
CHAPTER 9

BAYESIAN METHODS

9.1 Overview

Over the last two decades there has been an “MCMC revolution” in
which Bayesian methods have become a highly popular and effective
tool for the applied statistician. This chapter is a brief introduction to
Bayesian methods and their applications in measurement error problems.
The reader new to Bayesian statistics is referred to the bibliographic
notes at the end of this chapter for further reading.

We will not go into the philosophy of the Bayesian approach, whether
one should be an objective or a subjective Bayesian, and so forth. We
recommend reading Efron (2005), who has a number of amusing com-
ments on the differences between Bayesian and Frequentists, and also
on the differences among Bayesians. Our focus here will be how to for-
mulate measurement error models from the Bayesian perspective, and
how to compute them. For those familiar with Bayesian software such as
WinBUGS, a Bayesian analysis is sometimes relatively straightforward.
Bayesian methods also allow one to use other sources of information, e.g.,
from similar studies, to help estimate parameters that are poorly iden-
tified by the data alone. A disadvantage of Bayesian methods, which is
shared by maximum likelihood, is that, compared to regression calibra-
tion, computation of Bayes estimators is intensive. Another disadvantage
shared by maximum likelihood is that one must specify a full likelihood
and therefore one should investigate whether the estimator is robust to
possible model misspecification.

9.1.1 Problem Formulation

Luckily, Bayesian methods start from a likelihood function, a topic we
have already addressed in Chapter 8, and illustrated with a four-step
approach in Figure 8.1.

In the Bayesian approach, there are five essential steps, see Figure 9.1.

• Step 1: This is the same as the first step in a likelihood approach.
Specifically, one must specify a parametric model for every component
of the data. Any likelihood analysis begins with the model one would
use if X were observable.
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Step 1: Select the likelihood
model as if X were observed

Step 2: Select the error model
and select model for X given Z

Step 3: Form the likelihood
function as if X were observed

Step 4: Select priors

Step 5: Compute complete
conditionals. Perform MCMC

Figure 9.1 Five basic steps in performing a Bayesian analysis of a measure-
ment error problem. If automatic software such as WinBUGS is used, the
complete conditionals, which often require detailed algebra, need not be com-
puted.

• Step 2: This step too agrees with the likelihood approach. The next
crucial decision is the error model that is to be chosen. This could be
a classical error model, a Berkson model, or a combination of the two.
If one has classical components in the measurement error model, then
typically one also needs to specify a distribution for the unobserved
X given the observable covariates Z.

• Step 3: The typical Bayesian approach treats X as missing data,
and, in effect, imputes it multiple times by drawing from the condi-
tional distribution of X given all other variables. Thus, at this step,
the likelihood of all the data, including W, is formed as if X were
available.

• Step 4: In the Bayesian approach, parameters are treated as if they
were random, one of the essential differences with likelihood methods.
If one is going to treat parameters as random, then they need to be
given distributions, called prior distributions. Much of the controversy
among statisticians regarding Bayesian methods revolves around these
prior distributions.

• Step 5: The final step is to compute Bayesian quantities, in particular
the posterior distribution of parameters given all the observed data.
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There are various approaches to doing this, most of them revolving
around Markov Chain Monte Carlo (MCMC) methods, often based
on the Gibbs Sampler. In some problems, such as with WinBUGS,
users do not actually have to do anything but run a program, and
the appropriate posterior quantities become available. In other cases
though, either the standard program is not suitable to the problem,
or the program does not work well, in which case one has to tailor the
approach carefully. This usually involves detailed algebraic calculation
of what are called the complete conditionals, the distribution of the
parameters, and the X values, given everything else in the model. We
give a detailed example of this process in Section 9.4.

9.1.2 Posterior Inference

Bayesian inference is based upon the posterior density, which is the
conditional density of unobserved quantities (the parameters and un-
observed covariates) given the observed data and summarizes all of the
information about the unobservables. For example, the mean, median, or
mode of the posterior density are all suitable point estimators. A region
with probability (1−α) under the posterior is called a “credible set,” and
is a Bayesian analog to a confidence region. To calculate the posterior,
one can take the joint density of the data and parameters and, at least
in principle, integrate out the parameters to get the marginal density of
the data. One can then divide the joint density by this marginal density
to get the posterior density.

There are many “textbook examples” where the posterior can be com-
puted analytically, but in practical applications this is often a non–trivial
problem requiring high-dimensional numerical integration. The compu-
tational problem has been the subject of much recent research. The
method currently receiving the most attention in the literature is the
Gibbs sampler and related methods such as the Metropolis-Hastings al-
gorithm (Hastings, 1970; Geman & Geman, 1984; Gelfand & Smith,
1990).

