Fast Covariance Estimation for High-dimensional Functional Data

David Ruppert
Apr 7, 2015

The Team

Joint work with

- Luo Xiao, postdoc, going to NC State in Fall
- Primary contributor to this work
- Vadim Zipunnikov, assistant professor
- Ciprian Crainiceanu, professor
- Is encountering huge data sets.
- Once gave a presentation "My first 100 Tb of data."
- Major interest in fast computations with "big data."

All at Johns Hopkins University, Biostatistics.

Outline

- Example: EEG from Sleep Heart Health Study
- Functional Data
- Splines
- Sandwich Smoother
- FACE (FAst Covariance Estimator)
- SVDS (Singular Value Decomposition Smoothed)
- Return to Example
- Simulation Study
- R implementations

EEG Example

Sleep Heart Health Study (SHHS)

- Large-scale study of sleep and its association with health outcomes.
- Thousands of subjects underwent two in-home polysomnograms at multiple visits.
- Includes EEG at 125 observations/second.
- δ-power, a summary measure, recorded at 5 -second intervals for 4 hours.
- So we have functional data.
- $12 /$ minute $\times 60$ minutes $/$ hour $\times 4$ hours $=2880$ measurements/function.

Matched Pairs and Missing Data

- There were 50 matched pairs of controls and sleep apnea
cases.
- There are periods of missing data when subjects are awake.

Mean-Centered Curves for Three Matched Pairs

Functional Data

Suppose we observe $Y_{i}(t)$ on the i th subject, $i=1, \ldots, n$.

- This function is defined on some interval, say, $[0,1]$.
- The observations are on a fine grid, t_{1}, \ldots, t_{J}.
- $t_{j}=(j-1) /(J-1)$.
- $J=2880$ in our example.
- The observations are the sum of a signal and noise so we see $Y_{i}(t)=X_{i}(t)+\epsilon_{i}(t)$.
- X_{i} is the function of interest.
- ϵ_{i} is white noise, that is, uncorrelated, and has variance σ^{2}.

Mean and Covariance Functions

Mean function: $\mu(t)=E\left\{X_{i}(t)\right\}$
Covariance function of $X: K(s, t)=\operatorname{cov}\left\{X_{i}(s), X_{i}(t)\right\}$

Covariance function of Y :
$\operatorname{cov}\left\{Y_{i}(s), Y_{i}(t)\right\}=K(s, t)+\sigma^{2} I(s=t)$

- If J is large: can ignore σ^{2}.

Topic of this talk: Estimation of $K(\cdot, \cdot)$

Sample Covariance Matrix

Let $\widehat{\mu}$ be a smooth estimate of μ.

Let $\widehat{\mathbf{K}}$ be the $J \times J$ sample covariance matrix.

$$
\widehat{\mathbf{K}}=n^{-1} \sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{\top}
$$

where $\mathbf{Y}_{i}=\left(\left\{Y_{i}\left(t_{1}\right)-\widehat{\mu}\left(t_{1}\right)\right\}, \ldots,\left\{Y_{i}\left(t_{J}\right)-\widehat{\mu}\left(t_{J}\right)\right\}\right)^{\top}$.

Problems with High-dimensional Functional Data

- $\widehat{\mathbf{K}}$ is singular if $J>n$.
- For large $J, \widehat{\mathbf{K}}$ may not fit in a computer's memory.
- Smoothing $\widehat{\mathbf{K}}$ to remove noise can be very computationally intensive.

Solution: PCA: Extract relatively few principal components (eigenvectors).

- The PC's may be of interest in themselves.
- They are also used, for example, in functional regression.

Estimating the Eigenvectors

Because of the noise, some type of smoothing is needed in conjunction with PCA. Three possible approaches:
(1) smooth the principal components of the sample covariance matrix
(2) smooth the sample covariance matrix before performing PCA
(3) smooth the Y_{i} and use the sample covariance of \widehat{Y}_{i}

Our approach connects (2) and (3).

- In fact, they are equivalent under our approach.

Smoothing the Sample Covariance Matrix

- We can apply a bivariate smoother to $\widehat{\mathbf{K}}$.
- Until recently, no bivariate smoother could handle $J>500$.
- The recently introduced sandwich smoother can smooth a 500×500 matrix but is not adapted to handle, say, $J=10,000$.
- This talk introduces FACE $=$ FAst Covariance Estimator.
- FACE is a implementation of the sandwich smoother designed for high-dimensional covariance matrices.

