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Functional Regression

In functional regression either the response or at least one of

the predictor variables is a function.

In this talk:

• Response is scalar

• There is one functional predictor, e.g., an EEG signal



Functional Linear Model (FLM)

A common approach is the functional linear model (FLM)

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t)dt

Here

• Yi is a scalar response

• Xi(t) is a functional predictor taking values in a set X
• T is a compact interval

• WLOG, T = [0, 1]

• β(t) is a functional parameter

• Xi(t) is observed on {j/m : j = 0, . . . ,m} (for simplicity)



FLM: β(t) is nonparametric

E(Yi |Xi) = β0+
∫
T
β(t)Xi(t)dt ≈ β0+constant

J∑
j=1

β(tj)Xi(tj)

The right-hand side is a high-dimensional linear model.

We expect that β is smooth but otherwise is unknown.

Therefore,

• β(t) is modeled nonparametrically, but

• smoothness of β(t) is imposed.

• so, nonparametric estimation is needed



Estimation in the FLM

Estimation must be nonparametric.

• This suggests using kernel methods.

• But kernels will not work.

• Let’s see why.



Local Kernel-Weighted Linear Regression

Yi = m(Xi) + εi (nonparametric regression model)

m̂(x) = β0 where (β0, β1) minimize
n∑

i=1
K
{

h−1(Xi − x)
} [

Yi − {β0 + β1(Xi − x)}
]2
.

Modeling is local and estimation is local.
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Functional Linear Model

In the FLM, the response depends on the entire range of X

since

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t)dt.

So local estimation does not work.

Modeling must still be local, since

Local modeling ⇐⇒ nonparametric.



Splines: local modeling and global estimation

Linear B-splines:
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Linear spline:
∑J

j=1 bjBj(x). b := (b1, . . . , bJ )

Slopes: bj − bj−1 = (∆b)j−1 Changes in slopes: ∆2bj−2



Higher order splines

Quadratic splines
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Degree ≥ 2 =⇒ ∆2bj−2 is proportional to the 2nd derivative



Spline Estimation in the FLM

E(Yi |Xi) = β0 +
∫
β(t)Xi(t)dt (regression model)

β(t) =
J∑

j=1
βjBj(t) (spline model—local)

Therefore,

E(Yi |Xi) = β0 +
J∑

j=1
βj

∫
Bj(t)Xi(t)dt︸ ︷︷ ︸
:=Uij (known)

So estimate β(t) by minimizing

n∑
i=1

Yi −
J∑

j=1
βjUij


2

+λ
J−2∑
j=1

{
(∆2b)j

}2
(global estimation)



Functional Generalized Additive Model

We have extended the FLM to the Functional Generalized Additive
Model (FGAM)

g{E(Yi |Xi)} = θ0 +
∫
T

F{Xi(t), t}dt.

• F(·, ·) is an unknown function from X × T to <

• if F(x, t) = xβ(t), then we have a FGLM

• compare with the usual GAM with K scalar predictors

g{E(Yi |Xi)} = θ0 +
K∑

k=1
F{Xi(k), k}



Riemann sum approximation

The FGAM

g{E(Yi |Xi)} = θ0 +
∫
T

F{Xi(t), t}dt.

can be approximated by a Riemann sum:

g{E(Yi |Xi)} = θ0 + ∆−1∑
j

F{Xi(tj), tj}.

• {tj : j = 1, . . . , J} is a fine grid

• ∆ is the distance between grid points

• The last model is like an ordinary GAM, but

• in the FGAM, F(x, t) should be smooth in both variables



DTI example: Predicting MS using perpendicular diffusivity

Estimated surface F̂(x, t) and two predictor curves for the DTI
(Diffusion Tensor Imaging) dataset. MS = multiple sclerosis



Advantage of penalized splines for a FGAM

Penalized splines let us impose smoothness in both variables.

Also, a penalized spline additive model can be fit in one step.

• there is no need for backfitting

• this was first noticed by Marx and Eilers

• this is crucial for the FGAM

• cannot backfit with infinitely many components



Bivariate Spline Model

We use the bivariate tensor product B-spline model:

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θj,kBX
j (x)BT

k (t)

• Here {BX
j (x) : j = 1, . . . ,Kx} and {BT

k (x) : k = 1, . . . ,Kt}

are univariate B-spline bases

• a roughness penalty will be imposed on {θj,k}Kx
j=1

Kt
k=1



Bivariate Spline Model

From previous slide:

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θj,kBX
j (x)BT

k (t)

Therefore,

g{E(Yi |Xi)} = θ0 +
∫
T

F{Xi(t), t}dt = θ0 +
Kx∑
j=1

Kt∑
k=1

θj,kZj,k(i)

• Here Zj,k(i) =
∫
T BX

j {Xi(t)}BT
k (t)dt

• The integral can be approximated numerically



Identifiability constraint

For identifiability, we use the constraint

Kx∑
j=1

θj,k = 0, k = 1, . . . ,Kt



Roughness Penalties

The row penalty is

λ1

Kx∑
j=d+1

(∆d
j θj,k)2

• ∆d
j θj,k is the dth difference of θj−d,k , . . . , θj,k (k held fixed)

The column penalty is

λ2

Kt∑
k=d+1

(∆d
kθj,k)2

• ∆d
kθj,k is the dth difference of θj,k−d , . . . , θj,k (j held fixed)

These were introduced by Marx and Eilers for bivariate P-splines.



