
Uncertainty Analysis for Computationally
Expensive Models

David Ruppert

Dept. of Statistical Science and School of Operations Research and Information
Engineering, Cornell University

Mar 12, 2013



Collaborators

• Christine Shoemaker, Professor, Civil and Environmental
Engineering, Cornell University (works in optimization)

• Nikolay Bliznyuk, Assistant Professor, Statistics,
University of Florida

• Yingxing Li, Assistant Professor, Xiamen University
• Yilun Wang, Associate Professor, University of Electronic
Science and Technology of China



Outline

• Calibration: estimate parameters in a model

• Uncertainty analysis: confidence or credible region, etc.

• Bayesian modeling and MCMC are particularly suitable for the
calibration and uncertainty analysis

• A standard implementation requires the evaluation of a model
(simulator) at each MCMC iteration

• but often the model is computationally expensive

• A computationally feasible approach uses an emulator
(interpolant) in place of the simulator



Outline, continued

• The emulator must be developed using a relatively small

number of simulator evaluations

• These evaluations should be concentrated in the high
posterior density region (HPDR)

• The HPDR could be less than 1% of the parameter space

• the location and shape of the HPDR is not known in advance

• Evaluations that are close to each other in the parameter
space are wasteful

• so are those outside the HPDR



Outline, continued

• Our algorithm iterates between

• using the current emulator to select new points for running the

model

• updating the emulator using the new evaluations

• Except for a paper of Rasmussen, we are not aware of other

work where the emulator is built on a small and a priori

unknown set



SOARS

SOARS = Statistical and Optimization Analysis using Response

Surfaces

• SOARS has 4 steps and iterates between the final 3 steps

1 locate the posterior mode using global optimization

2 explore the region around the mode to learn the size and shape

of the HPDR using GRIMA (Grow the (design) Region and

IMprove the Approximation) (Bliznyuk et al., 2012)

3 construct a Radial Basin Function (RBF) emulator (response

surface) of the log posterior

4 run MCMC using the emulator



Model Calibration

• Yi = (Yi,1 . . . ,Yi,d)T, i = 1, . . . ,n, is a multivariate time
series

• f i(βββ) =
(
fi,1(βββ), . . . , fi,d(βββ)

)T
is the simulator output for

time i
• βββ is the vector of unknown parameters in the simulator
• In the absence of noise we expect that

Yi = f i(βββ)

• Noise can be modeled using standard techniques such as
• transformations
• variance functions
• time series models



Example: Town Brook watershed

• Town Brook is in the Cannonsville watershed, part of the NYC

water supply

• Town Brook is a small watershed so works well as a case

study

• MCMC using the exact posterior is feasible, although it takes

over a week

• therefore, SOARS can be compared with an exact

implementation



Town Brook watershed: data and simulator

• Yi = (Yi,1,Yi,2)T = (flow, concentration of phosphorus) on

ith day

• f i(βββ) is output from SWAT2005 (Soil and Water Assessment

Tool, 2005 version)

• SWAT takes seconds to run on the Town Brook watershed

• SWAT will take minutes or hours on larger watersheds

• βββ is vector of eight parameters in the SWAT model



SOARS Step 1: Optimization

• θθθ contains βββ (model parameters) and noise parameters

• π(θθθ|Y) is the unnormalized posterior = likelihood × prior
density

• The goal is to find the HPDR, characterize it, and construct
the emulator on it

• the HPDR is a 1− α credible region for some small α

• The HPDR is located by using a global maximizer to find the
posterior mode

• high accuracy is not important
• we only need to get into CR(α), not find the mode



SOARS Step 2: GRIMA

• After optimization, but before GRIMA, evaluate the

log-likelihood on a Latin hypercube centered at the

(approximate) mode

• GRIMA produces a nested sequence D0,D1, . . . of sets of

evaluation points

• D0 is the set of evaluation points from optimization plus those
from the Latin hypercube

• except “outliers” (outside the HPDR) are excluded



SOARS Step 2: GRIMA, continued

• Given the current set Di , let C be the set of parameter values
whose distance from Di is exactly r .

• r is a tuning parameter that varies during GRIMA

• Let ˜̀i be the emulator of the log-posterior on Di .

• The candidate for the next evaluation point is the point in C
where ˜̀i is maximized.

