NONPARAMETRIC REGRESSION WITH MEASUREMENT ERROR: SOME RECENT PROGRESS

David Ruppert Cornell University

www.orie.cornell.edu/~davidr

(These transparencies, preprints, and references available —

link to "Recent Talks" and "Recent Papers")

Work done jointly with

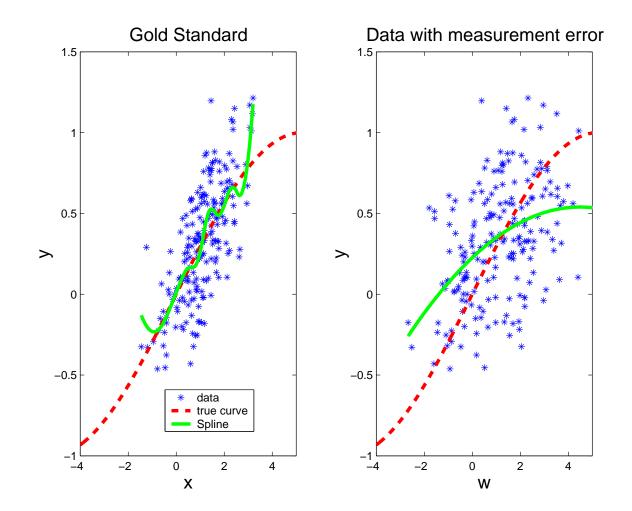
Scott Berry, Texas A & M R. J. Carroll, Texas A & M Jeff Maca, Novartis John Staudenmayer, Cornell

OUTLINE

- Statement of problem nonparametric regression with measurement error
- Review of the currently available estimators
 - deconvolution kernels (Fan & Truong, 1993, Annals)
 - SIMEX (Carroll, Maca, Ruppert, 1999, *Biometrika*)
 - structural splines (Carroll, Maca, Ruppert, 1999)
- New Bayesian spline approach (Berry, Carroll, and Ruppert, 2000)
- Simulation results
- Examples
 - Simulated data
 - Clinical trial of a psychiatric medication

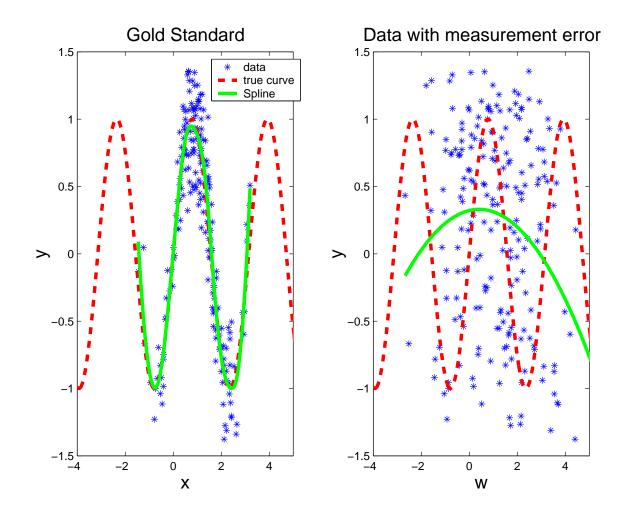
THE PROBLEM OF MEASUREMENT ERROR —

ILLUSTRATION



THE PROBLEM OF MEASUREMENT ERROR —

ILLUSTRATION



THE PROBLEM OF MEASUREMENT ERROR

- We are interested in nonparametric regression when the predictor *X* cannot be observed exactly.
 - The regression model is

$$Y = m(X) + \epsilon$$

where m is only known to be smooth

- Observe

Y and
$$W = X + U$$
,

where

$$* E(U|X) = 0$$

- * var(U|X) = σ_u^2
- * U|X normally distributed
- The normality is not important.
- Measurement error variance σ_u^2 is estimated from internal replicate data. (Observe W_{ij} , $j = 1, ..., n_i$.)

THE PROBLEM OF MEASUREMENT ERROR, CONT.

- Measurement error occurs in a wide variety of problems.
 - Measuring nutrient intake
 - Measuring airborne lead exposure
 - Measuring blood pressure
 - C_{14} dating
- The effects of measurement error are:
 - biased estimates of the regression curve
 - increase in the perceived variability about the regression line.
- Other than the work of Fan and Truong (1993, Annals), there had been little done on nonparametric regression with measurement error until
 - Carroll, Maca, and Ruppert (1999, *Biometrika*) (CMR) and
 - Berry, Carroll, Ruppert (2000, submitted) (BCR) available at www.orie.cornell.edu/~davidr.