Estimator

θ̂k =
(
KTZTZK + λ1KTPT

1 P1K + λ2KTPT
2 P2K

)−1
KTZT Y.

• For simplicity, g(x) = x is assumed in this talk

• θ̂ is the vector of estimated coefficients

• K imposes the identifiability constraints

• Z contains the Zj,k(i) values

• P1 and P2 impose the row and column penalties

• Y is the vector of responses



Variant of the model

The additive model is preserved by transforming Xi(t) to

Gt{Xi(t)} where Gt(x) is “smooth” in both t and x.

• We use Gt equal to the CDF of Xi(t)

• We use the empirical EDF (perhaps smoothed)

• Then the set
[
j/m,Gj/m{Xi(j/m)}

] n
i=1

m
j=0 fills [0, 1]2

• Convenient both for visualization and estimation

• As nice interpretation: F(p, t) is the effect of Xi(t) when at

its pth quantile



Variant of the model, cont.

• Transforming Xi(t) is a reexpression of the original model, not
a new model

• that would not be true if Xi(t) were transformed in a FLM



Smoothing parameters and inference

• we select the smoothing parameters λ1 and λ2 by GCV
• can be computed rapidly using software of Simon Wood in his

mgcv package in R

• we used “outer iteration” where, for each pair of smoothing
pairs, P-IRLS is applied until convergence

• our code will be available as a supplement to the paper
• Matt McLean intends to make an FGAM function available in

the refund package (Ciprian Crainiceanu and Philip Reiss
coordinating authors)

• the estimate is linear in Y, if we ignore that λ1 and λ2 are
data-based

• standard errors obtained by a sandwich formula



Monte Carlo: Data Generation

We used the data generation scheme of Hall and Horowitz.

Xi(t) was a mean-zero process with

• eigenvalues of the covariance matrix either “well spaced”

or “closely spaced” and

• decay of eigenvalues determined by α = 1.2 or 2.

The regression model was either a FLM or a nonlinear FGAM.



Generating the Xi

Xi(t) =
50∑

j=1
γjZijφj(t)

• γ1, . . . , γ50 are the eigenvalues of the covariance operator

• Zij are iid uniform(−3.5, 3.5)

• φ1(t), . . . , φ50(t) are the eigenvectors (eigenfunctions) of

the covariance operator



Generating the Xi : Eigenvalues
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Generating the Xi : Eigenvectors

φ1(t) ≡ 1

φj(t) =
√

2 cos(jπt), j = 2, . . . , 50



Generating the Yi : True Coefficient Function
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Generating the Yi : True Models

Linear

Yt =
∫ 1

0
β(t)Xi(t)dt + εi

Additive

Yt =
∫ 1

0
{β(t)Xi(t)}2 dt + εi



Five Estimators

1 FGAM-O: FGAM with Original Xi (no transformation)
2 FLM1: Functional Linear Model using fRegress in the

fda package
3 FLM2: Functional Linear Model using pca.fd in the fda
package

• an unpenalized OLS fit to PCA scores. Enough eigenvectors
are used to explain 90% of the variability in the Xi

4 FV: Ferraty-Vieu kernel estimation = Nadaraya-Watson
type estimator

5 FAM: due to Müller and Yao (2008)
• an additive model fit to a finite set of PCA scores



FLM1 and FLM2 are similar

Let xi and βββ be the evaluations of Xi(t) and β(t) on fine
grids. Then

∫
Xi(t)β(t)dt ≈ constant xT

i βββ = (Axi)T(A−Tβββ)

so a FLM is invariant to linear transformations of the predictor.

So regressing on Xi(t) is, in principle, equivalent to regressing
on PCA scores.

Therefore, FLM1 and FLM2 are using the same model
• they differ only the details of their implementations.



Müller and Yao’s FAM

• Start with function PCA
• Then extract a finite number of scores (projections onto
eigenvectors).

• Next use an additive model in scores.
• So Müller and Yao’s model is

Yi = θ0 +
K∑

k=1
Fk

{∫
ξk(t)Xi(t)dt

}
≈ θ0 +

K∑
k=1

Fk
{
ξT

k Xi
}
.

