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Functional Data Analysis

Functional Data Analysis (FDA) is a well-recognized and
active research area

On each subject one observes one of more functions such
as

e spectral data: power versus wavelength

e weather data: temperature versus day of the year

Much of the research on FDA assumes that the functions

are generated by a Gaussian process

Typically one function is observed on each subject



Diffusion Tensor Imaging

e We have been working with Diffusion Tensor Imaging

(DTI) data
e White matter tracts connect different parts of the brain
e DTI measures the diffusion of water along the tract

o We have data on 162 multiple sclerosis (MS) patients and

42 controls



DTI Data

The data are skewed, with the skewness spatially varying

The amount of skewness is different for Multiple Sclerosis
(MS) patients and controls
There are several DTI signals on each tract
e Fractional Anisotropy
o Parallel Diffusivity
e Perpendicular Diffusivity
There are also multiple tracts, although we will only

consider the corpus callosum
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Patients versus controls

e Patients and controls differ as much by variability and

skewness as in their mean functions

o Might their correlation functions also differ?



Model For a Single Outcome

Yi,(+) = pth functional outcome observed on ith subject
Staicu, Crainineanu, Reich, and Ruppert (2011, Biometrics)
proposed a copula model:

Vip(t) = 1p(8) + 0, (1) G { Wi (00 (1)}

p(+) is the mean function

o,(t) is the standard deviation function

G(-; ) is a parametric family of CDFs with mean 0,
standard deviation 1, and shape parameter .

e E.g., skewed Gaussian (Azzalini, 1985)

Wiy (1) is a process (in t) with unif(0,1) marginal
distributions



Staicu et al. Model

From previous page:

Yip(t) = pp(t) + op(2) [G_l{\Wip(t),; aP(t)H
unif(0,1)

It follows that:
° E{ Yip<t)} = Np(t)

o sd{Yyp(1)} = 0,(2)

o Y,,(t) has shape parameter «,(t)



Estimation of Marginal Distributions

Staicu et al. develop penalized spline estimators of

o a,(t)

e copula model for within-function dependencies

Their methodology applies to the functional outcomes
one-at-a-time.

Cross-dependencies cannot be studied without new
methodology.



A copula is a multivariate CDF with uniform marginal
distributions.

Copulas allow one to decompose the modeling of a
multivariate distribution into two independent steps:

©® modeling the dependencies via a copula

® modeling the univariate marginal distributions

We have already done Step 2.

Copulas



Gaussian Copula Model for Dependence Structure

Copula model for W;,:
o Ryp(t) == @ H{Wy(t)} ~ N(0,1)
e For each p, assume R;,, i =1,...,n, are iid Gaussian
processes with mean 0 and variance 1

e The correlation function of R;, determines the
dependence structure of W;, and therefore of Y3,

e Since R, is a Gaussian process, for any t, ..., ty,
{Wip(t1),..., Wi(ta)} has a Gaussian copula induced by
the Gaussian distribution of {R;,(t1),. .., Riy(tm)}

e This is also the copula of {Y;,(t1),..., Yi(tu)}



Modeling Dependencies Across Outcomes

We model R;, as the sum of a finite Karhuenen-Loeéve
expansion and white noise:

Ro(t) = 3 Zonfin(1) + 5 (1)
k=1

Here
° Ziyp, k=1,...,K,, are independent N{0,var(Zy)}
* fip,---,[K,p are eigenfunctions of the covariance function
of Rip

e €;(t) is white noise with a constant variance o7,
It follows from the above that

KP
> fe(tvar(Z) + o2, = 1.
k=1



Spline Model for the Eigenfunctions

Let b(t) = {b1(%),..., by(t)} be an orthogonal spline basis.
Assume fi,(t) = h(t)T 0y, for some coefficient vector 6y,,.
Let ©, be the matrix with £th row equal to 6y,.

We will use a penalty on © to prevent overfitting.



Pseudo-Likelihood

We use pseudo-likelihood estimation which has two stages:

©® Estimate the parameters in the marginal distributions

® Estimate the copula parameters by
e plugging the marginal parameter estimates into the penalized
log-likelihood,
e acting as if they were the true parameters, and
e maximizing this pseudo penalized log-likelihood over the

copula parameters.



Let

Then

Reformulation of Model

{Rip(tr), ..., Rip(t)}" (data)
{b(t), ..., b(tyx)}" (known)
{Eip(t1)7 ey Eip(tm)}—r .

BO,Z;, + €
N(O, O’Ep[ ),
N(0, D,), (unobserved latent variables)

Cpp, for p#p.



Estimation

We must estimate the parameters ©,, D,, and C,,,

p,p=1,...,P

We also need to deal with the latent Z; = (Z;, ..., Zip),

1=1,...,n.

Pseudo-Data:



EM algorithm

The E-step: Compute the conditional distribution of Z; given
R;

The M-Step: Update the parameter estimates by minimizing

N
—2F {Zlog L(R;, Z;)

=1

}+Z)\ Z@ [ymymTae,,



White Matter Tracts, DTI, and MS

White matter tracts are made up of axons that transmit
signals between different regions of the brain.

e These axons are insulated by a fatty substance called myelin.

Multiple sclerosis is an autoimmune disease associated
with damage to myelin.

e Can lead to significant disabilities.

DTl is a magnetic resonance imaging technique that
measures the diffusion of water in tissue.

e Anisotropy of water diffusion allows images of the white
matter in the brain to be generated.
A subset of our DTI data set is available in the refund
package of R



Three DTI Outcomes

At each tract location one obtains a 3 x 3
positive-definitive, symmetric matrix

e the matrix describes the diffusion at that location
Let A\ > Ay > A3 be the eigenvalues
Parallel diffusivity = Ay
Perpendicular diffusivity = (A1 + A2)/2
Fractional anisotropy =

1/2

3{(M = A2+ (M2 = A2+ (As — 12}
2001+ A3+ )3)




Marginal Distributions: Cases versus Controls

Fractional anisotropy Parallel diffusivity Perpendicular diffusivity
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Cross-Correlations

Estimated cross—correlation of the latent Gaussian processes

Control Control
=] =] =]
— — — —
] =00 =00
oS £ E)
Eo Eo Eo
z° 3° 3°
T =R =R
S go go
o 2 =3
o TN ]
o Qo A 0o
o o < Q2 = g
(=} (=} (=}
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Fractional aniso. Fractional aniso. Parallel diff.

MS

<
g
@©
o
£

55
o

s
T O
o

N
o
=]
o

Perpendicular diff.
0.0 0.2 04 06 08 1.0

o
4
£®
'UO
8o
50
T«
3o
g

SN
0o
o
o

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Fractional aniso. Fractional aniso. Parallel diff.



Differences Between Correlation Functions

Differences of the correlations between the two groups
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Predicting Case Status from Correlations

We predicted each outcome from the other two outcomes

e The prediction was done twice using the parameters
estimated for
@ cases
® controls
e The area between the predicted and each of the observed
curves was computed
e The subject was classified as case/control according to which
area was smallest
e Cross-validation to prevent over-optimism

e parameters were estimated without data from the subject

being classified
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Thanks for coming!
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