Splines

The sandwich smoother and FACE are both spline estimators.

- Splines are piecewise polynomial.
- The polynomial form changes at knots.
- With the degree and knots fixed, splines form a vector space.
- B-splines are a numerically stable basis.

B-splines of Degree 0,1 , and 2

Each B-spline is a different color.

Univariate P-splines

Assume: $y_{i}=m\left(x_{i}\right)+\epsilon_{i}$

- Model: $m(x)=\sum_{k=1}^{c} \beta_{k} B_{k}(x)$
- $\beta_{k}, k=1, \ldots, c$, are spline coefficients
- $\left(B_{1}(x), \ldots, B_{c}(x)\right)$ is a B -spline basis
- Estimate by penalized least-squares.
- The penalty is $\lambda \mathcal{P}$.
- \mathcal{P} is a difference penalty such as
- $\mathcal{P}=\sum_{k=2}^{c}\left(\beta_{k}-\beta_{k-1}\right)^{2}$ [first differences], or
- $\mathcal{P}=\sum_{k=3}^{c}\left\{\left(\beta_{k}-\beta_{k-1}\right)-\left(\beta_{k-1}-\beta_{k-2}\right)\right\}^{2}$ [second differences].
- λ is a smoothing parameter.

Penalized Least Squares

The penalized least-squares estimate is
$\widehat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{B}^{\top} \mathbf{y}$.

- \mathbf{y} is the vector of $y_{i}{ }^{\prime}$ s.
- \mathbf{B} is the "design matrix."
- The i, j th element of \mathbf{B} is the j th basis function evaluated at x_{i}.
- \mathbf{D} is a matrix such that $\mathbf{D} \beta$ contains the differences (of the chosen order) of the vector β.
- So $\mathcal{P}=\beta^{\top} \mathbf{D}^{\top} \mathbf{D} \beta$.
- $\mathbf{S}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{B}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{B}^{\top}$ is the smoother (or hat) matrix.
- The vector of fitted values is $\widehat{\mathbf{y}}=\mathbf{S y}$.

Eilers and Marx's Bivariate P-splines

Bivariate Regression: $y_{i}=m\left(s_{i}, t_{i}\right)+\epsilon_{i}$
Tensor product spline: $m(s, t)=\sum_{k=1}^{c} \sum_{\ell=1}^{c} \beta_{k, l} B_{k}(s) B_{\ell}(t)$

- B_{1}, \ldots, B_{c} is a univariate basis
- In some applications, one needs different bases in the two variables.
- Using the same basis is appropriate for covariance functions where the two variables are the same.

Estimation is by penalized least squares.

Eilers and Marx's Bivariate P-splines: Penalties

Eilers and Marx's bivariate P -spline uses row penalties and column penalties:

- Arrange the $\beta_{k, \ell}$ in a matrix.
- The row penalty is a univariate difference penalty applied to each row and then summed over rows.
- The column penalty is analogous.

Penalty can be written as
$\beta^{\top}\left(\lambda_{1} \mathbf{I} \otimes \mathbf{D}^{\top} \mathbf{D}+\lambda_{2} \mathbf{D}^{\top} \mathbf{D} \otimes \mathbf{I}\right) \beta$ where β is the column vector of the $\beta_{k, \ell}$.

Sandwich Smoother

Suppose the $y_{i j}$ are observed on a $J_{1} \times J_{2}$ rectangular grid, e.g., a covariance matrix where $J_{1}=J_{2}=J$.

- Put the $y_{i, j}$ in a matrix \mathbf{Y}.
- The sandwich smoother is $\widehat{\mathbf{Y}}=\mathbf{S}_{1} \mathbf{Y} \mathbf{S}_{2}$. (Xiao et al., 2013, JRSS-B).
- Here \mathbf{S}_{1} and \mathbf{S}_{2} are univariate smoother matrices.
- Luo discovered the sandwich smoother when studying the asymptotic behavior of the Eilers-Marx bivariate smoother.
- By modifying the Eilers-Marx penalty, the spline estimator was easier to study.
- The estimator with the modified penalty is equivalent to the sandwich smoother.