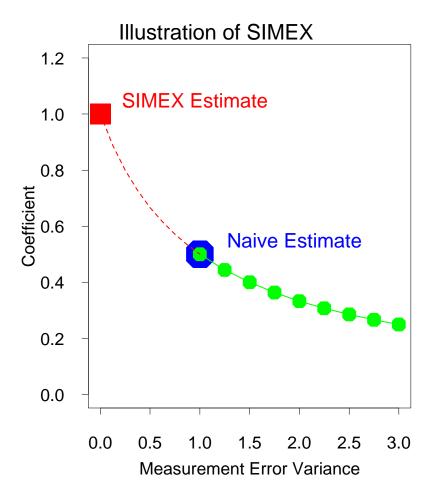
REVIEW OF CURRENT ESTIMATORS

- Globally consistent nonparametric regression by deconvolution kernels (Fan and Truong, 1993, *Annals*)
 - does not work so well
 - * Fan & Truong show very poor asymptotic rates of convergence
 - we have simulations showing poor finite-sample behavior
 - no methodology for bandwidth selection or inference
- Standard measurement error method: SIMEX
 - functional no assumptions on [X]
 - very general can be applied to nearly any measurement error problem, parametric or nonparametric
- Structural Spline
 - Regression splines for basic regression model
 - Mixtures of normals for covariate density model
 - Emphasis is on flexible parametric modeling, not nonparametric modeling. (I believe there is little or no difference in practice.)

SIMEX

- The SIMEX method is due to Cook & Stefanski (1995, *JASA*).
 - The theory is in Carroll, et al. (1996, JASA)
 - Also see Carroll, Ruppert, and Stefanski (1995, Measurement Error in Nonlinear Models)
- SIMEX has been previously applied to parametric problems.
 - makes no assumptions about the true X's. (Functional)
 - results in estimators which are *approximately* consistent,
 - i.e., consistent at least to order $O(\sigma_u^6)$.
- Here is the method, defined via a graph.

SIMEX, ILLUSTRATED



SIMEX

- CMR applied the SIMEX to nonparametric regression.
- CMR have asymptotic theory in the local polynomial regression (LPR) context.
 - The estimators have the usual rates of convergence.
 - They are approximately consistent, to order $O(\sigma_u^6)$.
- An asymptotic theory with rates seems very difficult for splines
 - but, simulations in CMR indicate that SIMEX/splines works a little *better* than SIMEX/kernel
 - problem seems due to undersmoothing
- Staudenmayer (2000, Cornell PhD thesis) is looking at bandwidth selection for SIMEX/LPR.
 - With better bandwidth selection, SIMEX/LPR is competitive with other methods.

- We can estimate E(Y|W) from our data use ordinary smoothing.
- But, this is related to the desired function m(X) by

$$E(Y|W) = E\{m(X)|W\} = \int m(x)f(x|W)dx.$$

 If we had a convenient form for m(X), say m(X; β), and if we knew [X|W], then we could estimate m(X; β) by minimizing over the data

$$\sum_{i=1}^n \left\{ Y_i - \int m(x; \boldsymbol{\beta}) f(x|W_i) \, dx \right\}^2.$$

 similar to regression calibration which uses the approximation

$$\int m(x;\boldsymbol{\beta}) f(x|W_i) \, dx \approx m \left(\int x \, f(x|W_i) \, dx ; \boldsymbol{\beta} \right)$$

- We need two things to make this work:
 - convenient flexible form for $m(x; \beta)$ (must be parametric but flexible enough to be nonparametric for all intents and purposes)
 - convenient flexible distribution for X.

WHAT IF WE HAVE A DISTRIBUTION FOR X?

- Suppose however that we knew [X], and that [U|X] is normal.
 - We in particular know [X|W]!
 - Could we get anywhere?
- Consider regression splines of order J with K knots:

$$E(Y|X) = m(x;\beta) := \sum_{j=0}^{J} \beta_j X^j + \sum_{j=1}^{K} \beta_{j+J} (X - \xi_j)_+^J$$

• The terms $\xi_1, ..., \xi_K$ are knots.