• Because this point is exactly at distance r from Di , it is
neither

• redundant (too close to the current evaluation points) nor
• well outside the HPDR (too far from them)



SOARS Step 2: GRIMA, continued

• GRIMA allows r to increase initially so that the entire HPDR

is covered quickly

• Eventually r decreases so that the set of evaluation points

becomes dense



SOARS Step 3: RBF interpolation

• the RBF response surface is updated repeatedly

• Bliynyuk et al. (2012) have an efficient algorithm for updating

• RBF interpolation is sensitive to the parametrization and is

improved by sphering



Step 4: MCMC

• MCMC using the emulator is run after GRIMA terminates to
estimate the posterior

• MCMC is also used during GRIMA to decide when to
terminate

• termination occurs when the total variation norms between
successive estimates of the univariate log posterior densities
are small

• norms estimated by importance sampling



Summary

• In summary, SOARS has 4 steps and iterates between the final
3 steps

1 locate the posterior mode

2 explore the region around the mode to learn the size and shape

of the HPDR

3 construct a Radial Basin Function emulator of the log posterior

of the HPDR

4 run MCMC using the emulator



Town Brook Noise Model

• h(Yi , λλλ) = h{f i(βββ), λλλ}+ εi (transform-both-sides)
• h(y, λλλ) = {h(y1, λ1) · · · h(yd , λd)}T

• h(y, λ) = (1−∆)hBC (y, λ) + ∆ log(y)
• hBC (y, λ) is the Box-Cox family
• therefore, εi can be (multivariate) Gaussian

• εi = ΦΦΦεi−1 + ui (vector AR(1))
• ui is Gaussian white noise with covariance matrix ΣΣΣu

• noise parameters are λλλ, φφφ, and ΣΣΣu



Town Brook Optimization

• Optimization was done with DSS, a global optimizator

• 1900 function evaluations were used

• problem: SWAT output is nonsmooth with many local maxima

and 8 parameters

• For a more computationally expensive simulator, one would

need to parallelize the optimization



Town Brook Profile Plots

Plots of −2 log(posterior) using the exact unnormalized posterior

Parameters varied one at a time about DDS termination point at N

Horizontal line at χ2
8(.99)



Town Brook: GRIMA

• We did 500 evaluations prior to GRIMA with a Latin

hypercube design

• GRIMA used a total of 1017 function evaluations

• A total of 3,517 expensive evaluations were used for

• optimization

• the Latin hypercube sample, and

• GRIMA



Town Brook: stopping GRIMA



Town Brook: Accuracy of the Emulator

0.25 0.35 0.45

0
5

10
15

b_ 1

de
ns

ity

0.06 0.10 0.14

0
10

20
30

b_ 2

de
ns

ity
0.0110 0.0125 0.0140

0
50

0
15

00

b_ 3

de
ns

ity

0.040 0.050

0
50

15
0

25
0

b_ 4

de
ns

ity

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

b_ 5

de
ns

ity

0.00 0.04 0.08

0
20

40
60

b_ 6

de
ns

ity

0.000 0.004 0.008
0

20
0

40
0

b_ 7

de
ns

ity

0.00 0.02 0.04 0.06

0
20

60

b_ 8

de
ns

ity

Black: 60,000 MCMC iterations with exact posterior
Red: SOARS (3517 exact plus 60,000 iterations with emulator)

Green: 3500 MCMC iterations with exact posterior



Town Brook: Model Adequacy



Conclusions: Good News

• SOARS, especially the GRIMA algorithm, can handle the
nonsmoothness of SWAT output

• Given a budget for the expensive evaluaitons, SOARS
outperforms standard MCMC

• it is better to use the expensive evaluations to build the
emulator rather than for MCMC itself

• Uncertainty analysis and calibration took about 3,500
evaluations

• calibration alone took 1,900 evaluations and was not particular
accurate

• the calibration was improved during the uncertainty analysis



Conclusions: Not-so-good News

• RBF interpolation suffers from the curse of dimensionality

• The nonsmoothness of SWAT output makes optimization
difficult

• Thousands of expensive function evaluations are necessary
with an 8-parameter SWAT model

• Parallelization is necessary for larger problems (e.g., more
parameters or larger Watershed)


	Introduction
	SOARS: steps 1- 4
	Town Brook
	Conclusions

