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Intellectual impairment and blood lead

Example I (courtesy of Rich Canfield, Nutrition, Cornell)
• Blood lead concentration and intelligence were measured
on children.

• Question: How do low doses of lead affect IQ?
• Several IQ measurements per child

• so longitudinal
• Nine “confounders”

• e. g., maternal IQ

• Effect of lead appears nonlinear
• Rich contacted me in 1998

• New methodology was needed.
• Rich wanted something like a SAS Proc GAMMixed, which did

not exist



Dose-response curve
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Thanks to Rich Canfield for data and estimates. In this plot, the
IQ measurements have been adjusted for confounders.



Spinal bone mineral density example

Example II

• age and spinal bone mineral density measured on girls and

young women

• several measurements on each subject

• increasing but nonlinear curves



Spinal bone mineral density data
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What is needed to accommodate these examples?

We need a model with

• potentially many variables

• possibility of nonlinear effects

• random subject-specific effects

The model should be one that can be fit with readily available

software such as R.



Spline Basics

A spline is a piecewise polynomial with maximum smoothness

• The polynomial form changes at fixed locations called

“knots.”

• If the polynomials are of degree p, then the spline has

p − 1 derivatives at the knots.



Examples of Splines
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Smoothing Splines

• Smoothing splines was developed by numerical analysts.

• Grace Wahba introduced them to statistics.

• Model: Yi = f (Xi) + εi .

• f̂ minimizes ∑{Yi − f (Xi)}2 + λ
∫
{f ′′(x)}2dx .

• λ controls the smoothness of the spline.

• Selecting an appropriate value λ is crucial.



Limitations of Splines

• Smoothing splines are fantastic for univariate regression.

• There are fast O(n) algorithms.

• They are less satisfactory for complex problems such as

those introduced earlier.

• The large number of knots can be a serious problem.



Regression Splines

• Regression splines are fit using standard software.
• For a linear spline, one uses a basis function (x − κ)+ for
each knot κ.

• x+ := x I (x > 0) is the positive part function.

• higher degree splines are similar.

• It is easy to embed regression splines into multiple

regression models.

• A regression spline does not use a roughness penalty, so

selecting the number and locations of the knots is crucial.



Regression Spline Example: Lidar
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Penalized Regression Spline

Model:

Yi = β0 +
p∑

j=1
βjX j

i +
K∑

j=1
uj(Xi − κj)p

+ + εi := s(Xi) + εi .

Objective function:

n∑
i=1
{Yi − s(Xi)}2 + λ

K∑
j=1

u2
i .



Lidar data: unpenalized quadratic regression splines
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Lidar data: penalized splines with λ selected by GCV
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Splines as Mixed Models

Model:

Yi = β0 +
p∑

j=1
βjX j

i +
K∑

j=1
uj(Xi − κj)p

+ + εi := s(Xi) + εi .

Objective function:

n∑
i=1
{Yi − s(Xi)}2 + λ

K∑
j=1

u2
i .

Equivalent to assuming that u1, . . . , uK are iid N (0, σ2u) and

λ = σ2ε/σ
2
u.

• Moreover, σ2ε and σ2u can be estimated by REML.



Return to Blood Lead and IQ

Here’s how Rich Canfield analyzed his data:

• Model the effect of blood lead concentration as a spline

with random coefficients of the “positive part functions.”

• The polynomial coefficients are fixed effects.

• Model the confounders as linear fixed effects.

• Add random subject-specific effects to model correlation.



Mixed Model for Blood Lead and IQ

Model:

Yi,` = bi︸︷︷︸
subject effect

+ β0 +
p∑

j=1
βjX j

i︸ ︷︷ ︸
polynomial: fixed effects

+
K∑

k=1
uk(Xi − κj)p

+︸ ︷︷ ︸
spline: random effects

+
M∑

j=1
αjZi,j︸ ︷︷ ︸

confounder effects

+ εi .

• Yi,` is the `th IQ measurement on the ith subject.
• Xi is the lead concentration of the ith subject.
• Zi,j is the jth confounder variable measured on the ith
subject.



Semiparametric Regression

• In 1998 I visited Matt Wand at
HSPH.

• We planned to start work on a
book on smoothing.

• From discussions with Babette
Brumback, we learned of the
mixed model approach to splines.

• That approach become a major
focus of the book.

• Right after I returned to Cornell, I
learned of Rich Canfield’s research.