REGRESSION SPLINES

• Recall from the previous slide:

$$E(Y|X) = m(X; \beta) := \sum_{j=0}^{J} \beta_j X^j + \sum_{j=1}^{K} \beta_{j+J} (X - \xi_j)_+^J$$

• If we know [X, U], and therefore [X|W], then in the observed data we have

$$E(Y|W) = E(m(X; \beta)|W)$$

= $\sum_{j=0}^{J} \beta_j E(X^j|W) + \sum_{j=1}^{K} \beta_{j+J} E\{(X - \xi_j)_+^J|W\}$

– This is just a linear model in the β 's !!!!

- There are many methods to fit such splines
- The key remaining issue: the joint distribution of X and U.
 - **CMR** used a mixtures of normals for [X] and Gibbs sampling to estimate the parameters.
 - * This is an extension to measurement error of an idea of Roeder & Wasserman (*JASA*, 1997).

FULLY BAYESIAN MODEL

What's New?

Answer: Fully Bayesian MCMC method

- In BCR
- Uses splines
 - smoothing or penalized
 - P-splines in this talk
- Structural
 - $-X_i$ are iid normal
 - but seems robust to violations of normality
- Smoothing parameter is automatic
- Inference adjusts for the data-based smoothing parameter and for measurement error
 - all automatic

FULLY BAYESIAN MODEL — PARAMETERS

• Regression Model

- $Y_i = m(x_i; \boldsymbol{\beta}) + \epsilon_i$
 - $-m(x_i; \boldsymbol{\beta})$ is a P-spline
 - $-\epsilon_i \text{ iid } N(0, \sigma_{\epsilon}^2)$

• Measurement Error Model

- $W_{ij} = X_i + U_{ij}$ where U_{ij} iid $N(0, \sigma_u^2)$
- Structural Model
 - $X_i \text{ iid } N(\mu_x, \sigma_x^2)$
- Parameters: $\boldsymbol{\beta}, \sigma_e^2, \sigma_u^2, \mu_x, \sigma_x^2$
- Priors
 - β is $N(0, (\gamma \mathbf{K})^{-1})$ where \mathbf{K} is known. [$\alpha := \gamma \sigma_e^2$ is the smoothing parameter.]
 - γ is Gamma (A_{γ}, B_{γ})
 - $-\sigma_e^2$ is Inv-Gamma (A_e, B_e)
 - $-\sigma_u^2$ is Inv-Gamma (A_u, B_u)
 - $-\mu_x$ is $N(d_x,t_x^2)$
 - $-\sigma_x^2$ is Inv-Gamma (A_x, B_x)
- Hyperparameters: $A_e, B_e, A_u, B_u, A_x, B_x, d_x, t_x^2, A_\gamma, B_\gamma$
 - all fixed at values making the priors noninformative * E.g., $t_x^2 = 10^6$.

GIBBS SAMPLING

- Iterate through β , σ_e^2 , σ_u^2 , σ_x^2 , μ_x , γ , X_1 , ..., X_n .
- Generate each one conditional on the current values of the others.
- All steps except one are easy, either gamma, inverse-gamma, or normal

– E.g.,

$$[\boldsymbol{\beta}|$$
other parameters, $\boldsymbol{Y}, \boldsymbol{W}] \sim Normal$
Mean = $(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma\boldsymbol{K})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$
Cov = $\sigma_e^2(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma\boldsymbol{K})^{-1}$.

- * Here X is one of the "other parameters"
- * Essentially we're fitting a spline to the imputed *X*'s and the observed *Y*'s
- * Estimate of β is

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \gamma \boldsymbol{K})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$$

averaged over γ and \boldsymbol{X} .

GIBBS SAMPLING

• The exception to the sampling being quick and easy is that a Metropolis-Hastings step is needed for X_1, \ldots, X_n .

$$[X_i|\mu_x, \sigma_x^2, \boldsymbol{\beta}, \sigma_e^2, \sigma_u^2, \boldsymbol{Y}, \boldsymbol{W}]$$

$$\propto \exp\left(-\frac{1}{2\sigma_u^2} \sum_{j=1}^{m_i} (W_{ij} - X_i)^2 - \frac{1}{2\sigma_e^2} \{Y_i - m(X_i; \boldsymbol{\beta})\}^2 - \frac{1}{2\sigma_x^2} (X_i - \mu_x)^2\right).$$

,

, 、

The six cases were considered. $n_i \equiv 2$ in each case.