• ξ1, . . . , ξK are the first k principal component eigenvectors.
• this is a completely different model than FGAM, not just a
different method of estimation.

• additive in Xi(t) ⇒ not additive in scores (and vice versa).
• see next frame.



Additive Models and Linear Transformations
Additive models are not invariant to linear transformation.
To appreciate this, consider a bivariate additive model

f1(X1) + f2(X2).
Consider the transformations Z1 = α11X1 + α12X2 and
Z2 = α21X1 + α22X2.
If f1 and f2 are nonlinear, then in general there will not exist g1
and g2 such that

f1(X1) + f2(X2) = g1(Z1) + g2(Z2).
Therefore, a model that is additive in the original Xt will not
be additive in the PCA scores, and vice versa.
It follows that FGAM (additive in Xt) and FAM (additive in
the PCA scores) are fundamentally different models.
Exception: FGAM and FAM are the same if applied to a linear
model.



Ferraty-Vieu estimator

r̂(X) =
∑N

i=1 Yi K {h−1d(X ,Xi)}∑N
i=1 K {h−1d(X ,Xi)}

.

• r̂(X) estimates E(Yi |Xi = X).
• d(·, ·) is a semimetric on the space of functions under
consideration.

• h is a bandwidth.
• K is a kernel.
• This estimator is a generalization of the Nadaraya-Watson
kernel estimator.

• Uses code on the authors’ website.



Mean out-of-sample RMSEs



Diffusion Tensor Imaging

• DTI = diffusion tensor imaging

• Data is courtesy of Dr. Daniel Reich, National Institute of

Neurological Disorders and Stroke and Johns Hopkins

University, Department of Neurology

• at each voxel, get a 6-dimensional tensor = components of a
3 × 3 symmetric, PD matrix

• measures diffusion of water



Multiple Sclerosis

• a “tract” is white matter connecting two parts of the brain

• MS is a disease of the white matter

• specifically of the white myelin sheave

• the myelin is an insulator

• the corpus callosum tract connects the two hemispheres of the
brain

• involved in many brain functions including cognition

• this is an exploratory study

• Question: how is diffusion along the corpus callosum related to

cognition?



DTI data – parallel diffusivity along the corpus callosum
MS patients only – Untransformed

0 20 40 60 80

1.
5

2.
0

2.
5

3.
0

a)

t

X
i(t

)



DTI data – parallel diffusivity along the corpus callosum
MS patients only – Transformed
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PASAT

• PASAT = Paced Auditory Serial Addition Test

• Subject given numbers at three second intervals

• asked to add the current number to the previous one

• MS patients often perform significantly worse than controls

• We only have data from patients



Predicting PASAT: Leave-one-curve-out RMSEs

Measurement FGAM-O FGAM-T FLM1 FLM2 FV FAM

Perp. Diff. 12.22 10.46 10.98 11.27 11.16 11.71

Fract. Aniso. 12.55 11.60 11.87 11.91 12.11 12.70

Parall. Diff. 11.94 12.09 12.32 12.24 11.97 11.86

RMSE = Root Mean Squared Error

FGAM-O = FGAM with original curves

FGAM-T = FGAM with ECDF transformed curves

Perp. Diff. = Perpendicular Diffusivity

Fract. Aniso. = Fractional Anisotropy

Parall. Diff. = Parallel Diffusivity



Estimated surface F̂(p, t) for parallel diffusivity and PASAT

a) Contour Plot of Estimated Surface
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t-statistics for parallel diffusivity and PASAT

b) Contour Plot of Pseudo t−Statistics
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Slice of the fitted surface (parallel diffusivity and PASAT)

0.0 0.4 0.8

10
30

50

a) F̂(x, 0.38) by x

0.0 0.4 0.8

30
40

50
60

70

b) F̂(0.5, t) by t

0.0 0.4 0.8

−
40

0
0

20
0

c) 
∂2

∂x2
F̂(x, 0.38) by x

0.0 0.4 0.8

−
60

0
−

20
0

0
20

0

d) 
∂2

∂x2
F̂(x, t)|x=0.5 by t

For an FLM F(x, t) = xβ(t).
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∂x2 F̂(x, t) indicates that an FLM does not fit
well.



DTI data: Predicting MS status

Now the response is binary: Multiple sclerosis patient/control.

The goal isn’t really classification, since there are better ways

to diagnose the disease.

Instead, we want to see what can be learned about the disease.



DTI example: Predicting MS using perpendicular diffusivity

Estimated surface F̂(x, t) and two predictor curves for the DTI
(Diffusion Tensor Imaging) dataset. Quantile transformation used.

Note that large quantiles at tract locations near t = 1 have a
strong influence on predicting disease.



Perpendicular Diffusivity Curves Along Corpus Callosum
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ROC curves
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