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® Two examples.

® Splines.

© Splines as Mixed Models.
@ Local CLT for P-splines.

@ Likelihood ratio tests of polynomial regression versus
nonparametric regression.

® Software.

@ Bivariate regression and estimation of covariance
functions.

® Functional generalized additive model.

Outline



Intellectual impairment and blood lead

Example | (courtesy of Rich Canfield, Nutrition, Cornell)

e Blood lead concentration and intelligence were measured
on children.

Question: How do low doses of lead affect 1Q?

Several 1Q measurements per child
e so longitudinal

Nine “confounders”

e e. g., maternal 1Q

Effect of lead appears nonlinear
Rich contacted me in 1998

e New methodology was needed.
e Rich wanted something like a SAS Proc GAMMixed, which did
not exist
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Thanks to Rich Canfield for data and estimates. In this plot, the
IQ measurements have been adjusted for confounders.



Spinal bone mineral density example

Example Il

e age and spinal bone mineral density measured on girls and

young women
e several measurements on each subject

e increasing but nonlinear curves
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What is needed to accommodate these examples?

We need a model with
e potentially many variables
e possibility of nonlinear effects

e random subject-specific effects

The model should be one that can be fit with readily available

software such as R.



Spline Basics

A spline is a piecewise polynomial with maximum smoothness

e The polynomial form changes at fixed locations called

“knots.”

e If the polynomials are of degree p, then the spline has

p — 1 derivatives at the knots.



Examples of Splines

Linear spline Quadratic spline Cubic spline
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Each spline has a knot at 0.5.



Smoothing Splines

e Smoothing splines was developed by numerical analysts.

Grace Wahba introduced them to statistics.

Model: Y; = f(X;) + €;.

f minimizes S{Y; — f(X;)}2 + X [{/"(2)}2dz.

A controls the smoothness of the spline.

e Selecting an appropriate value A is crucial.



Limitations of Splines

e Smoothing splines are fantastic for univariate regression.

e There are fast O(n) algorithms.

e They are less satisfactory for complex problems such as

those introduced earlier.

e The large number of knots can be a serious problem.



Regression Splines

Regression splines are fit using standard software.

For a linear spline, one uses a basis function (z — k), for

each knot k.
e x4 =z I(z > 0) is the positive part function.
e higher degree splines are similar.
It is easy to embed regression splines into multiple

regression models.

A regression spline does not use a roughness penalty, so

selecting the number and locations of the knots is crucial.
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Penalized Regression Spline

Model:

P ) K
Y= Bo+ Y BiX + Y ui(Xi — wy)} + e = s(X) + e

j=1 =1
Objective function:
K

i{ Vi (X)) 4 A3l

J=1



Lidar data: unpenalized quadratic regression
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Lidar data: penalized splines with \ selected by GCV
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Splines as Mixed Models

Model:

P . K
Y= 0o+ BiXT + Y ui(Xi — wy)} + e = (X)) + e

Jj=1 Jj=1

Objective function:
n K
SDH{Yi —s(X) P+ A
i=1 j=1

Equivalent to assuming that uy, ..., ux are iid N(0,0?) and

A =0c2%/o2.

e Moreover, o2 and 02 can be estimated by REML.



Return to Blood Lead and 1Q

Here's how Rich Canfield analyzed his data:
e Model the effect of blood lead concentration as a spline
with random coefficients of the “positive part functions.”
e The polynomial coefficients are fixed effects.
e Model the confounders as linear fixed effects.

e Add random subject-specific effects to model correlation.



Mixed Model for Blood Lead and 1Q

Model:

p .
Yie = \bj_/ + 504—;@')(5 +Zuk :— ki)l

)

subject effect
polynomial: fixed effects  spline: random effects

M
+ Z ajZi,j + €;.
J=

confounder effects

e Y, is the (th IQ measurement on the ith subject.
e X, is the lead concentration of the ith subject.
e Z;;is the jth confounder variable measured on the ith

subject.



In 1998 | visited Matt Wand at
HSPH.
We planned to start work on a

book on smoothing.

