Guilt by Association: Finding Cosmic Ray Sources

David Ruppert

Operations Research & Information Engineering and Department of Statistical Science, Cornell University

Jun 24, 2011

The Research Team

Collaborators

- Kunlaya Soiaporn, Graduate Student, ORIE
- Tom Loredo, Research Associate, Astronomy
- Dave Chernoff, Professor, Astronomy
- Ira Wasserman, Professor and Chair, Astronomy

- Cosmic Rays
 - · this research is about ultra-high energy cosmic rays
- Active galactic nuclei (AGNs)
 - a prime suspect as the source of ultra-high energy cosmic rays
- Association models
 - · associate cosmic rays with AGNs
 - can we "convict" AGNs as the source

Caveat: This project is still "work in progress"

What Are Cosmic Rays?

- Cosmic rays are atomic nuclei
- First detected in 1912 by Victor Hess who ascended in a balloon to 5 km
- Range in energy from 10^7 to 10^{20} eV
 - eV = electron volt
- Spectrum is a power law $F \propto E^{-\alpha}$
 - F = flux
 - E = energy
- Detailed look at F versus E (log-log plot) suggests several sources

Cosmic Ray Spectrum

Where Do Cosmic Rays Originate?

- Cosmic rays are charged particles
 - therefore they are deflected by magnetic fields
 - so it is not obvious where they originate
- Sources of cosmic rays could be
 - supernovae
 - pulsars
 - stars with strong winds
 - black holes
- Active galactic nuclei (AGNs) are a prime suspect of cosmic rays at highest energies
 - only AGNs seem capable of accelerating particles to such high energies

Ultra-High Energy Cosmic Rays (UHECRs)

- Our research focuses on cosmic rays of highest energies
- Cosmic ray with E $> 10^{20}$ eV observed in 1962
- 1991: particle with E $pprox 3 imes 10^{20}$ observed
 - same kinetic energy as a baseball at 60 mph
 - over 10 million times more energy than most energetic particles at Large Hadron Collider

UHECRs

- Not confided to galaxy of origin
- Interact with cosmic microwave background
 - called the GZK cutoff
 - So UHERCs must come from within approximately 100 megaparsecs (Mpc)
 - 1 parsec \approx 3.26 light-years
- Closer galaxies are more likely sources
- Ultra-high energy cosmic rays create giant air showers of particles
 - first discovered by Pierre Auger (1899–1993)

Early Cosmic Ray Detectors: AGASA

- Akeno Giant Air Shower Array (AGASA) is a very large surface array in Japan
- In operation February 1990 January 2004
- Covers an area of 100 km² and consists of 111 surface detectors and 27 muon detectors

Agasa Spectrum: No GZK Cutoff!!!

Early Cosmic Ray Detectors: Hi-Res

- High Resolution Fly's Eye or HiRes detector observatory
- Operated in the western Utah desert
 - from May 1997 until April 2006
- Utilized the atmospheric fluorescence technique
- Made the first observation of the GZK cutoff
 - So conflicts with AGASA findings

Typical Fluxes

- Fluxes vary by a factor of 10^{32} from one end of the spectrum to the other
 - At low end of spectrum: 1 particle $\mathrm{m}^{-2}~\mathrm{s}^{-1}$
 - At high end: 1 particle km^{-2} century⁻¹
- The Pierre Auger Observatory can detect cosmic rays at the high end
 - covers 3000 km²

Cosmic Ray Detection

Pierre Auger Observatory:

- · Largest and most sensitive cosmic ray detector to date
- In Argentina
- Uses air fluorescence telescopes and surface detectors
- Operations began in 2008
- Has detected about 70 UHECRs

Pierre Auger Home Page

Pierre Auger Observatory

High-energy Cosmic Ray Spectrum

What is an Active Galactic Nucleus (AGN)?

- An AGN is a compact region at the center of a galaxy with high electromagnetic luminosity
 - Example: Quasar
- Activity is believed to come from the accretion of mass by a supermassive black hole
- Our galaxy also harbors a supermassive black hole
 - but the Milky Way does not seem to be active at present

Inner Structure of an AGN

Source: Wikipedia

Radio Galaxy Centaurus A (NGC 5128) – Visible Spectrum

Source: Wikipedia

Centaurus A – Composite

870-micron submillimeter = orange; X-ray = blue; visible light = close to true color