Case 1 The regression function is

$$m(x) = \frac{\sin(\pi x/2)}{1 + 2x^2 \{ \operatorname{sign}(x) + 1 \}}.$$

with $n = 100$, $\sigma_{\epsilon}^2 = 0.3^2$, $\sigma_u^2 = 0.8^2$, $\mu_x = 0$ and $\sigma_x^2 = 1$.

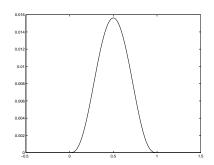
Case 2 Same as Case 1 except n = 200.

Case 3 A modification of Case 1 above except that n = 500.

Case 4 Case 1 of CMR so that

$$m(x) = 1000x_{+}^{3}(1-x)_{+}^{3},$$

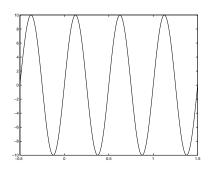
 $x_{+} = xI(x > 0)$, with n = 200, $\sigma_{\epsilon}^{2} = 0.0015^{2}$, $\sigma_{u}^{2} = (3/7)\sigma_{x}^{2}$, $\mu_{x} = 0.5$ and $\sigma_{x}^{2} = 0.25^{2}$.



Case 5 A modification of Case 4 of CMR so that

$$m(x) = 10\,\sin(4\pi x),$$

with n = 500, $\sigma_{\epsilon}^2 = 0.05^2$, $\sigma_u^2 = 0.141^2$, $\mu_x = 0.5$ and $\sigma_x^2 = 0.25^2$.



Case 6 The same as Case 1 above except that *X* is a normalized chi-square(4) random variable. (Tests robustness against violation of the structural assumptions.)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
Method	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Naive	5.59	4.92	5.21	1,108	3,733	4.83
Bayes	0.78	0.38	1.04	17.4	468	1.74
Structural, 5 knots	1.38	0.62	0.46	3.7	838	1.47
Structural, 15 knots	1.44	0.60	0.66	3.3	226	1.75
Mean Squared Error ×10 ²						
Method	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Naive	6.91	5.57	5.38	1,155	3,793	5.77
Bayes	2.84	1.56	1.47	195	1,031	2.69
Structural, 5 knots	8.17	3.82	1.73	217	2,032	7.27
Structural, 15 knots	9.90	5.40	1.85	237	799	6.94

Table 1: Results based on 200 Monte Carlo simulations for each case. SIMEX was not included in the table — it was not among the best estimators.

EXAMPLE — SIMULATED

- $Y = \sin(2X) + \epsilon$
- X is N(1,1)
- $\sigma_u = 1$
- $\sigma_e = 0.15$
- *n* = 201
- $n_i = 2$ for all i
- 15 knot quadratic P-splines
- 2,000 iterations of Gibbs. First 667 deleted (burn-in period).

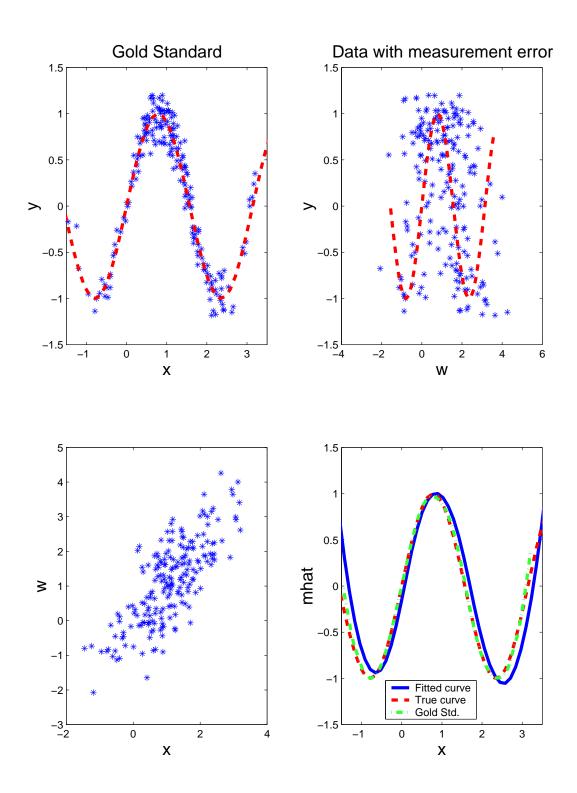


Figure 1: Simulated Data.