Two Representations of the Sandwich Smoother

Sandwich smoother in matrix notation:

$$
\widehat{\mathbf{Y}}=\mathbf{S}_{1} \mathbf{Y S}_{2} .
$$

where $\widehat{\mathbf{Y}}$ and \mathbf{Y} are rectangular matrices.

Sandwich smoother in vector notation:

$$
\hat{\mathbf{y}}=\left(\mathbf{S}_{2} \otimes \mathbf{S}_{1}\right) \mathbf{y}
$$

where $\mathbf{y}=\operatorname{vec}(\mathbf{Y})$ and $\widehat{\mathbf{y}}=\operatorname{vec}(\widehat{\mathbf{Y}})$.

The Sandwich Formula Penalty

$$
\begin{aligned}
\mathbf{S}_{2} \otimes \mathbf{S}_{1} & =\left\{\mathbf{B}_{2}\left(\mathbf{B}_{2}^{T} \mathbf{B}_{2}+\lambda_{2} \mathbf{D}_{2}^{T} \mathbf{D}_{2}\right)^{-1} \mathbf{B}_{2}^{T}\right\} \\
& \otimes\left\{\mathbf{B}_{1}\left(\mathbf{B}_{1}^{T} \mathbf{B}_{1}+\lambda_{1} \mathbf{D}_{1}^{T} \mathbf{D}_{1}\right)^{-1} \mathbf{B}_{1}^{T}\right\} \\
& =\left(\mathbf{B}_{2} \otimes \mathbf{B}_{1}\right)\left\{\mathbf{B}_{2}^{T} \mathbf{B}_{2} \otimes \mathbf{B}_{1}^{T} \mathbf{B}_{1}+\lambda_{1} \mathbf{B}_{2}^{T} \mathbf{B}_{2} \otimes \mathbf{D}_{1}^{T} \mathbf{D}_{1}\right. \\
& \left.+\lambda_{2} \mathbf{D}_{2}^{T} \mathbf{D}_{2} \otimes \mathbf{B}_{1}^{T} \mathbf{B}_{1}+\lambda_{1} \lambda_{2} \mathbf{D}_{2}^{T} \mathbf{D}_{2} \otimes \mathbf{D}_{1}^{T} \mathbf{D}_{1}\right\}^{-1}\left(\mathbf{B}_{2} \otimes \mathbf{B}_{1}\right)^{T} .
\end{aligned}
$$

The contributions due to the penalty are in red.

Comparison of the Penalties

For simplicity, assume $\mathbf{D}_{1}=\mathbf{D}_{2}=\mathbf{D}$.

Eilers-Marx penalty matrix:

$$
\lambda_{1} \mathbf{I} \otimes \mathbf{D}^{\top} \mathbf{D}+\lambda_{2} \mathbf{D}^{\top} \mathbf{D} \otimes \mathbf{I}
$$

Sandwich smoother penalty matrix:

$$
\mathbf{P}=\lambda_{1} \mathbf{B}_{2}^{T} \mathbf{B}_{2} \otimes \mathbf{D}^{T} \mathbf{D}+\lambda_{2} \mathbf{D}^{T} \mathbf{D} \otimes \mathbf{B}_{1}^{T} \mathbf{B}_{1}+\lambda_{1} \lambda_{2} \mathbf{D}^{T} \mathbf{D} \otimes \mathbf{D}^{T} \mathbf{D}
$$

Sandwich Smoother for Covariance Matrices

Let $\widehat{\mathbf{K}}$ be the sample covariance matrix. Recall that

$$
\begin{equation*}
\widehat{\mathbf{K}}=\sum_{i=1}^{n} \mathbf{Y}_{i} \mathbf{Y}_{i}^{\top} \tag{1}
\end{equation*}
$$

where $\mathbf{Y}_{i}=\left\{y_{i}\left(t_{1}\right)-\widehat{\mu}\left(t_{1}\right), \ldots, y_{i}\left(t_{J}\right)-\widehat{\mu}\left(t_{J}\right)\right\}^{\top}$.
Applying the sandwich smoother to $\widehat{\mathbf{K}}$, we obtain

$$
\begin{equation*}
\widetilde{\mathbf{K}}=\mathbf{S} \widehat{\mathbf{K}} \mathbf{S} . \tag{2}
\end{equation*}
$$