Source: Wikipedia

Our Catalog

- We used all AGNs within 15 Mpc (megaparsecs)
- To decide which galaxies were AGNs astronomers did the following:
 - Start with 64 infrared-bright galaxies within 15 Mpc
 - Select AGNs based on an infrared spectral line of neon
 - It takes so much energy to excite this line that AGN activity is the only likely cause
 - This line was seen in 17 of the 64 IR-bright galaxies

• PAO has detected 69 UHECRs with energy $\geq 5.5 \times 10^{19}$ eV

Period	Dates	Exposure	No. of UHECRs
		$(km^2\;sr\;y)$	detected
1	01-01-04 - 05-26-06	4390	14
2	05-27-06 - 08-31-07	4500	13
3	09-01-07 - 12-31-09	11480	42

- The CR flux from all 3 periods is $(14+13+42)/(4\pi \times {\rm Total~Exposure}) = 0.043~{\rm km^{-2}yr^{-1}}$
- According to GZK limit, the CRs with energies $\gtrsim 5 \times 10^{19}$ should interact with cosmic microwave background photons, and should almost never reach the earth from distances larger than 50 Mpc

UHECR – AGN Association: Evidence From First 69 CRs

Energy ranges from 55 EeV to 142 EeV: 1 EeV $=10^{18}$ eV

Goals of Our Research

- 1 Compare models with different source populations
 - including a "null" or isotropic source
- 2 Estimate the amount of scattering by cosmic magnetic fields
- Sources (with high probability)

Goals of Our Research, Cont.

- 4 Estimate flux of each source of cosmic rays
- **5** Estimate luminosity function parameters
- 6 Investigate whether cosmic rays from a source are scattered independently ("buckshot model") or undergo nearly identical scattered ("radiant model")

Our model has 4 levels:

- 1 candidate source population (e.g., AGNs)
 - distribution for source luminosities (a "luminosity function")
 - "zeroth" source = an isotropic background component with uncertain luminosity.

Null model: All observed cosmic rays are from the zeroth source

2 marked Poisson point process model for latent cosmic ray properties

- the arrival times have a homogeneous intensity measure in time
- the marks include
 - latent "guide" directions for the cosmic rays
 - the cosmic ray energies
 - latent categorical labels identifying the source of each ray

Model for magnetic deflection of the rays, scattering their directions from the guide directions

4 Measurement model with directional uncertainties and accounting for truncation and thinning

Four Levels and Associated Parameters

Model Levels & Random Variables

Parameters - Latent variables - Observables

- We consider the 17 active galactic nuclei (AGNs) in the volume-complete catalog of Goulding (2010) as candidate sources. The catalog is complete to 15 Mpc.
- An isotropic background is included as a "zeroth" source
- 3 different models:
 - M₀: only isotropic background source
 - ullet M₁: isotropic background source + 17 AGNs
 - M_2 : isotropic background source $+\ 2$ AGNs: Centaurus A (NGC 5128) and NGC 4945, which are the two closest AGNs

- CR arrivals follow a time-homogeneous Poisson process with rate depending on the fluxes and exposure factors of sources
- The measurement error of CR direction is modeled using Fisher distribution with concentration parameter corresponding to angular uncertainty of 0.9°

- The magnetic deflection of each CR direction is modeled using a Fisher distribution with concentration parameter κ ($\kappa \approx \frac{2.3}{\sigma^2}$ for 2-d Gaussian approximation with standard deviation σ radians)
- ullet We treat κ as an unknown parameter

Bayesian Hierarchical Model

- We use a 4-level hierarchical model, schematically shown above
- $F_0 \sim$ exponential(scale=s), $F_A \sim$ exponential(scale=s), $F_k = w_k F_A$, where $w_k \propto 1/$ squared distance to AGN $_k$, $\sum_{k \geq 1} w_k = 1$ $f = \frac{F_A}{F_A + F_0}$

Bayesian Hierarchical Model

- $\Pr\{\lambda_i = k | F_0, F_A\} \propto F_k \epsilon_k$
- $\mathsf{P}(\mathsf{Data}|F_0,F_A,\lambda) = e^{-\sum F_k \epsilon_k} \left(\sum F_k \epsilon_k\right)^{N_C} \prod_i rac{f_{\lambda_i,i}}{\epsilon_{\lambda_i}}$
- $f_{\lambda_i,i}$ is the marginal likelihood attributing CR $_i$ to AGN λ_i , taking into account
 - the measurement error,
 - the exposure toward the AGN and
 - the magnetic deflection,
- N_C is the number of CRs