The Gibbs sampler, which is often called Markov Chain Monte Carlo
(MCMC), generates a Markov chain whose stationary distribution is
the posterior distribution. The key feature of the Gibbs sampler is that
this chain can be simulated using only the joint density of the parame-
ters, the unobserved X-values and the observed data, e.g., the product
of the likelihood and the prior, and not the unknown posterior density
which would require an often intractable integral. If the chain is run
long enough, then the observations in a sample from the chain are ap-
proximately identically distributed with common distribution equal to
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the posterior. Thus posterior moments, the posterior density, and other
posterior quantities can be estimated from a sample from the chain.

The Gibbs sampler “fills-in” or imputes the values of the unobserved
covariates X by sampling from their conditional distribution given the
observed data and the other parameters. This type of imputation differs
from the imputation of regression calibration in two important ways.
First, the Gibbs sampler makes a large number of imputations from the
conditional distribution of X whereas regression calibration uses a single
imputation, namely the conditional expectation of X given W and Z.
Second, the Gibbs sampler conditions on Y as well as W and Z when
imputing values ofX, but regression calibration does not use information
about Y when imputing X.

9.1.3 Bayesian Functional and Structural Models

We made the point in Section 2.1 that our view of functional and struc-
tural modeling is that in the former, we make no or at most few as-
sumptions about the distribution of the unobserved X-values. Chapters
5 and 7 describe methods that are explicitly functional, while regression
calibration is approximately functional.

In contrast, likelihood methods (Chapter 8) and Bayesian methods
necessarily must specify a distribution for X in one way or another, and
here the distinction between functional and structural is blurred. Effec-
tively, structural Bayesian/likelihood modeling imposes a simple model
onX, such as the normal model, while functional methods specify flexible
distributions for X. We use structural models in this chapter. Examples
of this approach are given by Schmid & Rosner (1993), Richardson &
Gilks (1993) and Stephens & Dellaportas (1992).

There are at least several ways to formulate a Bayesian functional
model. One way would allow the distribution of X to depend on the
observation number, i. Müller & Roeder (1997) use this idea for the
case when X is partially observed. They assume that the (Xi,Zi,Wi)
are jointly normally distributed with mean µi and covariance matrix Σi,
where θi = (µi,Σi) is modeled by a Dirichlet process distribution which
itself has unknown hyperparameters. Lindley & El Sayyad (1968) is the
first Bayesian paper on functional models, covering the linear regression
case. Because of their complexity, we do not consider Bayesian functional
models here.

A second possibility intermediate between functional and hard-core
structural approaches is to specify flexible distributions, much as we
suggested in Section 8.2.2. Carroll, Roeder, & Wasserman (1999) and
Richardson, Leblond, Jaussent, & Green (2002) use mixtures of normal
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distributions. Gustafson, Le, & Vallee (2002) use an approach based on
approximating the distribution of X by a discrete distribution.

In this chapter, the Zi’s are treated as fixed constants as we have
done before in non-Bayesian treatments. This makes perfect sense, since
Bayesians only need to treat unknown quantities as random variables.
Thus, the likelihood is the conditional density of the Yi’s,Wi’s, and any
Xi’s that are observed, given the parameters and the Zi’s. The posterior
is the conditional density of the parameters given all data, i.e., the Zi’s,
Yi’s,Wi’s, and any observed Xi’s.

9.1.4 Modularity of Bayesian MCMC

The beauty of the Bayesian paradigm combined with modern MCMC
computing is its tremendous flexibility. The technology is “modular”
in that the methods of handling, e.g., multiplicative error, segmented
regression and the logistic regression risk model can be combined easily.
In effect, if one knows how to handle these problems separately, it is
often rather easy to combine them into a single analysis and program.

9.2 The Gibbs Sampler

As in Chapter 8, especially equation (8.7), the first three steps of our
Bayesian paradigm result in the likelihood computed as ifX were observ-
able. Dropping the second measure T, this likelihood for an individual
observation becomes

f(Y,W,X|Z,Ω) = fY |Z,X(Y|Z,X,B)
×fW |Z,X(W|Z,X, α̃1)fX|Z(X|Z, α̃2),

where Ω is the collection of all unknown parameters. As in the fourth
step of the Bayesian paradigm, we let Ω have a prior distribution π(Ω).
The likelihood of all the ”data” then becomes

π(Ω)

n∏

i=1

f(Yi,Wi,Xi|Zi,Ω).