Substituting (1) into (2), we obtain

$$
\widetilde{\mathbf{K}}=\sum_{i=1}^{n}\left(\mathbf{S Y}_{i}\right)\left(\mathbf{S Y}_{i}\right)^{\top} .
$$

Smooth PCA Revised

Recall the three possible approaches to smooth PCA:
(1) smooth the principal components of the sample covariance matrix
(2) smooth the sample covariance matrix before performing PCA
(3) smooth the Y_{i} and use the sample covariance of \widehat{Y}_{i}

From previous frame:

$$
\widetilde{\mathbf{K}}=\sum_{i=1}^{n}\left(\mathbf{S Y}_{i}\right)\left(\mathbf{S Y}_{i}\right)^{\top} .
$$

With the sandwich smoother approaches, (2) and (3) are equivalent.

The Sandwich Smoother is Fast

- The sandwich smoother was discovered while studying the asymptotic distribution of bivariate spline estimators.
- It was soon realized that the sandwich estinator could speed computations considerably.
- For fixed smoothing parameters, a bivariate spline can be computed as a generalized linear array model (GLAM) (Currie, Durban, and Eilers, 2006, JRSS-B)
- The bottleneck was in computing the effective degrees of freedom (DF) needed for GCV (Generalized Cross Validtion) to select the smoothing parameters.

Smoother Matrices and DF

The fitted values are computed as

$$
\widehat{\mathbf{y}}=\mathrm{Sy} .
$$

Here \mathbf{y} and $\widehat{\mathbf{y}}$ are vectors and \mathbf{S} is the smoother matrix.
The degrees of freedom of the smoother is defined as

$$
\mathrm{DF}=\operatorname{tr}(\mathbf{S})
$$

For OLS: $\operatorname{tr}(\mathbf{S})$ equals the dimension of the model when there is no penalty.

PenLS: $\operatorname{tr}(\mathbf{S})<$ dimension of model.

- Because of the penalty, there are effectively less parameters.

DF for the Sandwich Smoother

Recall: Sandwich smoother in vector notation:

$$
\widehat{\mathbf{y}}=\left(\mathbf{S}_{2} \otimes \mathbf{S}_{1}\right) \mathbf{y},
$$

where $\mathbf{y}=\operatorname{vec}(\mathbf{Y})$ and $\widehat{\mathbf{y}}=\operatorname{vec}(\widehat{\mathbf{Y}})$.
From the vector notation, we see that $\mathrm{DF}=\operatorname{tr}\left(\mathbf{S}_{2} \otimes \mathbf{S}_{1}\right)=$ $\operatorname{tr}\left(\mathbf{S}_{2}\right) \operatorname{tr}\left(\mathbf{S}_{1}\right)$: fast to compute

DF for a Univariate Spline

The smoother matrix of a univariate spline can be diagonalized

$$
\mathbf{S}=\mathbf{O} \operatorname{diag}\left\{\left(1+\lambda \kappa_{k}\right)^{-1}\right\} \mathbf{O}^{\top}
$$

where \mathbf{O} is $n \times c$, has orthogonal columns, and does not depend on λ, so

$$
\operatorname{tr}(\mathbf{S})=\operatorname{tr}\left\{\operatorname{diag}\left\{\left(1+\lambda \kappa_{k}\right)^{-1}\right\} \mathbf{O O}^{\top}\right\}=\sum_{k=1}^{c}\left(1+\lambda \kappa_{k}\right)^{-1}
$$

The diagonalization is performed once and then this sum computes $\operatorname{tr}(\mathbf{S})$ for all values of $\left(\lambda_{1}, \lambda_{2}\right)$.

The sandwich estimator applies this method to S_{1} and S_{2}.

Computation Time Comparison

$J^{2} \quad c_{1} c_{2} \quad$ Sandwich smoother E-M/GLAM
TPRS

20^{2}	10^{2}	$0.06(0.24)$	$4.09(19.74)$	0.53
40^{2}	20^{2}	$0.08(0.30)$	$94.76(344.13)$	19.50
80^{2}	35^{2}	$0.13(0.45)$	$1379.21(5487.33)$	1032.07
300^{2}	42^{2}	$0.18(0.58)$	$3798.23(15192.92)$	-
500^{2}	57^{2}	$0.32(0.89)$	$21023.44(84093.76)$	-

For the sandwich smoother and E-M/GLAM, the times are for a 20×20 (40×40) grid of λ. The covariance matrix is $J \times J . c_{i}$ is the dimension of the i th basis.