Prior Specification

- For M_0 , F_0 has exponential prior with scale 2s
- For M_1 and M_2 , both F_0 and F_A have exponential prior with scale s
- In every model, the expected total fluxes are the same apriori. We choose $s\approx 0.063~{\rm km^{-2}yr^{-1}}$, based on the data from the two previously operated observatories, AGASA and HiRes

Markov Chain Monte Carlo – Initialization

Initialize:

- $F_0 \sim \text{exponential(scale} = s)$,
- $F_A \sim \text{exponential(scale} = s)$,
- $F_k = w_k F_A$, k = 1, 2, ..., M,
- $\Pr\{\lambda_i = k | F_0, F_A\} \propto F_k \epsilon_k$

Markov Chain Monte Carlo – Iteration

Gibbs sampling:

$$\begin{array}{ll} \mathsf{P}(F_A|F_0,\lambda,\mathsf{Data}) \\ & \sim & \mathsf{gamma}\left(1+\sum_{k\geq 1} m_k(\lambda),\frac{1}{\frac{1}{s}+\sum_{k\geq 1} w_k\epsilon_k}\right) \\ \\ \mathsf{P}(F_0|F_A,\lambda,\mathsf{Data}) & \sim & \mathsf{gamma}\left(1+m_0(\lambda),\frac{1}{\frac{1}{s}+\epsilon_0}\right) \\ \\ \mathsf{P}(\lambda_i=k|F_A,F_0,\mathsf{Data}) & \propto & f_{k,i}F_k \end{array}$$

• $m_k(\lambda)$ is the number of CRs assigned to source k according to λ

Marginal Likelihood – Exact

• Marginal likelihoods are available in closed form in all models, but require summing over all possible values of λ for M₁, M₂

Marginal Likelihood – Chib's Method

• Chib's estimate for the marginal likelihood is used for models m=1,2:

$$\ell_m = \frac{\operatorname{P}\left(\operatorname{Data}|F_0^*, F_A^*, \lambda^*\right) \operatorname{P}\left(F_0^*\right) \operatorname{P}\left(F_A^*\right) \operatorname{P}\left(\lambda^*|F_0^*, F_A^*\right)}{\operatorname{P}\left(F_0^*, F_A^*, \lambda^*|\operatorname{Data}\right)}$$

where the denominator can be expressed as

$$\begin{split} \mathsf{P}(F_A^*|F_0^*,\lambda^*,\mathsf{Data})\mathsf{P}(F_0^*|\lambda^*,\mathsf{Data})\mathsf{P}(\lambda^*|\mathsf{Data})\\ &=\mathsf{P}(F_A^*|\lambda^*)\mathsf{P}(F_0^*|\lambda^*)\mathsf{P}(\lambda^*|\mathsf{Data}) \end{split}$$

- F_0^*, F_A^*, λ^* are chosen from high-posterior points
- $P(\lambda^*|Data)$ is estimated using Gibbs sampling. All other terms are computed analytically.

Bayes Factor's

 We compare models 1,2 to model 0. The Bayes factors are computed as

$$\mathsf{BF}_{10} = rac{\ell_1}{\ell_0}$$
 , $\mathsf{BF}_{20} = rac{\ell_2}{\ell_0}$

Bayes Factor Plot – 17 AGNs

BF₁₀
M₁: background+17 AGNs vs. M₀:background only

BF₂₀
M₂: background+2 AGNs vs. M₀:background only

Overall Bayes Factors for log-flat prior over [1,1000]

	Period 1	Period 2	Period 3
BF_{10}	25.27	5.60	0.15
BF_{20}	11.99	8.67	0.11

Posterior density of f, Model M1

Posterior density for fraction from AGN, f Deflection scale 8.69° (κ = 100), dots show 95% credible regions

$$f := F_A/(F_A + F_0)$$

Posterior density of f, Model M2

Posterior density for fraction from AGN, f Deflection scale 8.69° (κ = 100), dots show 95% credible regions

$$f := F_A/(F_A + F_0)$$

- The strength of the evidence for association with these AGNs differs markedly from period to period
 - we will investigate if time inhomogeneity can be attributed to random variation
 - if not, then there is a contradiction
 - magnetic scattering implies that any time heterogeneity would be on the order of thousands of years
- Presuming these AGNs are CR sources, $\sim 10\%$ of PAO CRs may come from them, but a significant fraction appears to originate elsewhere

- Consider other CR luminosity functions
- Investigate the significance of period-to-period variations and either
 - Develop a changepoint model (if significant)
 - Aggregate the three periods (if not significant)
- Compare models with different source populations
- Consider different magnetic deflection models
- Wait for more data