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Intellectual impairment and blood lead

Example I (courtesy of Rich Canfield, Nutrition, Cornell)
blood lead and intelligence measured on children
Question: how do low doses of lead affect IQ?

important since doses are decreasing with lead now out of
gasoline

several IQ measurements per child
so longitudinal

nine “confounders”
e. g., maternal IQ
need to adjust for them

effect of lead appears nonlinear
important conclusion
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Dose-response curve
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Thanks to Rich Canfield for data and estimates
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Spinal bone mineral density example

Example II (in Ruppert, Wand, Carroll (2003), Semiparametric
Regression

age and spinal bone mineral density measured on girls and
young women
several measurements on each subject
increasing but nonlinear curves
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Spinal bone mineral density data
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What is needed to accommodate these examples

We need a model with
potentially many variables
possibility of nonlinear effects
random subject-specific effects

The model should be one that can be fit with readily available
software such as SAS, Splus, or R.
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Underlying philosophy

1 minimalist statistics
keep it as simple as possible

2 build on classical parametric statistics
3 modular methodology

so we can add components to accommodate special
features in data sets
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Outline of the approach

Start with linear mixed model
allows random subject-specific effects
fine for variables that enter linearly

Expand the basis for those variables that have nonlinear
effects

we will use a spline basis
treat the spline coefficients as random effects to induce
empirical Bayes shrinkage = smoothing

End result
linear mixed model from a software perspective, but
nonlinear from a modeling perspective

(Much like polynomial regression, but without the drawbacks of
polynomials.)
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Multiple linear regression

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi

Examples of predictor variables:
Xi1 = blood lead concentration of ith child
Xi2 = X2

i1
Xi3 = 1 if ith child lives with both parents (is 0 otherwise)

In the standard linear model:
ε1, . . . , εn are independent with a constant variance
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Polynomial regression

Yi = β0 + β1Xi1 + β2X2
i1 + · · ·+ βpXp

i1 + other variables + εi

This is an example of basis expansion
But polynomials are not nearly as good as splines at
approximating other nonlinear functions



Linear
Statistical
Models to

Mixed Models
to Semipara-

metric
Regression

David Ruppert

Two Examples

Introduction

Linear and
mixed linear
models

Univariate
spline models

Back to
examples

More general
spline models

Summary

Example: pig weights (random effects)

Example III (from Ruppert, Wand, and Carroll (2003))
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Random intercept model

Yĳ = (β0 + b0i) + β1weekj

Yĳ = weight of ith pig at the jth week
β0 is the average intercept for pigs
b0i is an offset for ith pig
So (β0 + b0i) is the intercept for the ith pig
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Are random intercepts enough?

Example III
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Random lines model

Yĳ = (β0 + b0i) + (β1 + b1i) weekj

β1 is the average slope
bii is an adjustment to slope of the ith pig
So (β1 + b1i) is the slope for the ith pig
b0i and b1i seem positively correlated

makes sense: faster growing pigs should be larger at the
start of data collection



Linear
Statistical
Models to

Mixed Models
to Semipara-

metric
Regression

David Ruppert

Two Examples

Introduction

Linear and
mixed linear
models

Univariate
spline models

Back to
examples

More general
spline models

Summary

General form of linear mixed model

Xi = (Xi1, . . . , Xip) and Zi = (Zi1, . . . , Ziq) are vectors of
predictor variables
βββ = (β1, . . . , βp) is a vector of fixed effects
b = (b1, . . . , bq) is a vector of random effects

b ∼ MVN{0,Σ(θ)}
θ is a vector of variance components

Model is:
Yi = XT

i βββ + ZT
i b + εi

Note use of inner product notation:

XT
i βββ =

p∑
j=1

Xĳβj and ZT
i b =

q∑
j=1

Zĳbj
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Estimation in linear mixed models

βββ and θθθ are the parameter vectors
estimated by

ML (maximum likelihood), or
REML (maximum likelihood with degrees of freedom
correction)

b is a vector of random variables
predicted by a BLUP (Best linear unbiased predictor)
BLUP is shrunk towards zero (mean of b)
amount of shrinkage depends on θ̂θθ
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Estimation in linear mixed models, cont.

