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The Team

Joint work with
• Luo Xiao, postdoc, going to NC State in Fall

• Primary contributor to this work

• Vadim Zipunnikov, assistant professor
• Ciprian Crainiceanu, professor

• Is encountering huge data sets.
• Once gave a presentation “My first 100 Tb of data.”
• Major interest in fast computations with “big data.”

All at Johns Hopkins University, Biostatistics.
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EEG Example

Sleep Heart Health Study (SHHS)

• Large-scale study of sleep and its association with health
outcomes.

• Thousands of subjects underwent two in-home
polysomnograms at multiple visits.

• Includes EEG at 125 observations/second.

• δ-power, a summary measure, recorded at 5-second
intervals for 4 hours.

• So we have functional data.

• 12/minute × 60 minutes/hour × 4 hours = 2880
measurements/function.



Matched Pairs and Missing Data

• There were 50 matched pairs of controls and sleep apnea

cases.

• There are periods of missing data when subjects are

awake.



Mean-Centered Curves for Three Matched Pairs
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Functional Data

Suppose we observe Yi(t) on the ith subject, i = 1, . . . , n.

• This function is defined on some interval, say, [0,1].
• The observations are on a fine grid, t1, . . . , tJ .

• tj = (j − 1)/(J − 1).

• J = 2880 in our example.

• The observations are the sum of a signal and noise so we

see Yi(t) = Xi(t) + εi(t).

• Xi is the function of interest.

• εi is white noise, that is, uncorrelated, and has variance σ2.



Mean and Covariance Functions

Mean function: µ(t) = E{Xi(t)}

Covariance function of X : K (s, t) = cov{Xi(s),Xi(t)}

Covariance function of Y :

cov{Yi(s),Yi(t)} = K (s, t) + σ2I (s = t)

• If J is large: can ignore σ2.

Topic of this talk: Estimation of K (·, ·)



Sample Covariance Matrix

Let µ̂ be a smooth estimate of µ.

Let K̂ be the J × J sample covariance matrix.

K̂ = n−1
n∑

i=1
YiYT

i

where Yi =
(
{Yi(t1)− µ̂(t1)}, . . . , {Yi(tJ )− µ̂(tJ )}

)T
.



Problems with High-dimensional Functional Data

• K̂ is singular if J > n.

• For large J , K̂ may not fit in a computer’s memory.

• Smoothing K̂ to remove noise can be very
computationally intensive.

Solution: PCA: Extract relatively few principal components
(eigenvectors).

• The PC’s may be of interest in themselves.

• They are also used, for example, in functional regression.



Estimating the Eigenvectors

Because of the noise, some type of smoothing is needed in
conjunction with PCA. Three possible approaches:

1 smooth the principal components of the sample
covariance matrix

2 smooth the sample covariance matrix before performing
PCA

3 smooth the Yi and use the sample covariance of Ŷi

Our approach connects 2 and 3 .
• In fact, they are equivalent under our approach.



Smoothing the Sample Covariance Matrix

• We can apply a bivariate smoother to K̂.

• Until recently, no bivariate smoother could handle
J > 500.

• The recently introduced sandwich smoother can smooth a
500× 500 matrix but is not adapted to handle, say,
J = 10, 000.

• This talk introduces FACE = FAst Covariance Estimator.

• FACE is a implementation of the sandwich smoother
designed for high-dimensional covariance matrices.



Splines

The sandwich smoother and FACE are both spline estimators.

• Splines are piecewise polynomial.

• The polynomial form changes at knots.

• With the degree and knots fixed, splines form a vector

space.

• B-splines are a numerically stable basis.



B-splines of Degree 0, 1, and 2
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Univariate P-splines

Assume: yi = m(xi) + εi

• Model: m(x) = ∑c
k=1 βkBk(x)

• βk , k = 1, . . . , c, are spline coefficients
• (B1(x), . . . ,Bc(x)) is a B-spline basis

• Estimate by penalized least-squares.

• The penalty is λP .
• P is a difference penalty such as

• P =
∑c

k=2(βk − βk−1)2 [first differences], or
• P =

∑c
k=3{(βk − βk−1)− (βk−1 − βk−2)}2 [second

differences].