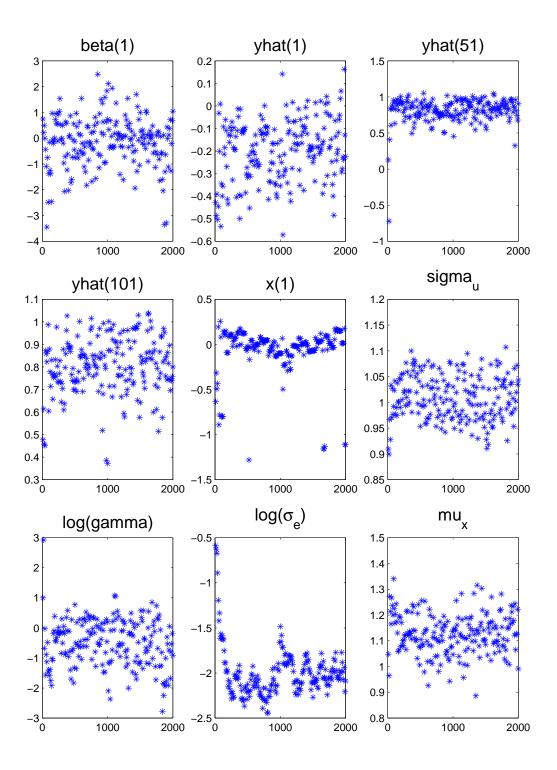


Figure 2: Simulated Data. Results of Gibbs Sampling. Every twentieth iteration plotted. Note: X(1) = -1.5 and $\overline{W}(1) = -0.8$. Also, $\log(\sigma_e) = -1.9$.

EXAMPLE — SIMULATED

What does the Bayes approach work so well? Here's my explanation:

Bayes uses all possible information to estimate X and, especially, m(X).

•
$$\|m(X) - E\{m(X)|\mathbf{W}, \mathbf{Y}, \text{other param.}\}\|$$

 $\approx \|m(X) - \operatorname{ave}\{m(\widehat{X})\}\| = 2.47$

•
$$\|m(X) - m(E\{X|\mathbf{W}, \mathbf{Y}, \text{other param.}\})\|$$

 $\approx \left\| m(X) - m(\operatorname{ave}\{\widehat{X}\}) \right\| = 4.67$

•
$$\left\| m(X) - m(E(X|\overline{W})) \right\| = 10.25$$

•
$$\left\| m(X) - m(\overline{W}) \right\| = 12.36$$

EXAMPLE — CLINICAL TRIAL

- Study of a psychiatric medication.
- Treatment and control group.
- Evaluation at baseline (W) and at end of study (Y).
 - smaller values \rightarrow more severe disease
 - scale is a combination of self-report and clinical interview so there is considerable measurement error
 - it is believe that $\sigma_u^2 \approx 0.35$.
- We are interested in $\Delta(X) := m(X) X = E(Y W|X)$.
- Preliminary Wilcoxon test found a highly significant treatment effect.
- Question: How does the treatment effect depend upon the baseline value?

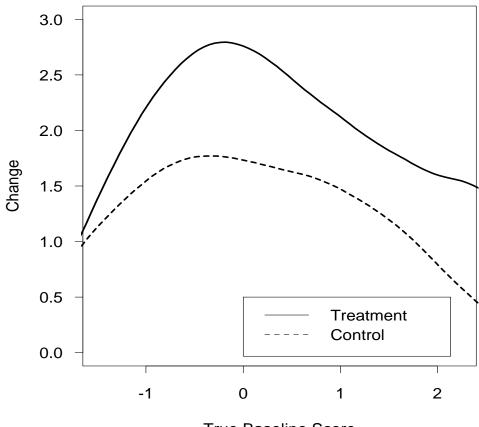




Figure 3: Estimate of the function $\Delta(x) = m(x) - x$ for the control group and the treatment group in the example. (Note: Positive change is an improvement.)

