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Functional Data Analysis

• Functional Data Analysis (FDA) is a well-recognized and
active research area

• On each subject one observes one of more functions such
as

• spectral data: power versus wavelength
• weather data: temperature versus day of the year

• Much of the research on FDA assumes that the functions
are generated by a Gaussian process

• Typically one function is observed on each subject



Diffusion Tensor Imaging

• We have been working with Diffusion Tensor Imaging

(DTI) data

• White matter tracts connect different parts of the brain

• DTI measures the diffusion of water along the tract

• We have data on 162 multiple sclerosis (MS) patients and

42 controls



DTI Data

• The data are skewed, with the skewness spatially varying

• The amount of skewness is different for Multiple Sclerosis

(MS) patients and controls
• There are several DTI signals on each tract

• Fractional Anisotropy

• Parallel Diffusivity

• Perpendicular Diffusivity

• There are also multiple tracts, although we will only

consider the corpus callosum



Plot of DTI Data

Top row: controls
Bottom row: MS patients – more variability and more skewness



Patients versus controls

• Patients and controls differ as much by variability and

skewness as in their mean functions

• Might their correlation functions also differ?



Model For a Single Outcome

Yip(·) = pth functional outcome observed on ith subject
Staicu, Crainineanu, Reich, and Ruppert (2011, Biometrics)
proposed a copula model:

Yip(t) = µp(t) + σp(t)G−1
{
Wip(t);αp(t)

}
• µp(·) is the mean function
• σp(t) is the standard deviation function
• G(·;α) is a parametric family of CDFs with mean 0,
standard deviation 1, and shape parameter α.

• E.g., skewed Gaussian (Azzalini, 1985)

• Wip(t) is a process (in t) with unif(0,1) marginal
distributions



Staicu et al. Model

From previous page:

Yip(t) = µp(t) + σp(t)
[
G−1

{
Wip(t)︸ ︷︷ ︸
unif(0,1)

;αp(t)
}]

It follows that:

• E{Yip(t)} = µp(t)

• sd{Yip(t)} = σp(t)

• Yip(t) has shape parameter αp(t)



Estimation of Marginal Distributions

Staicu et al. develop penalized spline estimators of

• µp(t)
• σp(t)
• αp(t)
• copula model for within-function dependencies

Their methodology applies to the functional outcomes
one-at-a-time.
Cross-dependencies cannot be studied without new
methodology.



Copulas

A copula is a multivariate CDF with uniform marginal

distributions.

Copulas allow one to decompose the modeling of a

multivariate distribution into two independent steps:

1 modeling the dependencies via a copula

2 modeling the univariate marginal distributions

We have already done Step 2.



Gaussian Copula Model for Dependence Structure

Copula model for Wip:

• Rip(t) := Φ−1{Wip(t)} ∼ N (0, 1)
• For each p, assume Rip, i = 1, . . . , n, are iid Gaussian
processes with mean 0 and variance 1

• The correlation function of Rip determines the
dependence structure of Wip and therefore of Yip

• Since Rip is a Gaussian process, for any t1, . . . , tM ,
{Wip(t1), . . . ,Wip(tM )} has a Gaussian copula induced by
the Gaussian distribution of {Rip(t1), . . . ,Rip(tM )}

• This is also the copula of {Yip(t1), . . . ,Yip(tM )}



Modeling Dependencies Across Outcomes

We model Rip as the sum of a finite Karhuenen-Loève
expansion and white noise:

Rip(t) =
Kp∑

k=1
Zipkfkp(t) + εip(t)

Here
• Zikp, k = 1, . . . ,Kp, are independent N{0, var(Zipk)}
• f1p, . . . , fKpp are eigenfunctions of the covariance function
of Rip

• εip(t) is white noise with a constant variance σ2
εp

It follows from the above that
Kp∑

k=1
f 2
kp(t)var(Zipk) + σ2

εp ≡ 1.



Spline Model for the Eigenfunctions

Let b(t) = {b1(t), . . . , bq(t)} be an orthogonal spline basis.

Assume fkp(t) = h(t)Tθkp for some coefficient vector θkp.

Let Θp be the matrix with kth row equal to θkp.

We will use a penalty on Θ to prevent overfitting.



Pseudo-Likelihood

We use pseudo-likelihood estimation which has two stages:

1 Estimate the parameters in the marginal distributions

2 Estimate the copula parameters by

• plugging the marginal parameter estimates into the penalized

log-likelihood,

• acting as if they were the true parameters, and

• maximizing this pseudo penalized log-likelihood over the

copula parameters.



Reformulation of Model

Let

Rip = {Rip(t1), . . . ,Rip(tm)}T (data)
B = {b(t1), . . . , b(tm)}T (known)
εip = {εip(t1), . . . , εip(tm)}T .

Then

Rip = BΘpZip + εip

εip ∼ N(0, σ2
εpIm),

Zip ∼ N(0,Dp), (unobserved latent variables)
cov(Zip,Zip′) = Cpp′ , for p 6= p′.



Estimation

We must estimate the parameters Θp, Dp, and Cpp′ ,

p, p′ = 1, . . . ,P

We also need to deal with the latent Zi = (Zi1, . . . ,ZiP),

i = 1, . . . , n.

Pseudo-Data:

Ri =


Ri1
...

RiP

 , i = 1, . . . , n.



EM algorithm

The E-step: Compute the conditional distribution of Zi given

Ri

The M-Step: Update the parameter estimates by minimizing

−2E
{ N∑

i=1
log L(Ri ,Zi)

∣∣∣∣∣Ri

}
+

P∑
p=1

λp

Kp∑
k=1

ΘT
pk

∫
b′′(t)b′′(t)TdtΘpk



White Matter Tracts, DTI, and MS

• White matter tracts are made up of axons that transmit
signals between different regions of the brain.

• These axons are insulated by a fatty substance called myelin.
• Multiple sclerosis is an autoimmune disease associated
with damage to myelin.

• Can lead to significant disabilities.
• DTI is a magnetic resonance imaging technique that
measures the diffusion of water in tissue.

• Anisotropy of water diffusion allows images of the white
matter in the brain to be generated.

• A subset of our DTI data set is available in the refund
package of R



Three DTI Outcomes

• At each tract location one obtains a 3× 3
positive-definitive, symmetric matrix

• the matrix describes the diffusion at that location

• Let λ1 > λ2 > λ3 be the eigenvalues

• Parallel diffusivity = λ1

• Perpendicular diffusivity = (λ1 + λ2)/2

• Fractional anisotropy =
3
{

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2
}

2(λ2
1 + λ2

2 + λ2
3)

1/2



Marginal Distributions: Cases versus Controls



Cross-Correlations
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Estimated cross−correlation of the latent Gaussian processes



Differences Between Correlation Functions
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Predicting Case Status from Correlations

We predicted each outcome from the other two outcomes
• The prediction was done twice using the parameters
estimated for

1 cases
2 controls

• The area between the predicted and each of the observed
curves was computed

• The subject was classified as case/control according to which
area was smallest

• Cross-validation to prevent over-optimism
• parameters were estimated without data from the subject

being classified



CV-ROC Curve for Predicting Case Status



The End

Thanks for coming!
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