• λ is a smoothing parameter.



Penalized Least Squares

The penalized least-squares estimate is
β̂ββ = (BTB + λDTD)−1BTy.

• y is the vector of yi ’s.
• B is the “design matrix.”

• The i, jth element of B is the jth basis function evaluated at
xi .

• D is a matrix such that Dβββ contains the differences (of
the chosen order) of the vector βββ.

• So P = βββTDTDβββ.

• S = B(BTB + λDTD)−1BT is the smoother (or hat)
matrix.

• The vector of fitted values is ŷ = Sy.



Eilers and Marx’s Bivariate P-splines

Bivariate Regression: yi = m(si , ti) + εi

Tensor product spline: m(s, t) = ∑c
k=1

∑c
`=1 βk,lBk(s)B`(t)

• B1, . . . ,Bc is a univariate basis

• In some applications, one needs different bases in the two

variables.

• Using the same basis is appropriate for covariance

functions where the two variables are the same.

Estimation is by penalized least squares.



Eilers and Marx’s Bivariate P-splines: Penalties

Eilers and Marx’s bivariate P-spline uses row penalties and

column penalties:

• Arrange the βk,` in a matrix.

• The row penalty is a univariate difference penalty applied

to each row and then summed over rows.

• The column penalty is analogous.

Penalty can be written as

βββT(λ1I⊗DTD + λ2DTD⊗ I)βββ where βββ is the column vector

of the βk,`.



Sandwich Smoother

Suppose the yij are observed on a J1 × J2 rectangular grid,
e.g., a covariance matrix where J1 = J2 = J .

• Put the yi,j in a matrix Y.
• The sandwich smoother is Ŷ = S1YS2. (Xiao et al.,
2013, JRSS-B).

• Here S1 and S2 are univariate smoother matrices.
• Luo discovered the sandwich smoother when studying the
asymptotic behavior of the Eilers-Marx bivariate smoother.

• By modifying the Eilers-Marx penalty, the spline estimator
was easier to study.

• The estimator with the modified penalty is equivalent to the
sandwich smoother.



Two Representations of the Sandwich Smoother

Sandwich smoother in matrix notation:

Ŷ = S1YS2.

where Ŷ and Y are rectangular matrices.

Sandwich smoother in vector notation:

ŷ = (S2 ⊗ S1)y

where y = vec(Y) and ŷ = vec(Ŷ).



The Sandwich Formula Penalty

S2 ⊗ S1 =
{

B2(BT
2 B2 + λ2DT

2 D2)−1BT
2
}

⊗
{

B1(BT
1 B1 + λ1DT

1 D1)−1BT
1
}

= (B2 ⊗B1){BT
2 B2 ⊗BT

1 B1 + λ1BT
2 B2 ⊗DT

1 D1

+ λ2DT
2 D2 ⊗BT

1 B1 + λ1λ2DT
2 D2 ⊗DT

1 D1}−1(B2 ⊗B1)T .

The contributions due to the penalty are in red.



Comparison of the Penalties

For simplicity, assume D1 = D2 = D.

Eilers-Marx penalty matrix:

λ1I⊗DTD + λ2DTD⊗ I

Sandwich smoother penalty matrix:

P = λ1BT
2 B2⊗DTD+λ2DTD⊗BT

1 B1 +λ1λ2DTD⊗DTD



Sandwich Smoother for Covariance Matrices

Let K̂ be the sample covariance matrix. Recall that

K̂ =
n∑

i=1
YiYT

i (1)

where Yi = {yi(t1)− µ̂(t1), . . . , yi(tJ )− µ̂(tJ )}T.

Applying the sandwich smoother to K̂, we obtain

K̃ = SK̂S. (2)

Substituting (1) into (2), we obtain

K̃ =
n∑

i=1
(SYi)(SYi)T.



Smooth PCA Revised

Recall the three possible approaches to smooth PCA:
1 smooth the principal components of the sample
covariance matrix

2 smooth the sample covariance matrix before performing
PCA

3 smooth the Yi and use the sample covariance of Ŷi

From previous frame:

K̃ =
n∑

i=1
(SYi)(SYi)T.

