = \mathbf{S}\widehat{\mathbf{K}}\mathbf{S}.$ 

All four matrices are  $J \times J$ .

The rank of  $\widetilde{\mathbf{K}}$  is at most  $\min(J, c)$  where

- c is the dimension of the spline basis so  $c = \operatorname{rank}(\mathbf{S})$ . We are interested in the case where  $c \ll J$ .
  - Then most of the eigenvalues of  $\widetilde{\mathbf{K}}$  are 0.
  - We want an efficient method to find the non-zero eigenvalues and their eigenvectors.

# Fast PCA Using FACE

Start with an eigen-decomposition:  $(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1/2}\mathbf{P}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1/2} = \mathbf{U}\mathsf{diag}(\mathbf{s})\mathbf{U}^{\mathsf{T}}.$  ( $c \times c$  matrices.)

Then define  $\mathbf{A}_S = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1/2}\mathbf{U}$ . (Has orthogonal columns and does not depend on  $\lambda$ .)

Then the smoother matrix can be represented as  $\mathbf{S} = \mathbf{A}_S \boldsymbol{\Sigma}_S \mathbf{A}_S^\mathsf{T}$  where  $\boldsymbol{\Sigma}_S = \{\mathbf{I}_c + \lambda \operatorname{diag}(\mathbf{s})\}^{-1}$   $(c \times c)$ .  $\widetilde{\mathbf{K}} = \mathbf{S} \widehat{\mathbf{K}} \mathbf{S} = \mathbf{A}_S \left( n^{-1} \boldsymbol{\Sigma}_S \widetilde{\mathbf{Y}} \widetilde{\mathbf{Y}}^\mathsf{T} \boldsymbol{\Sigma}_S \right) \mathbf{A}_S^\mathsf{T}$  where  $\widetilde{\mathbf{Y}} = \mathbf{A}_S^\mathsf{T} \mathbf{Y}$ .  $\left( n^{-1} \boldsymbol{\Sigma}_S \widetilde{\mathbf{Y}} \widetilde{\mathbf{Y}}^\mathsf{T} \boldsymbol{\Sigma}_S \right) = \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^\mathsf{T}$ . (Another  $c \times c$ eigendecomposition)

We arrive at the eigendecomposition of  $\widetilde{\mathbf{K}}$ :  $\widetilde{\mathbf{K}} = (\mathbf{A}_S \mathbf{A}) \Sigma (\mathbf{A}_S \mathbf{A})^{\mathsf{T}}.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In the last frame we found the eigendecomposition of  $\widetilde{\mathbf{K}}$ : $\widetilde{\mathbf{K}} = (\mathbf{A}_S \mathbf{A}) \boldsymbol{\Sigma} (\mathbf{A}_S \mathbf{A})^\mathsf{T}.$ 

- $\Sigma$  is  $c \times c$  and diagonal.
  - The diagonal elements are the nontrivial eigenvalues of  $\widetilde{\mathbf{K}}$ .
- $(\mathbf{A}_{S}\mathbf{A})$  is  $J \times c$  with orthogonal columns.
  - These are the associated eigenvectors of  $\widetilde{\mathbf{K}}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Pooled generalized cross validation: Select $\lambda$ by minimizing

$$\operatorname{PGCV}(\lambda) = \frac{\sum_{j=1}^{J} \|\mathbf{Y}_{i} - \mathbf{S}\mathbf{Y}_{i}\|^{2}}{\{1 - \operatorname{tr}(\mathbf{S})/J\}^{2}}$$

We have developed a fast method to compute  $PGCV(\lambda)$ .

#### PC Scores

Let  $\psi_1(t), \ldots, \psi_N(t)$  be the eigenvectors extracted by PCA. Then the truncated Karhunen-Loève decompositon is

$$X_i = \sum_{k=1}^N \xi_{i,k} \psi_k(t)$$

where the score  $\xi_{i,k}$  is given by

$$\xi_{i,k} = \int X_i(t)\psi_i(t)dt.$$

• We have develop fast methods to estimate the scores by numerical integration or BLUPs.

# FACE and Missing Data

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

When data are missing, we alternate between

- Smoothing with FACE
- Prediction of missing values (imputation)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\mathsf{SVDS}=\mathsf{Singular}$  Value Decomposition with Smoothing.