Random intercepts example:

Yĳ = (β0 + b0i) + β1weekj

high variability among the intercepts ⇒ less shrinkage of
b0i towards 0

extreme case: intercepts are fixed effects
low variability among the intercepts ⇒ more shrinkage

extreme case: common intercept (another fixed effects
model)
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Comparison between fixed and random effects
modeling

fixed effects models allow only the two extremes:
no shrinkage
maximal shrinkage to a common intercept

mixed effects modeling allows all possibilities between
these extremes
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Splines

polynomials are excellent for local approximation of
functions
in practice, polynomials are relatively poor at global
approximation
a spline is made by joining polynomials together

takes advantage of polynomials strengths without
inheriting their weaknesses

splines have "maximal smoothness"
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Splines have "maximal smoothness"

Is this a linear spline?
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Splines have "maximal smoothness," cont.

Is this a quadratic spline?
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Piecewise linear spline model

“Positive part” notation:

x+ = x, if x > 0 (1)
= 0, if x ≤ 0 (2)

Linear spline:

m(x) =
{
β0 + β1x

}
+
{

b1(x − κ1)+ + · · ·+ bK (x − κK )+
}

κ1, . . . , κK are “knots”
b1, . . . , bK are the spline coefficients
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Linear “plus” function with κ = 1
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Linear spline

m(x) = β0 + β1x + b1(x − κ1)+ + · · ·+ bK (x − κK )+

slope jumps by bk at κk , k = 1, . . . , K
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Fitting LIDAR data with plus functions
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Generalization: higher degree splines

m(x) = β0 + β1x + · · ·+ βpxp

+b1(x − κ1)
p
+ + · · ·+ bK (x − κK )p

+

pth derivative jumps by p! bk at κk

first p − 1 derivatives are continuous
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Quadratic “plus” function
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LIDAR data: ordinary Least Squares
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LIDAR data: penalized least-squares

Use matrix notation:

m(Xi) = β0 + β1Xi + · · ·+ βpXp
i

+b1(Xi − κ1)
p
+ + · · ·+ bK (Xi − κK )p

+

= XT
i βββX + BT(Xi)b

Minimize
n∑

i=1

{
Yi − (XT

i βββX + BT(Xi)b)
}2

+ λ bTDb.
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Penalized least-squares, cont.

From previous slide: minimize
n∑

i=1

{
Yi − (XT

i βββX + BT(Xi)b)
}2

+ λ bTDb.

λ bTDb is a penalty that prevents overfitting
D is a positive semidefinite matrix

so the penalty is non-negative
Example:

D = I

λ controls that amount of penalization
the choice of λ is crucial
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Penalized Least Squares
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Choice of λ is crucial
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How can λ be chosen?

The smoothing parameter λ can be chosen automatically using
mixed model software
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Ridge Regression

From earlier slide:
n∑

i=1

{
Y − (XT

i βββX + BT(Xi)b)
}2

+ λ bTDb.

Let X have row
(
XT

i BT(Xi)
)
. Then(

β̂ββX
b̂

)
=
{
XTX + λ blockdiag(0, D)

}−1
XTY.

This is a ridge regression estimator
Also, as we will see, it is a BLUP in a mixed model and an
empirical Bayes estimator
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Linear Mixed Models

Assume the linear mixed model:

Y = Xβββ + Zb + ε

where
b is N (0, σ2

bΣΣΣb)
ε is N (0, σ2

ε I)
Xβββ are the “fixed effects”
Zb are the “random effects”

Henderson’s equations.(
β̂ββ

b̂

)
=
(

XTX XTZ
ZTX ZTZ + λΣΣΣ−1

b

)−1(XTY
ZTY

)
.

λ =
σ2

ε

σ2
b
.
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Linear Mixed Models

From previous slides:
Ridge regression: Let X have row

(
XT

i BT(Xi)
)
. Then(

β̂ββX
b̂

)
=
{
XTX + λ blockdiag(0, 0, D)

}−1
XTY.