TPRS = thin-plate regression spline using bam() (faster version of gam()) in the mgcv package.

FACE: FAst Covariance Estimation

Recall the sandwich smoother of the sample covariance matrix:

$$
\widetilde{\mathbf{K}}=\mathbf{S} \widehat{\mathbf{K}} \mathbf{S}
$$

All four matrices are $J \times J$.

The rank of $\widetilde{\mathbf{K}}$ is at most $\min (J, c)$ where

- c is the dimension of the spline basis so $c=\operatorname{rank}(\mathbf{S})$.

We are interested in the case where $c \ll J$.

- Then most of the eigenvalues of $\widetilde{\mathbf{K}}$ are 0 .
- We want an efficient method to find the non-zero eigenvalues and their eigenvectors.

Fast PCA Using FACE

Start with an eigen-decomposition:
$\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1 / 2} \mathbf{P}\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1 / 2}=\mathbf{U d i a g}(\mathbf{s}) \mathbf{U}^{\top} .(c \times c$ matrices. $)$
Then define $\mathbf{A}_{S}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1 / 2} \mathbf{U}$. (Has orthogonal columns and does not depend on λ.)

Then the smoother matrix can be represented as $\mathbf{S}=\mathbf{A}_{S} \Sigma_{S} \mathbf{A}_{S}^{\top}$ where $\boldsymbol{\Sigma}_{S}=\left\{\mathbf{I}_{c}+\lambda \operatorname{diag}(\mathbf{s})\right\}^{-1}(c \times c)$.
$\widetilde{\mathbf{K}}=\mathbf{S K} \mathbf{S}=\mathbf{A}_{S}\left(n^{-1} \boldsymbol{\Sigma}_{S} \widetilde{\mathbf{Y}} \widetilde{\mathbf{Y}}^{\top} \Sigma_{S}\right) \mathbf{A}_{S}^{\top}$ where $\widetilde{\mathbf{Y}}=\mathbf{A}_{S}^{\top} \mathbf{Y}$.
$\left(n^{-1} \boldsymbol{\Sigma}_{S} \widetilde{\mathbf{Y}} \widetilde{\mathbf{Y}}^{\boldsymbol{\top}} \boldsymbol{\Sigma}_{S}\right)=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\boldsymbol{\top}}$. (Another $c \times c$
eigendecomposition)
We arrive at the eigendecomposition of $\widetilde{\mathbf{K}}$:
$\widetilde{\mathbf{K}}=\left(\mathbf{A}_{S} \mathbf{A}\right) \boldsymbol{\Sigma}\left(\mathbf{A}_{S} \mathbf{A}\right)^{\top}$.

Eigendecomposition of $\widetilde{\mathbf{K}}$

In the last frame we found the eigendecomposition of $\widetilde{\mathbf{K}}$:
$\widetilde{\mathbf{K}}=\left(\mathbf{A}_{S} \mathbf{A}\right) \boldsymbol{\Sigma}\left(\mathbf{A}_{S} \mathbf{A}\right)^{\top}$.

- Σ is $c \times c$ and diagonal.
- The diagonal elements are the nontrivial eigenvalues of $\widetilde{\mathbf{K}}$.
- $\left(\mathbf{A}_{S} \mathbf{A}\right)$ is $J \times c$ with orthogonal columns.
- These are the associated eigenvectors of $\widetilde{\mathbf{K}}$.

Selecting the Smoothing Parameters

Pooled generalized cross validation: Select λ by minimizing

$$
\operatorname{PGCV}(\lambda)=\frac{\sum_{j=1}^{J}\left\|\mathbf{Y}_{i}-\mathbf{S Y}_{i}\right\|^{2}}{\{1-\operatorname{tr}(\mathbf{S}) / J\}^{2}}
$$

We have developed a fast method to compute $\operatorname{PGCV}(\lambda)$.

Let $\psi_{1}(t), \ldots, \psi_{N}(t)$ be the eigenvectors extracted by PCA.
Then the truncated Karhunen-Loève decompositon is

$$
X_{i}=\sum_{k=1}^{N} \xi_{i, k} \psi_{k}(t)
$$

where the score $\xi_{i, k}$ is given by

$$
\xi_{i, k}=\int X_{i}(t) \psi_{i}(t) d t
$$

- We have develop fast methods to estimate the scores by numerical integration or BLUPs.

