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Outline

Calibration: estimate parameters in a model

Uncertainty analysis: confidence or credible region, etc.
Bayesian modeling and MCMC are particularly suitable for the
calibration and uncertainty analysis

A standard implementation requires the evaluation of a model
(simulator) at each MCMC iteration

e but often the model is computationally expensive

A computationally feasible approach uses an emulator

(interpolant) in place of the simulator



Outline, continued

e The emulator must be developed using a relatively small
number of simulator evaluations

e These evaluations should be concentrated in the high
posterior density region (HPDR)

e The HPDR could be less than 1% of the parameter space

e the location and shape of the HPDR is not known in advance

e Evaluations that are close to each other in the parameter

space are wasteful

e so are those outside the HPDR



Outline, continued

e Our algorithm iterates between

e using the current emulator to select new points for running the

model
e updating the emulator using the new evaluations
e Except for a paper of Rasmussen, we are not aware of other
work where the emulator is built on a small and a priori

unknown set



SOARS

SOARS = Statistical and Optimization Analysis using Response
Surfaces
e SOARS has 4 steps and iterates between the final 3 steps

@ locate the posterior mode using global optimization

@ explore the region around the mode to learn the size and shape
of the HPDR using GRIMA (Grow the (design) Region and
IMprove the Approximation) (Bliznyuk et al., 2012)

© construct a Radial Basin Function (RBF) emulator (response
surface) of the log posterior

@ run MCMC using the emulator



Model Calibration

Y, =(Yi1..., Yi,d)T, 1=1,...,n, is a multivariate time
series

fi(B) = (fm(ﬂ), . ,fi,d(ﬁ))T is the simulator output for

time ¢
B is the vector of unknown parameters in the simulator

In the absence of noise we expect that

Y;=f(B)

Noise can be modeled using standard techniques such as
e transformations
e variance functions
e time series models



Example: Town Brook watershed

e Town Brook is in the Cannonsville watershed, part of the NYC

water supply
e Town Brook is a small watershed so works well as a case
study
e MCMC using the exact posterior is feasible, although it takes
over a week
o therefore, SOARS can be compared with an exact

implementation



Town Brook watershed: data and simulator

e Y, =(Y;1,Y;2)" = (flow, concentration of phosphorus) on
7th day

e f;(B) is output from SWAT2005 (Soil and Water Assessment
Tool, 2005 version)

e SWAT takes seconds to run on the Town Brook watershed
o SWAT will take minutes or hours on larger watersheds

e [ is vector of eight parameters in the SWAT model



SOARS Step 1: Optimization

0 contains B (model parameters) and noise parameters

m(0)Y) is the unnormalized posterior = likelihood x prior
density

The goal is to find the HPDR, characterize it, and construct
the emulator on it

e the HPDR is a 1 — « credible region for some small «
The HPDR is located by using a global maximizer to find the
posterior mode

e high accuracy is not important

e we only need to get into Cr(«), not find the mode



SOARS Step 2: GRIMA

o After optimization, but before GRIMA, evaluate the
log-likelihood on a Latin hypercube centered at the

(approximate) mode

e GRIMA produces a nested sequence Dy, D1, ... of sets of
evaluation points

e Dy is the set of evaluation points from optimization plus those

from the Latin hypercube

e except “outliers” (outside the HPDR) are excluded



SOARS Step 2: GRIMA, continued

Given the current set D;, let C be the set of parameter values
whose distance from D; is exactly 7.

e ris a tuning parameter that varies during GRIMA
Let /; be the emulator of the log-posterior on D;.
The candidate for the next evaluation point is the point in C
where Zi is maximized.

Because this point is exactly at distance r from Dy, it is
neither
¢ redundant (too close to the current evaluation points) nor
o well outside the HPDR (too far from them)



SOARS Step 2: GRIMA, continued

e GRIMA allows r to increase initially so that the entire HPDR

is covered quickly

e Eventually r decreases so that the set of evaluation points

becomes dense



SOARS Step 3: RBF interpolation

e the RBF response surface is updated repeatedly

e Bliynyuk et al. (2012) have an efficient algorithm for updating

e RBF interpolation is sensitive to the parametrization and is

improved by sphering



Step 4: MCMC

e MCMC using the emulator is run after GRIMA terminates to
estimate the posterior
e MCMC is also used during GRIMA to decide when to
terminate
e termination occurs when the total variation norms between
successive estimates of the univariate log posterior densities
are small

e norms estimated by importance sampling



Summary

e In summary, SOARS has 4 steps and iterates between the final
3 steps

@ locate the posterior mode

@® explore the region around the mode to learn the size and shape
of the HPDR

© construct a Radial Basin Function emulator of the log posterior
of the HPDR

@ run MCMC using the emulator



Town Brook Noise Model

e W(Yi, A) = h{f;(B), A} + &; (transform-both-sides)

® h(Y’)‘) = {h(yla)‘l>"'h(yd7)\d)}T
® h(ya A) = (1 - A)hBC(ya )‘) + Alog(y)
e hpc(y, ) is the Box-Cox family

e therefore, £; can be (multivariate) Gaussian
o g, = Pe,;_; + u; (vector AR(1))

e u; is Gaussian white noise with covariance matrix X,

e noise parameters are A, ¢, and X,



Town Brook Optimization

e Optimization was done with DSS, a global optimizator
e 1900 function evaluations were used
e problem: SWAT output is nonsmooth with many local maxima
and 8 parameters
e For a more computationally expensive simulator, one would

need to parallelize the optimization



Town Brook Profile Plots
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Town Brook: GRIMA

e We did 500 evaluations prior to GRIMA with a Latin

hypercube design

e GRIMA used a total of 1017 function evaluations
o A total of 3,517 expensive evaluations were used for
e optimization

e the Latin hypercube sample, and

e GRIMA
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Town Brook: Accuracy of the Emulator
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Residuals
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Town Brook: Model Adequacy
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Conclusions: Good News

e SOARS, especially the GRIMA algorithm, can handle the
nonsmoothness of SWAT output

e Given a budget for the expensive evaluaitons, SOARS
outperforms standard MCMC
e it is better to use the expensive evaluations to build the
emulator rather than for MCMC itself

e Uncertainty analysis and calibration took about 3,500
evaluations

e calibration alone took 1,900 evaluations and was not particular
accurate

e the calibration was improved during the uncertainty analysis



Conclusions: Not-so-good News

RBF interpolation suffers from the curse of dimensionality
The nonsmoothness of SWAT output makes optimization

difficult

Thousands of expensive function evaluations are necessary
with an 8-parameter SWAT model

Parallelization is necessary for larger problems (e.g., more

parameters or larger Watershed)
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