Linear mixed model:(
β̂ββ

b̂

)
=
(

XTX XTZ
ZTX ZTZ + λΣΣΣ−1

b

)−1(XTY
ZTY

)

=
{(

X Z
)T (X Z

)
+ λ blockdiag(0,ΣΣΣ−1

b )
}−1 (

X Z
)T Y
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Selecting λ

To choose λ use:
1 one of several model selection criteria:

cross-validation (CV)
generalized cross-validation (GCV)
AIC
CP

2 ML or REML in mixed model framework
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Modeling the blood lead and IQ data

For the jth measurements on the ith subject:

IQĳ = bi + m(leadĳ) + β1X1
ĳ + · · ·+ βLXL

ĳ + εĳ

m(·) is a spline
include the population average intercept

bi is a random subject-specific intercept
E(bi) = 0
model assumes parallel curves

X `
ĳ is the value of the `th confounder, ` = 1, . . . , L
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Return to spinal bone mineral density study
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SBMDi,j = Ui + m(agei,j) + εi,j ,

i = 1, . . . , m = 230, j = i, . . . , ni .
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Fixed effects

X =



1 age11
...

...
1 age1n1...

...
1 agem1
...

...
1 agemnm
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Random effects

Z =



1 · · · 0 (age11 − κ1)+ · · · (age11 − κK )+
... . . . ...

... . . . ...
1 · · · 0 (age1n1 − κ1)+ · · · (age1n1 − κK )+
...

...
...

... . . . ...
0 · · · 1 (agem1 − κ1)+ · · · (agem1 − κK )+
... . . . ...

... . . . ...
0 · · · 1 (agemnm − κ1)+ · · · (agemnm − κK )+
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Random effects

u =



U1
...

Um
b1
...

bK
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Random effects
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Broken down by ethnicity
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Model with ethnicity effects

SBMDĳ = Ui + m(ageĳ) + β1blacki + β2hispanici
+β3whitei + εĳ , 1 ≤ j ≤ ni , 1 ≤ i ≤ m.

Asian is the reference group.
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Model with ethnicity effects

Only requires an expansion of the fixed effects by adding the
columns 

black1 hispanic1 white1
...

...
...

black1 hispanic1 white1
...
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blackm hispanicm whitem
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Ethnicity effects
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Possible enrichment of the model

In this model, the age effects curve for the four ethnic
groups are parallel.
Could we model them as non-parallel?
Might be problematic in this example because of the small
values of the ni .
But the methodology should be useful in other contexts.
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Penalized Splines and Additive Models

Bivariate Additive model:

Yi = m1(Xi) + m2(Zi) + εi

Generalizes easily to more than two predictors
No interactions: so easy to interpret
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Bivariate additive spline model

Yi = β0

+ βx,1Xi + bx,1(Xi − κx,1)+ + · · ·+ bx,K (Xi − κx,Kx )+
+ βz,1Zi + bz,1(Zi − κz,1)+ + · · ·+ bz,K (Zi − κz,Kz )+
+ εi
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Penalized Splines and Additive Models

no need for backfitting
computation very rapid
no identifiability issues
inference is simple
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Milan study of mortality and air pollution

Data:

daily mortality
daily weather variables
TSP = total suspended particulate matter

Additive Model:

√
mortalityt = β0 + β TSPt + f1(t) + f2(temperaturet)

+ f3(humidityt) + εt
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Milan study: results
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Other models that fit in this framework

generalized regression
response is not Gaussian
e. g., logistic regression for a binary response

variance functions
for nonconstant response variance

measurement error
when X is measured with error

bivariate smoothing
e. g., for spatial data

spatially adaptive smoothing
where there are regions of high and of low curvature
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Summary

Mixed models allow subject-specific effects to be
similar but not the same
Splines are excellent at approximating nonlinear
functions
Splines can be embedded in mixed models by treating
the spline coefficients as random effects
The amount of smoothing can be determined
automatically by REML
Modular statistical methodology is essential in practice
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