From discussions with Babette
Brumback, we learned of the
mixed model approach to splines.

That approach become a major
focus of the book.

Right after | returned to Cornell, |

learned of Rich Canfield’s research.

Semiparametric Regression

Cambridge Series in Statistical
and Prohabilistic Mathematics

Semiparametric
Regression

David Ruppert, M. P. Wand,
and R. J. Carroll

Published in 2003.



B-splines

e With the knots and the degree fixed, the set of splines is a

vector space.

e The dimension is 1 + p + K where p is the degree and K is

the number of knots.
e A very convenient basis is the set of B-splines.

e B-splines have minimal support and are numerically stable.



0-degree B-splines
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Eilers and Marx’s P-spline

A P-spline is of the form Z;ii"”( b; B;(x).
e Bi(z),...,Bitpik () is the B-spline basis.

® Ki,...,K are equally-spaced knots.

The penalty used with a P-spline is >/, {A™b;}7.

e A is the differencing operator.

e m is the order of the differencing.
e Asymptotically, m is more important than p and K.

e More later.



Asymptotic Theory

Li and Ruppert (2008, Biometrika) developed an asymptotic
theory for P-splines, but only for special cases.
e There were technical difficulties when
q = max(p, m) > 2.

e The difficulties were in studying the roots of certain
polynomial of degree 2¢

e Unpublished work with Tanya Apanosovich has solved this

problem.

e Wang, Shen, and Ruppert (2011, EJS) obtained general

results using Green's functions.



CLT for penalized splines

Under assumptions (e.g., enough derivatives) for any
z € (0,1) [interior points], we have

nmi1 {f(a) — f(2)} — N {(x), V(2)}, as n — oo,

where
1

i(z) = WMM(@W / 27 H, () dt

and
V(z) = h~'o?(z) / H2 (1) dt

e m is the order of the difference penalty.
e H,, is the “equivalent kernel."
e h is the “equivalent bandwidth” and depends on .



Asymptotic kernel (interior)

For any m: H,, is symmetric about 0,

/Hm(a:)dx =1,

and

/kam(x)dx:O for k=1,...,2m—1
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Assumptions

The assumptions of the theorem confirm some folklore.



Some folklore: # knots

e Folklore:
Number of knots (K') not important, provided large

enough.

e Confirmation:
K ~ Kyn”, where
e Ko >0
o v >2m/ {f(4m + 1)}
e {:=min(2m,p+1)



Some folklore: penalty parameter

Folklore:

Value of the penalty parameter (\) crucial.

Confirmation:

A ~ (Kh)?™ where h ~ hon” Tt



Some folklore: bias

e Folklore:
Modeling bias (= bias due to approximating the

regression function by a spline) small.

e Confirmation: Modeling bias does not appear in

asymptotic bias



Testing Null Hypothesis of Polynomial Regression

M
Model: Y; = f(X;) + ZO‘jZi,j +¢;.
=1

———
confounder effects

Ho: f(z) is a pth degree polynomial = 02 = 0 in mixed model

p ) K
Yie = b; +  fo+ Zﬁng + Z up (X — #5)
~— 1

subject effect J=1

polynomial: fixed effects  spline: random effects

M
+ D a4l +e
j=1
—_———
confounder effects



Non-standard Asymptotics

e Hy: 02 =0 is mixed model is nonstandard.

e The null hypothesis is on the boundary of the parameter

space.
e This problem has been studied as far back as Herman Chernoff.
e Self and Liang (1987, JASA) and Stram and Lee (1994,
Biometrics) are more recent references.

e In simulations, the Chernoff/Self & Liang limit theory did not

appear to hold.



Ciprian's Thesis

e Non-standard for a second reason.
e The data are not independent under the alternative.
e They do not even satisfy any of the usual mixing conditions.
e In his thesis, Ciprian Crainiceanu found the limiting null
distribution of the LRT and RLRT test statistics.
o References:

e Crainiceanu, Ruppert, Claeskens, and Wand (2003,
Biometrika).

e Crainiceanu and Ruppert (2004, JRSS-B).