FACE and Missing Data

When data are missing, we alternate between

- Smoothing with FACE
- Prediction of missing values (imputation)

SVDS $=$ Singular Value Decomposition with Smoothing.
Let \mathbf{Y} be the $J \times n$ data matrix.

$$
\underbrace{\mathbf{Y}}_{J \times n}=\underbrace{\mathrm{U}}_{J \times n} \underbrace{\mathrm{D}}_{n \times n} \underbrace{\mathbf{V}^{\top}}_{n \times n} .
$$

- The columns of \mathbf{Y} are the mean-centered functions.
- U has orthogonal columns.
- D is diagonal.
- V is orthogonal.

SVDS continued

From previous slide:

$$
\underbrace{\mathbf{Y}}_{J \times n}=\underbrace{\mathbf{U}}_{J \times n} \underbrace{\mathbf{D}}_{n \times n} \underbrace{\mathbf{V}^{\mathrm{T}}}_{n \times n}
$$

- The columns of \mathbf{U} contain the eigenvectors of \widehat{K}.
- These are smoothed by penalized splines.
- The diagonal elements of \mathbf{D} contain the square-roots of the non-zero eigenvalues.
- These are squared.

SHHS Study: Model for Matched Pairs

We return to the SHHS example.
The model for the two curves for the i th matched pair is:

$$
\begin{aligned}
& Y_{i A}(t)=\mu_{A}(t)+X_{i}(t)+U_{i A}(t)+\epsilon_{i A}(t) \\
& Y_{i C}(t)=\mu_{C}(t)+X_{i}(t)+U_{i C}(t)+\epsilon_{i C}(t)
\end{aligned}
$$

- "A" = apnea and "C" = control.
- μ_{A} and μ_{B} are the mean curves.
- $X_{i}(t)$ captures the between-subjects correlation and has correlation function $K_{X}(\cdot, \cdot)$.
- $U_{i A}$ and $U_{i C}$ are independent and have covariance $K_{U}(\cdot, \cdot)$.

Three Estimators

We applied three estimators to the SHHS data:

- Thin-plate regression spline (TPRS) using bam() in the mgcv package.
- Only 35 knots.
- Running time was 3 hours.
- FACE
- 100 knots
- less than 10 seconds
- SVDS

Estimates of Eigenvectors 1 and 2

Estimates of Eigenvectors 3 and 4

Simulations Setup

- $J=3,000$
- $n=50$
- eigenfunctions were:

$$
\{\sqrt{2} \sin (2 \pi t), \sqrt{2} \cos (2 \pi t), \sqrt{2} \sin (4 \pi t), \sqrt{2} \cos (4 \pi t)\}
$$

- missing data: Sections of 0.065 J observations were missing at random.

Simulations: Boxplots of Estimated Eigenvalues

Estimating Eigenvalues: $100 \times$ Average Squared Errors

Eigenvalue SVDS FACE FACE (incomplete data)

1	4.00	3.39	7.34
2	1.27	0.82	1.61
3	0.62	0.22	0.41
4	0.62	0.07	0.08

Computation Time in Seconds

J	I	FACE	FACE	SVDS	SVDS	Sandwich	Sandwich
		100 knots	500 knots	SV0 knots	500 knots	100 knots	500 knots
3,000	50	0.27	8.61	1.40	36.38	86.89	124.78
	500	0.76	13.61	6.28	42.07	93.94	131.82
5,000	50	0.48	13.47	2.27	62.99	433.33	467.83
	500	1.37	18.01	8.11	73.16	509.67	570.79
10,000	50	0.95	23.88	4.52	114.57	-	-
	500	3.07	35.98	20.91	133.57	-	-

Simulations: Estimated Eigenfunctions

True $=$ Blue; FACE $=$ red; FACE with incomplete data $=$ green; SVDS = Black

R functions

In the refund (Regression with Functional Data) package:

- fbps(): sandwich smoother
- fpca.face(): functional PCA by FACE
- $\operatorname{pfr}(\ldots$, smooth.option $=$ "fpca.face"): penalized functional regression with the functional covariance represented by the PC basis

Thanks for coming!