With the sandwich smoother approaches, 2 and 3 are
equivalent.



The Sandwich Smoother is Fast

• The sandwich smoother was discovered while studying the
asymptotic distribution of bivariate spline estimators.

• It was soon realized that the sandwich estinator could
speed computations considerably.

• For fixed smoothing parameters, a bivariate spline can be
computed as a generalized linear array model (GLAM)
(Currie, Durban, and Eilers, 2006, JRSS-B)

• The bottleneck was in computing the effective degrees of
freedom (DF) needed for GCV (Generalized Cross
Validtion) to select the smoothing parameters.



Smoother Matrices and DF

The fitted values are computed as

ŷ = Sy.

Here y and ŷ are vectors and S is the smoother matrix.

The degrees of freedom of the smoother is defined as

DF = tr(S).

For OLS: tr(S) equals the dimension of the model when there
is no penalty.
PenLS: tr(S) < dimension of model.

• Because of the penalty, there are effectively less
parameters.



DF for the Sandwich Smoother

Recall: Sandwich smoother in vector notation:

ŷ = (S2 ⊗ S1)y,

where y = vec(Y) and ŷ = vec(Ŷ).

From the vector notation, we see that DF = tr(S2 ⊗ S1) =
tr(S2)tr(S1): fast to compute



DF for a Univariate Spline

The smoother matrix of a univariate spline can be diagonalized

S = O diag{(1 + λκk)−1}OT

where O is n × c, has orthogonal columns, and does not
depend on λ, so

tr(S) = tr
{
diag{(1 + λκk)−1}OOT

}
=

c∑
k=1

(1 + λκk)−1.

The diagonalization is performed once and then this sum
computes tr(S) for all values of (λ1, λ2).

The sandwich estimator applies this method to S1 and S2.



Computation Time Comparison

J 2 c1c2 Sandwich smoother E-M/GLAM TPRS

202 102 0.06(0.24) 4.09(19.74) 0.53
402 202 0.08(0.30) 94.76(344.13) 19.50
802 352 0.13(0.45) 1379.21(5487.33) 1032.07
3002 422 0.18(0.58) 3798.23(15192.92) –
5002 572 0.32(0.89) 21023.44(84093.76) –

For the sandwich smoother and E-M/GLAM, the times are for a 20× 20
(40× 40) grid of λ. The covariance matrix is J × J . ci is the dimension
of the ith basis.

TPRS = thin-plate regression spline using bam() (faster version of
gam()) in the mgcv package.



FACE: FAst Covariance Estimation

Recall the sandwich smoother of the sample covariance matrix:

K̃ = SK̂S.

All four matrices are J × J .

The rank of K̃ is at most min(J , c) where
• c is the dimension of the spline basis so c = rank(S).

We are interested in the case where c � J .
• Then most of the eigenvalues of K̃ are 0.
• We want an efficient method to find the non-zero
eigenvalues and their eigenvectors.



Fast PCA Using FACE

Start with an eigen-decomposition:
(BTB)−1/2P(BTB)−1/2 = Udiag(s)UT. (c × c matrices.)

Then define AS = B(BTB)−1/2U. (Has orthogonal columns
and does not depend on λ.)

Then the smoother matrix can be represented as
S = ASΣΣΣSAT

S where ΣΣΣS = {Ic + λdiag(s)}−1 (c × c).

K̃ = SK̂S = AS
(
n−1ΣΣΣSỸỸTΣΣΣS

)
AT

S where Ỹ = AT
S Y.

(
n−1ΣΣΣSỸỸTΣΣΣS

)
= AΣΣΣAT. (Another c × c

eigendecomposition)

We arrive at the eigendecomposition of K̃:
K̃ = (ASA)ΣΣΣ(ASA)T.



Eigendecomposition of K̃

In the last frame we found the eigendecomposition of K̃:

K̃ = (ASA)ΣΣΣ(ASA)T.
• ΣΣΣ is c × c and diagonal.