We Now Have Great Software

The use of splines in mixed models is now relatively easy due

to great software.

e Simon Wood's mgcv package and his book Generalized

Additive Models are excellent.

e Models that cannot be fit by “canned software” can often
be fit using a Bayesian analysis and MCMC implement
using BUGS or Stan.



Slide From a Talk by Phil Reiss
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Forthcoming Book

Semiparametric Regression with R will be published next year.
e Authors:

e Jarek Harezlak
e David Ruppert

e Matt Wand

e Will cover software in R, OpenBUGS, and Stan.



Bivariate P-splines

Bivariate Regression: y; = m(s;, t;) + €;
Tensor product spline: m(s,t) = > 5_; Y21 BriBi(s)Be(t)

e Bi,...,B.is a univariate basis

Eilers and Marx's bivariate P-spline uses row penalties and

column penalties.



Sandwich Smoother

Suppose the y;; are observed on a J; x J, rectangular grid,

e.g., a covariance matrix where J; = J, = J.

e Put the y;; in a matrix Y.

o The sandwich smoother is Y = S;YS,. (Xiao et al.,
2013, JRSS-B).

e Here S; and Sy are univariate hat matrices.

e The sandwich smoother can be derived from the Eilers

and Marx bivariate P-spline by modifying the penalty.



Sandwich Smoother Two Ways

Sandwich smoother in matrix notation:
Y =S,YS,

where Y and Y are rectangular matrices.

Sandwich smoother in vector notation:

3\’ = (Sg X Sl)y

—

where y = vec(Y) and y = vec(Y).



The Sandwich Smoother is Fast

e For fixed smoothing parameters, a bivariate spline can be
computed as a generalized linear array model (GLAM)

(Currie, Durban, and Eilers, 2006, JRSS-B).

e The bottleneck for GLAM is in computing the effective
degrees of freedom (DF) needed for GCV (Generalized

Cross Validtion) to select the smoothing parameters.



DF for the Sandwich Smoother

Recall: Sandwich smoother in vector notation:
S} = (SQ ® Sl)y7
where y = vec(Y) and y = vee(Y).

From the vector notation, we see that DF = tr(S, ® S;) =
tr(Sy)tr(Sy): fast to compute



FACE

Recall the sandwich smoother of the sample covariance matrix:
K = SKS.
All four matrices are J x J.

The rank of K is at most min(.J, ¢) where

e ¢ is the dimension of the spline basis so ¢ = rank(S).

FACE (FAst Covariance Estimation) uses this low rank to
improve the speed and reduce the storage requirements of the
sandwich formula significantly.

e Due to Luo, Ruppert, Zipunnikov, and Crainiceanu



Functional Generalized Additive Model

The Functional Generalized Additive Model (FGAM) is

g{BE(YX:)} =0+ /T F{X(t), t}dt.

e F(-,-) is an unknown function from X x 7 to R

o if F(x,t) = zf(t), then we have a Functional linear model

Model introduced and studied by McLean, Hooker, Staicu, and
Ruppert.



Bivariate Spline Model

We use the bivariate tensor product B-spline model:

K: K

F(z,t) =Y 6;:B¥ () Bl (t).

j=1 k=1

e Here {BX(z):j=1,..., K} and
{Bl(x): k=1,..., K;} are univariate B-spline bases.

e A roughness penalty is imposed on {6j,k}fgl,§;1.



Bivariate Spline Model

From previous slide:
K, K
=D 0B (2)B{ (t).
=1 k=1
Therefore,

DBV} = [ PG =30,

j=1k=1

o Here Z; (i) = [ B{{Xs(t)} B (t)dt

e The integral can be approximated numerically.



DTI data — parallel diffusivity along the corpus callosum

MS patients only — Untransformed
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PASAT

e PASAT = Paced Auditory Serial Addition Test
e Subject given numbers at three second intervals

e asked to add the current number to the previous one

e MS patients often perform significantly worse than controls



Estimated surface /F\(p, t) for fractional anisotropy
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Position Along Tract

t-statistics for fractional anisotropy
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Thanks for coming!
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