Published in 2003.



B-splines

• With the knots and the degree fixed, the set of splines is a

vector space.

• The dimension is 1 + p + K where p is the degree and K is

the number of knots.

• A very convenient basis is the set of B-splines.

• B-splines have minimal support and are numerically stable.



Examples of B-splines
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Eilers and Marx’s P-spline

A P-spline is of the form ∑1+p+K
j=1 bjBj(x).

• B1(x), . . . ,B1+p+K (x) is the B-spline basis.

• κ1, . . . , κK are equally-spaced knots.

The penalty used with a P-spline is ∑K
k=1+m{∆mbk}2.

• ∆ is the differencing operator.

• m is the order of the differencing.
• Asymptotically, m is more important than p and K .

• More later.



Asymptotic Theory

Li and Ruppert (2008, Biometrika) developed an asymptotic

theory for P-splines, but only for special cases.
• There were technical difficulties when

q = max(p,m) > 2.
• The difficulties were in studying the roots of certain

polynomial of degree 2q

• Unpublished work with Tanya Apanosovich has solved this

problem.

• Wang, Shen, and Ruppert (2011, EJS) obtained general

results using Green’s functions.



CLT for penalized splines

Under assumptions (e.g., enough derivatives) for any
x ∈ (0, 1) [interior points], we have

n
2m

4m+1{f̂ (x)− f (x)} → N {µ̃(x),V (x)} , as n →∞,

where
µ̃(x) = 1

(2m)!µ
(2m)(x)h2m

∫
t2mHm(t)dt

and
V (x) = h−1σ2(x)

∫
H 2

m(t)dt

• m is the order of the difference penalty.
• Hm is the “equivalent kernel.”
• h is the “equivalent bandwidth” and depends on λ.



Asymptotic kernel (interior)

For any m: Hm is symmetric about 0,

∫
Hm(x)dx = 1,

and ∫
xkHm(x)dx = 0 for k = 1, . . . , 2m − 1



Equivalent kernels for m = 1, 2, and 3 (interior)
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Assumptions

The assumptions of the theorem confirm some folklore.



Some folklore: # knots

• Folklore:

Number of knots (K ) not important, provided large

enough.

• Confirmation:
K ∼ K0nγ, where

• K0 > 0

• γ > 2m/ {`(4m + 1)}

• ` := min(2m, p + 1)



Some folklore: penalty parameter

• Folklore:

Value of the penalty parameter (λ) crucial.

• Confirmation:

λ ∼ (Kh)2m where h ∼ h0n−
1

4m+1



Some folklore: bias

• Folklore:

Modeling bias (= bias due to approximating the

regression function by a spline) small.

• Confirmation: Modeling bias does not appear in

asymptotic bias



Testing Null Hypothesis of Polynomial Regression

Model: Yi = f (Xi) +
M∑

j=1
αjZi,j︸ ︷︷ ︸

confounder effects

+εi .

H0: f (x) is a pth degree polynomial ⇒ σ2u = 0 in mixed model

Yi,` = bi︸︷︷︸
subject effect

+ β0 +
p∑

j=1
βjX j

i︸ ︷︷ ︸
polynomial: fixed effects

+
K∑

k=1
uk(Xi − κj)p

+︸ ︷︷ ︸
spline: random effects

+
M∑

j=1
αjZi,j︸ ︷︷ ︸

confounder effects

+ εi .



Non-standard Asymptotics

• H0: σ2u = 0 is mixed model is nonstandard.

• The null hypothesis is on the boundary of the parameter

space.

• This problem has been studied as far back as Herman Chernoff.

• Self and Liang (1987, JASA) and Stram and Lee (1994,

Biometrics) are more recent references.

• In simulations, the Chernoff/Self & Liang limit theory did not

appear to hold.



Ciprian’s Thesis

• Non-standard for a second reason.

• The data are not independent under the alternative.

• They do not even satisfy any of the usual mixing conditions.

• In his thesis, Ciprian Crainiceanu found the limiting null

distribution of the LRT and RLRT test statistics.

• References:

• Crainiceanu, Ruppert, Claeskens, and Wand (2003,

Biometrika).

• Crainiceanu and Ruppert (2004, JRSS-B).



We Now Have Great Software

The use of splines in mixed models is now relatively easy due

to great software.

• Simon Wood’s mgcv package and his book Generalized

Additive Models are excellent.