• The diagonal elements are the nontrivial eigenvalues of K̃.

• (ASA) is J × c with orthogonal columns.
• These are the associated eigenvectors of K̃.



Selecting the Smoothing Parameters

Pooled generalized cross validation: Select λ by minimizing

PGCV(λ) =
∑J

j=1 ‖Yi − SYi‖2

{1− tr(S)/J}2

We have developed a fast method to compute PGCV(λ).



PC Scores

Let ψ1(t), . . . , ψN (t) be the eigenvectors extracted by PCA.
Then the truncated Karhunen-Loève decompositon is

Xi =
N∑

k=1
ξi,kψk(t)

where the score ξi,k is given by

ξi,k =
∫

Xi(t)ψi(t)dt.

• We have develop fast methods to estimate the scores by
numerical integration or BLUPs.



FACE and Missing Data

When data are missing, we alternate between

• Smoothing with FACE

• Prediction of missing values (imputation)



SVDS

SVDS = Singular Value Decomposition with Smoothing.

Let Y be the J × n data matrix.

Y︸︷︷︸
J×n

= U︸︷︷︸
J×n

D︸︷︷︸
n×n

V︸︷︷︸
n×n

T.

• The columns of Y are the mean-centered functions.

• U has orthogonal columns.

• D is diagonal.

• V is orthogonal.



SVDS continued

From previous slide:

Y︸︷︷︸
J×n

= U︸︷︷︸
J×n

D︸︷︷︸
n×n

V︸︷︷︸
n×n

T.

• The columns of U contain the eigenvectors of K̂ .
• These are smoothed by penalized splines.

• The diagonal elements of D contain the square-roots of
the non-zero eigenvalues.

• These are squared.



SHHS Study: Model for Matched Pairs

We return to the SHHS example.

The model for the two curves for the ith matched pair is:

YiA(t) = µA(t) + Xi(t) + UiA(t) + εiA(t)
YiC (t) = µC (t) + Xi(t) + UiC (t) + εiC (t)

• “A” = apnea and “C” = control.
• µA and µB are the mean curves.
• Xi(t) captures the between-subjects correlation and has
correlation function KX(·, ·).

• UiA and UiC are independent and have covariance
KU (·, ·).



Three Estimators

We applied three estimators to the SHHS data:

• Thin-plate regression spline (TPRS) using bam() in the
mgcv package.

• Only 35 knots.

• Running time was 3 hours.

• FACE
• 100 knots

• less than 10 seconds

• SVDS



Estimates of Eigenvectors 1 and 2
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Estimates of Eigenvectors 3 and 4
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Simulations Setup

• J = 3, 000

• n = 50

• eigenfunctions were:{√
2 sin(2πt),

√
2 cos(2πt),

√
2 sin(4πt),

√
2 cos(4πt)

}
• missing data: Sections of 0.065J observations were

missing at random.



Simulations: Boxplots of Estimated Eigenvalues
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Estimating Eigenvalues: 100 × Average Squared Errors

Eigenvalue SVDS FACE FACE (incomplete data)

1 4.00 3.39 7.34

2 1.27 0.82 1.61

3 0.62 0.22 0.41

4 0.62 0.07 0.08



Computation Time in Seconds

J I FACE FACE SVDS SVDS Sandwich Sandwich

100 knots 500 knots 100 knots 500 knots 100 knots 500 knots

3, 000 50 0.27 8.61 1.40 36.38 86.89 124.78

500 0.76 13.61 6.28 42.07 93.94 131.82

5, 000 50 0.48 13.47 2.27 62.99 433.33 467.83

500 1.37 18.01 8.11 73.16 509.67 570.79

10, 000 50 0.95 23.88 4.52 114.57 - -

500 3.07 35.98 20.91 133.57 - -



Simulations: Estimated Eigenfunctions
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R functions

In the refund (Regression with Functional Data) package:

• fbps(): sandwich smoother

• fpca.face(): functional PCA by FACE

• pfr( . . ., smooth.option = ”fpca.face”): penalized

functional regression with the functional covariance

represented by the PC basis



Thanks for coming!
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