Let  $\mathbf{Y}$  be the  $J \times n$  data matrix.



- The columns of  ${\bf Y}$  are the mean-centered functions.
- U has orthogonal columns.
- D is diagonal.
- V is orthogonal.

# SVDS continued

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From previous slide:



- The columns of U contain the eigenvectors of  $\widehat{K}$ .
  - These are smoothed by penalized splines.
- The diagonal elements of D contain the square-roots of the non-zero eigenvalues.
  - These are squared.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We return to the SHHS example.

The model for the two curves for the *i*th matched pair is:

$$Y_{iA}(t) = \mu_A(t) + X_i(t) + U_{iA}(t) + \epsilon_{iA}(t) Y_{iC}(t) = \mu_C(t) + X_i(t) + U_{iC}(t) + \epsilon_{iC}(t)$$

- "A" = apnea and "C" = control.
- $\mu_A$  and  $\mu_B$  are the mean curves.
- $X_i(t)$  captures the between-subjects correlation and has correlation function  $K_X(\cdot, \cdot)$ .
- $U_{iA}$  and  $U_{iC}$  are independent and have covariance  $K_U(\cdot, \cdot)$ .

# Three Estimators

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We applied three estimators to the SHHS data:

- Thin-plate regression spline (TPRS) using bam() in the mgcv package.
  - Only 35 knots.
  - Running time was 3 hours.
- FACE
  - 100 knots
  - less than 10 seconds
- SVDS

# Estimates of Eigenvectors 1 and 2



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

# Estimates of Eigenvectors 3 and 4



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# Simulations Setup

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- J = 3,000
- n = 50
- eigenfunctions were:

 $\left\{\sqrt{2}\sin(2\pi t), \sqrt{2}\cos(2\pi t), \sqrt{2}\sin(4\pi t), \sqrt{2}\cos(4\pi t)\right\}$ 

 missing data: Sections of 0.065J observations were missing at random.

# Simulations: Boxplots of Estimated Eigenvalues



# Estimating Eigenvalues: 100 $\times$ Average Squared Errors

| Eigenvalue | SVDS FACE |      | FACE (incomplete data) |  |  |
|------------|-----------|------|------------------------|--|--|
| 1          | 4.00      | 3.39 | 7.34                   |  |  |
| 2          | 1.27      | 0.82 | 1.61                   |  |  |
| 3          | 0.62      | 0.22 | 0.41                   |  |  |
| 4          | 0.62      | 0.07 | 0.08                   |  |  |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Computation Time in Seconds

| J      | Ι   | FACE                 | FACE                   | SVDS                 | SVDS                   | Sandwich                | Sandwich               |
|--------|-----|----------------------|------------------------|----------------------|------------------------|-------------------------|------------------------|
|        |     | $100 \; {\rm knots}$ | $500 \ \mathrm{knots}$ | $100 \; {\rm knots}$ | $500 \ \mathrm{knots}$ | $100 \; \mathrm{knots}$ | $500 \ \mathrm{knots}$ |
| 3,000  | 50  | 0.27                 | 8.61                   | 1.40                 | 36.38                  | 86.89                   | 124.78                 |
|        | 500 | 0.76                 | 13.61                  | 6.28                 | 42.07                  | 93.94                   | 131.82                 |
| 5,000  | 50  | 0.48                 | 13.47                  | 2.27                 | 62.99                  | 433.33                  | 467.83                 |
|        | 500 | 1.37                 | 18.01                  | 8.11                 | 73.16                  | 509.67                  | 570.79                 |
| 10,000 | 50  | 0.95                 | 23.88                  | 4.52                 | 114.57                 | -                       | -                      |
|        | 500 | 3.07                 | 35.98                  | 20.91                | 133.57                 | -                       | -                      |

#### Simulations: Estimated Eigenfunctions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



True = Blue; FACE = red; FACE with incomplete data = green; SVDS = Black

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In the refund (Regression with Functional Data) package:

- fbps(): sandwich smoother
- fpca.face(): functional PCA by FACE
- pfr(..., smooth.option = "fpca.face"): penalized functional regression with the functional covariance represented by the PC basis

# Thanks for coming!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで