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OUTLINE

e Statement of problem — nonparametric regression with

measurement error
e Review of the currently available estimators

— deconvolution kernels (Fan & Truong, 1993, Annals)
— SIMEX (Carroll, Maca, Ruppert, 1999, Biometrika)

— structural splines (Carroll, Maca, Ruppert, 1999)

e New Bayesian spline approach (Berry, Carroll, and Rup-
pert, 2000)

e Simulation results

e Examples

— Simulated data

— Clinical trial of a psychiatric medication



THE PROBLEM OF MEASUREMENT ERROR —
ILLUSTRA TION
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THE PROBLEM OF MEASUREMENT ERROR —
ILLUSTRA TION
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THE PROBLEM OF MEASUREMENT ERROR

e We are interested in nonparametric regression when the

predictor X cannot be observed exactly.

— The regression model is
Y=m(X)+e

where m is only known to be smooth
— Observe
Y and W =X + U,
where
x BE(U|X) =0
x var(U|X) = o2
* U] X normally distributed
— The normality is not important.

e Measurement error variance o2 is estimated from internal

replicate data. (Observe W;;, j =1,...,n;.)



THE PROBLEM OF MEASUREMENT ERROR, CONT.

e Measurement error occurs in a wide variety of problems.

— Measuring nutrient intake
— Measuring airborne lead exposure
— Measuring blood pressure

— Cy4 dating
e The effects of measurement error are:

— biased estimates of the regression curve

—increase in the perceived variability about the regres-

sion line.

e Other than the work of Fan and Truong (1993, Annals),
there had been little done on nonparametric regression

with measurement error until

— Carroll, Maca, and Ruppert (1999, Biometrika) (CMR)

and

— Berry, Carroll, Ruppert (2000, submitted) (BCR) — avail-

able at www.orie.cornell.edu/ davidr.



REVIEW OF CURRENT ESTIMATORS

e Globally consistent nonparametric regression by deconvo-
lution kernels (Fan and Truong, 1993, Annals)
— does not work so well

x Fan & Truong show very poor asymptotic rates of
convergence

*x we have simulations showing poor finite-sample be-
havior

— no methodology for bandwidth selection or inference
e Standard measurement error method: SIMEX

— functional — no assumptions on [ X]
— very general — can be applied to nearly any measure-
ment error problem, parametric or nonparametric

e Structural Spline

— Regression splines for basic regression model
— Mixtures of normals for covariate density model

— Emphasis is on flexible parametric modeling, not non-
parametric modeling. (I believe there is little or no dif-
ference in practice.)



SIMEX

e The SIMEX method is due to Cook & Stefanski (1995,
JASA).
— The theory is in Carroll, et al. (1996, JASA)
— Also see Carroll, Ruppert, and Stefanski (1995, Mea-

surement Error in Nonlinear Models)

e SIMEX has been previously applied to parametric prob-

lems.

— makes no assumptions about the true X's. (Functional)

— results in estimators which are approximately consistent,

i.e., consistent at least to order O(o?).

e Here is the method, defined via a graph.



SIMEX, ILLUSTRA TED
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SIMEX

e CMR applied the SIMEX to nonparametric regression.

e CMR have asymptotic theory in the local polynomial re-

gression (LPR) context.

— The estimators have the usual rates of convergence.

— They are approximately consistent, to order O(c?9).

e An asymptotic theory with rates seems very difficult for

splines

— but, simulations in CMR indicate that SIMEX/splines
works a little better than SIMEX/kernel

— problem seems due to undersmoothing

e Staudenmayer (2000, Cornell PhD thesis) is looking at band-
width selection for SIMEX/LPR.

— With better bandwidth selection, SIMEX/LPR is com-

petitive with other methods.
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STRUCTURAL MODELING

e We can estimate E(Y|W) from our data — use ordinary

smoothing.

e But, this is related to the desired function m(X) by
EY|W)=E{m(X)|W} = [ m(z)f(z|W)dz

e If we had a convenient form for m(X), say m(X; 3), and if
we knew [X|W], then we could estimate m(X;3) by mini-

mizing over the data

{Y /mx,@ |W)dx} :

’L_

— similar to regression calibration which uses the approx-
imation
/mx,@ z|W;) dx =~ m (/xf z|W;) da:,B)
e \We need two things to make this work:

— convenient flexible form for m(z; 3) (must be parametric
but flexible enough to be nonparametric for all intents

and purposes)

— convenient flexible distribution for X.
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WHAT IF WE HAVE A DISTRIBUTION FOR X?

e Suppose however that we knew [ X], and that [U|X] is nor-

mal.
— We in particular know [ X |[W]!
— Could we get anywhere?

e Consider regression splines of order J with K knots:

E(Y|X) = m(z; ) = i B;X7 + § Bies(X — &)’

e The terms &, ..., £k are knots.
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REGRESSIONSPLINES

e Recall from the previous slide:

B(Y|X) = m(X:B) = % X0 + % f.s(X - &)

e If we know [X, U], and therefore [X|W], then in the ob-

served data we have

EY|W) = E(m(X;8)|W)
= £ BEXIW) + 2 s B{X - §)4IW)
— This is just a linear model in the §’s !l
— There are many methods to fit such splines

e The key remaining issue: the joint distribution of X and U.

— CMR used a mixtures of normals for [ X] and Gibbs

sampling to estimate the parameters.

* This is an extension to measurement error of an idea
of Roeder & Wasserman (JASA, 1997).
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FULLY BAYESIAN MODEL

What's New?
Answer: Fully Bayesian MCMC method

e In BCR

e Uses splines

— smoothing or penalized

— P-splines in this talk
e Structural

— X, are iid normal

— but seems robust to violations of normality

e Smoothing parameter is automatic

¢ Inference adjusts for the data-based smoothing parameter

and for measurement error

— all automatic
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FULLY BAYESIAN MODEL — PARAMETERS

e RegressionModel
Yi=m(z;;8) + €
—m(z;; B) is a P-spline
—¢; iid N(0,0?)
e MeasurementErr or Model
Wi; = X; + U;; where Uy; iid N(0,02)
e Structural Model
X, iid N(pz, 02)
e Parameters: 3,02, 02, ju, 02
e Priors
—Bis N(0,(vK)~!) where K is known. [a == vo? is the
smoothing parameter.]
—~ is Gamma(A,, B,)
— o2 is Inv-Gamma(A,, B)
— o2 is Inv-Gamma(A,, B,)
— ptg 1S N(dy, t323)
— o2 is Inv-Gamma(A,, B,)
e Hyperparameters A, B., Ay, By, Az, By, d;, t5, A, B,

— all fixed at values making the priors noninformative
x E.g., t2 = 105,
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GIBBS SAMPLING

e Iterate through B, 02,02, 02, tiz, v, X1, . .., Xp.

e Generate each one conditional on the current values of the

others.

e All steps except one are easy, either gamma, inverse-gamma,

or normal
— E.gQ.,
[B|otherparametersy”, W] ~ Normal
Mean = (X' X +vK)'X'Y
Cov = O'S(XTX +yK)™
x Here X is one of the “other parameters”

x Essentially we're fitting a spline to the imputed X's

and the observed Y's

x Estimate of 3 is
(X'X +vyK)'X'Y
averaged over v and X.
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GIBBS SAMPLING

e The exception to the sampling being quick and easy is that

a Metropolis-Hastings step is needed for X3, ..., X,,.

[X|IU’ZL‘7 1;7/870 0 YW]

1 ™
X €Xp<—gj§ (WZ] — XZ)Q
1
(X58)} - 207 (X — 1)),
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SIMULA TIONS

The six cases were considered. n; = 2 in each case.

Casel The regression function is

m(z) = sin (7 /2)
1 + 222{sign(z) + 1}

with n = 100, 02 = 0.32, 02 = 0.8%, y, = 0 and o2 = 1.

Case2 Same as Case 1 except n = 200.

Case3 A madification of Case 1 above except that n = 500.

18



Case4 Case 1 of CMR so that
m(z) = 100023 (1 — 1),

zy = zI(z > 0), with n = 200, o2 = 0.0015%, o2 = (3/7)02,
pz = 0.5 and o2 = 0.25°.

Case5 A modification of Case 4 of CMR so that
m(z) = 10 sin(47x),

with n = 500, o? = 0.05%, 02 = 0.1412, pu, = 0.5 and o2 =
0.252.

|

Case6 The same as Case 1 above except that X is a nor-
malized chi-square(4) random variable. (Tests robustness
against violation of the structural assumptions.)
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Mean Squared Bias x 102

Method Casel Case?2 Case3 Case4 Caseb Casedb
Naive 559 492 521 1,108 3,733 4.83
Bayes 0.78 038 1.04 174 468 1.74

Structural 5 knots 1.38 0.62 0.46 3.7 838 1.47
Structural15knots| 1.44 0.60 0.66 3.3 226 1.75

Mean Squared Err or x 102

Method Casel Case?2 Case3 Case4 Caseb Casedb
Naive 691 557 538 1,155 3,793 5.77
Bayes 2.84 1.56 1.47 195 1,031 2.69

Structural5knots | 8.17 3.82 1.73 217 2,032 7.27
Structural15knots| 990 540 1.85 237 799 6.94

Table1: Resultshasedon 200 Monte Carlosimulationsfor eachcase.SIMEX was

notincludedin thetable— it wasnotamongthe bestestimators.
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EXAMPLE — SIMULATED

oY =sin(2X) +e¢

e X is N(1,1)
o0, =1

o0, =0.15

o n = 201

on,=2foralls
e 15 knot quadratic P-splines

e 2,000 iterations of Gibbs. First 667 deleted (burn-in pe-
riod).
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Gold Standard Data with measurement error
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EXAMPLE — SIMULATED

What does the Bayes approach work so well? Here’'s my ex-
planation:
Bayes uses all possible information to estimate X and,
especially, m(X).
o |m(X) — E{m(X)|W,Y, otherparam}|
~ Hm(X) — ave{m(X\)}H = 2.47
o |m(X) — m(E{X|W,Y, otherparam})|
R~ Hm(X) — m(ave{j(\})H = 4.67

o |m(X) — m(E(X|W))| = 10.25

o |m(X) — m(W)| = 12.36
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EXAMPLE — CLINICAL TRIAL

e Study of a psychiatric medication.
e Treatment and control group.

e Evaluation at baseline (1) and at end of study (Y).

— smaller values — more severe disease

— scale is a combination of self-report and clinical inter-

view so there is considerable measurement error

— it is believe that o2 ~ 0.35.
e We are interested in A(X) :=m(X) — X = E(Y — W|X).

e Preliminary Wilcoxon test found a highly significant treat-

ment effect.

e Question: How does the treatment effect depend upon the

baseline value?
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Figure3: Estimateof the function A(z) = m(z) — = for the controlgroupandthe

treatmengroupin theexample.(Note: Positve changeas animprovement.)
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Treatment Effect

True Baseline Score

Figure 4: Estimate(solid) of the differenceof the function A(z) = m(z) — =
betweenthe treatmentgroup and the control group in the example(control-

treatmentWwith 90% pointwisecredibleintervals (dashed).
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EXAMPLE - 'C DATING AND SEALEVEL

e Core samples taken from four salt marshes in Maine
e X = true age (or true C,4 age?) of sample

e Only one W measured per core sample, but there is a

standard deviation also report.

e Y = sea level as determined by micro fossils in sample

— expressed as a deviation from present
e Preliminary data analysis suggests:

— Nonlinear X — Y relationship

— Site effects, which might be modeled as linear:

Y =m(X)+ ilﬁjX x I(site= j) +¢;.
=

e Methodology can be applied w/o much change.
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EXAMPLE - 'C DATING AND SEALEVEL
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EXAMPLE - 'C DATING AND SEALEVEL
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DISCUSSION

e With the work of CMR and BCR we now have reasonably
efficient estimators for nonparametric regression with mea-
surement error.

— SIMEX (LPR and splines) — in CMR
— (Flexible) Structural splines — in CMR

— Fully Bayesian (hardcore structural) — in BCR

e With BCR we have a methodology that

— automatically selects the amount of smoothing
— estimates the unknown X'’s

— allows inference that takes account of the effects of

smoothing parameter selection and measurement error

e Most efficient methods appear to be structural, though SIMEX

may be competitive

— hardcore structural methods seem reasonably robust
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