• Models that cannot be fit by “canned software” can often

be fit using a Bayesian analysis and MCMC implement

using BUGS or Stan.



Slide From a Talk by Phil Reiss



Forthcoming Book

Semiparametric Regression with R will be published next year.

• Authors:

• Jarek Harezlak

• David Ruppert

• Matt Wand

• Will cover software in R, OpenBUGS, and Stan.



Bivariate P-splines

Bivariate Regression: yi = m(si , ti) + εi

Tensor product spline: m(s, t) = ∑c
k=1

∑c
`=1 βk,lBk(s)B`(t)

• B1, . . . ,Bc is a univariate basis

Eilers and Marx’s bivariate P-spline uses row penalties and

column penalties.



Sandwich Smoother

Suppose the yij are observed on a J1 × J2 rectangular grid,

e.g., a covariance matrix where J1 = J2 = J .

• Put the yi,j in a matrix Y.
• The sandwich smoother is Ŷ = S1YS2. (Xiao et al.,
2013, JRSS-B).

• Here S1 and S2 are univariate hat matrices.

• The sandwich smoother can be derived from the Eilers

and Marx bivariate P-spline by modifying the penalty.



Sandwich Smoother Two Ways

Sandwich smoother in matrix notation:

Ŷ = S1YS2

where Ŷ and Y are rectangular matrices.

Sandwich smoother in vector notation:

ŷ = (S2 ⊗ S1)y

where y = vec(Y) and ŷ = vec(Ŷ).



The Sandwich Smoother is Fast

• For fixed smoothing parameters, a bivariate spline can be

computed as a generalized linear array model (GLAM)

(Currie, Durban, and Eilers, 2006, JRSS-B).

• The bottleneck for GLAM is in computing the effective

degrees of freedom (DF) needed for GCV (Generalized

Cross Validtion) to select the smoothing parameters.



DF for the Sandwich Smoother

Recall: Sandwich smoother in vector notation:

ŷ = (S2 ⊗ S1)y,

where y = vec(Y) and ŷ = vec(Ŷ).

From the vector notation, we see that DF = tr(S2 ⊗ S1) =
tr(S2)tr(S1): fast to compute



FACE

Recall the sandwich smoother of the sample covariance matrix:

K̃ = SK̂S.

All four matrices are J × J .

The rank of K̃ is at most min(J , c) where
• c is the dimension of the spline basis so c = rank(S).

FACE (FAst Covariance Estimation) uses this low rank to
improve the speed and reduce the storage requirements of the
sandwich formula significantly.

• Due to Luo, Ruppert, Zipunnikov, and Crainiceanu



Functional Generalized Additive Model

The Functional Generalized Additive Model (FGAM) is

g{E(Yi |Xi)} = θ0 +
∫
T

F{Xi(t), t}dt.

• F(·, ·) is an unknown function from X × T to <

• if F(x , t) = xβ(t), then we have a Functional linear model
Model introduced and studied by McLean, Hooker, Staicu, and
Ruppert.



Bivariate Spline Model

We use the bivariate tensor product B-spline model:

F(x , t) =
Kx∑
j=1

Kt∑
k=1

θj,kBX
j (x)BT

k (t).

• Here {BX
j (x) : j = 1, . . . ,Kx} and

{BT
k (x) : k = 1, . . . ,Kt} are univariate B-spline bases.

• A roughness penalty is imposed on {θj,k}Kx
j=1

Kt
k=1.



Bivariate Spline Model

From previous slide:

F(x , t) =
Kx∑
j=1

Kt∑
k=1

θj,kBX
j (x)BT

k (t).

Therefore,

g{E(Yi |Xi)} =
∫
T

F{Xi(t), t}dt =
Kx∑
j=1

Kt∑
k=1

θj,k .Zj,k(i)

• Here Zj,k(i) =
∫
T BX

j {Xi(t)}BT
k (t)dt.

• The integral can be approximated numerically.



DTI data – parallel diffusivity along the corpus callosum
MS patients only – Untransformed
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PASAT

• PASAT = Paced Auditory Serial Addition Test

• Subject given numbers at three second intervals

• asked to add the current number to the previous one

• MS patients often perform significantly worse than controls



Estimated surface F̂(p, t) for fractional anisotropy
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t-statistics for fractional anisotropy

b)

ECDF Fractional Anisotropy CCA
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Thanks for coming!
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