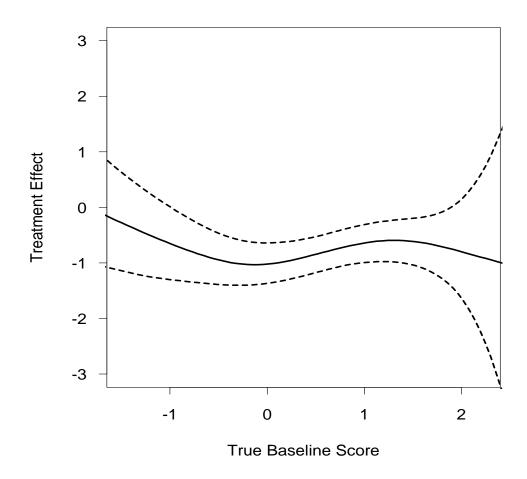


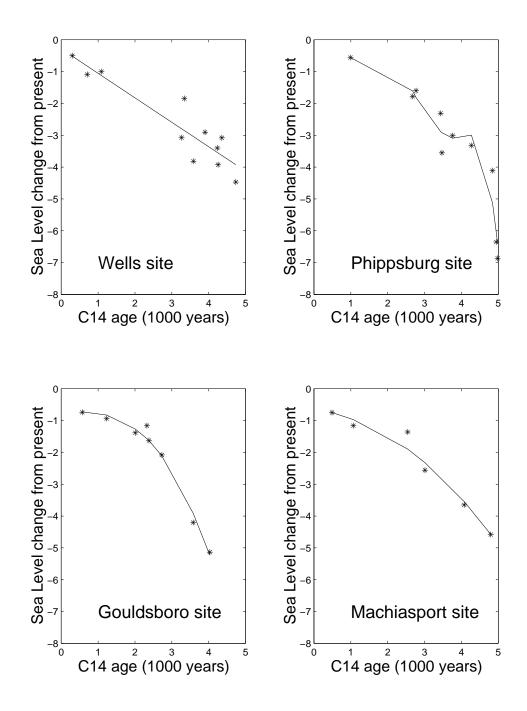
Figure 4: Estimate (solid) of the **difference** of the function $\Delta(x) = m(x) - x$ **between the treatment group and the control group** in the example (controltreatment) with 90% pointwise credible intervals (dashed).

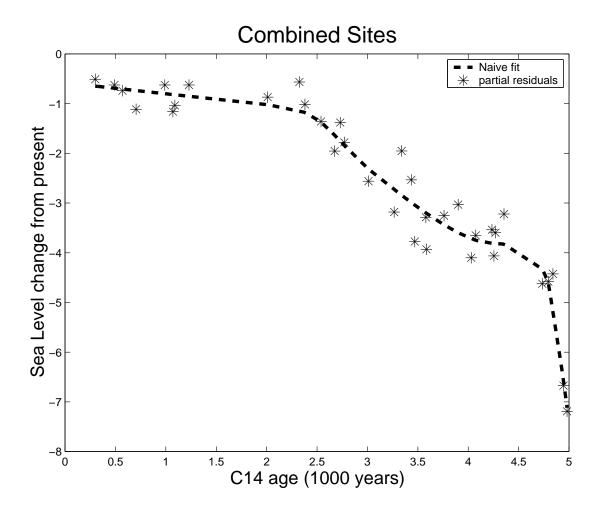
EXAMPLE - ¹⁴C DATING AND SEALEVEL

- Core samples taken from four salt marshes in Maine
- X = true age (or true C₁₄ age?) of sample
- Only one *W* measured per core sample, but there is a standard deviation also report.
- Y = sea level as determined by micro fossils in sample
 - expressed as a deviation from present
- Preliminary data analysis suggests:
 - Nonlinear X Y relationship
 - Site effects, which might be modeled as linear:

$$Y = m(X) + \sum_{j=1}^{3} \beta_j X * I(\text{site} = j) + \epsilon_i.$$

• Methodology can be applied w/o much change.





DISCUSSION

- With the work of **CMR** and **BCR** we now have reasonably efficient estimators for nonparametric regression with measurement error.
 - SIMEX (LPR and splines) in CMR
 - (Flexible) Structural splines in CMR
 - Fully Bayesian (hardcore structural) in **BCR**
- With **BCR** we have a methodology that
 - automatically selects the amount of smoothing
 - estimates the unknown X's
 - allows inference that takes account of the effects of smoothing parameter selection and measurement error
- Most efficient methods appear to be structural, though SIMEX may be competitive
 - hardcore structural methods seem reasonably robust