To keep this section simple, we have not included the possibility of val-
idation data here, but that could be done with only some additional
effort, mostly notational. To keep notation compact, we will write the
ensemble of Y, X, etc. as Ỹ, X̃, etc. This means that the likelihood can
be expressed as

π(Ω)f(Ỹ,W̃, X̃|Z̃,Ω).
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The posterior distribution of Ω is then

f(Ω
∣∣∣Ỹ,W̃, Z̃) =

π(Ω)
∫
f(Ỹ,W̃, x̃|Z̃,Ω)dx̃

∫
π(ω)f(Ỹ,W̃, x̃|Z̃, ω)dx̃dω

. (9.1)

The practical problem is that, even if the integration in x̃ can be ac-
complished or approximated as in Chapter 8, the denominator of (9.1)
may be very difficult to compute. Numerical integration typically fails to
provide an adequate approximation even when there are as few as three
or four components to Ω.

The Gibbs sampler is one solution to the dilemma. The Gibbs sampler
is an iterative, Monte-Carlo method consisting of the following main
steps, starting with initial values of Ω.

• Generate a sample of the unobserved X-values by sampling from their
posterior distributions given the current value of Ω, the posterior dis-
tribution of Xi being

f(Xi|Yi,Wi,Zi,Ω) =
f(Yi,Wi,Xi|Zi,Ω)∫
f(Yi,Wi, x|Zi,Ω)dx

. (9.2)

As we indicate below, this can be done without having to evaluate
the integral in (9.2).

• Generate a new value of Ω from its posterior distribution given the
observed data and the current generated X-values, namely

f(Ω
∣∣∣Ỹ,W̃, Z̃, X̃) =

π(Ω)f(Ỹ,W̃, X̃|Z̃,Ω)∫
π(ω)f(Ỹ,W̃, X̃|Z̃, ω)dω

. (9.3)

Often, this is done one element of Ω at a time, holding the others
fixed (as described below, here too we do not need to compute the
integral). Thus, for example, if the jth value of Ω is ωj , and the other
components of Ω are Ω(−j), then the posterior in question is simply

f(ωj |Ỹ,W̃, Z̃, X̃,Ω(−j)) (9.4)

=
π(ωj ,Ω(−j))f(Ỹ,W̃, X̃|Z̃, ωj ,Ω(−j))∫
π(ω∗j ,Ω(−j))f(Ỹ,W̃, X̃|Z̃, ω∗j ,Ω(−j))dω

∗
j

.

• Repeat this many times. Discard the first few of the generated sam-
ples, the so-called burn-in period.

• Quantities such as the posterior mean and posterior quantiles are es-
timated by the sample mean and quantiles of Ω1,Ω2, . . ., while kernel
density estimates are used to approximate the entire posterior density
or the marginal posterior density of a single parameter or subset of
parameters.
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An important point is that the first two steps do not require that
one evaluates the integral in the denominator on the right hand sides of
(9.2), (9.3) and (9.4).

Generating pseudo random observations from (9.4) is the heart of
the Gibbs sampler. Often the prior on ωj is conditionality conjugate so
that the full conditional for ωj is in the same parametric family as the
prior, e.g., both are normal or both are inverse-gamma; see Section A.3
for a discussion of the inverse-gamma distribution. In such cases, the
denominator of (9.4) can be determined from the form of the posterior
and the integral need not be explicitly calculated.

If we do not have conditional conjugacy, then drawing from the full
conditional of ωj is more difficult. In this situation, we will use a Metro-
polis-Hastings step which will be described soon. The Metropolis-Hast-
ings algorithm does not require that the integral in (9.4) be evaluated.

9.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (MH algorithm) is a very versatile
and flexible tool, and even includes the Gibbs sampler as a special case.
Suppose we want to sample from a certain density, which in applications
to Bayesian statistics is the posterior, and that the density is Cf(·),
where f is known but the normalizing constant C > 0 is difficult to eval-
uate, see for example (9.3). The MH algorithm uses f without knowledge
of C to generate a Markov chain whose stationary distribution is Cf(·).

To simplify the notation, we will subsume the unobserved X into Ω;
this involves no loss of generality since a Bayesian treats all unknown
quantities in the same way. Suppose that the current value of Ω is Ωcurr.
The idea is to generate (see below) a ”candidate” value Ωcand and either
accept it as the new value or reject it and stay with the current value.
Over repeated application, this process results in random variables with
the desired distribution.

Mechanically, one has to have a candidate distribution, which may
depend upon the current value. We write this candidate density as
q(Ωcand|Ωcurr). Gelman, Stern, Carlin, & Rubin (2004) call q(·|·) a “jump-
ing rule” since it may generate the jump from Ωcurr to Ωcand. Thus, a
candidate Ωcand is generated from q(·|Ωcurr). This candidate is accepted
and becomes Ωcurr with probability

r = min

{
1,
f(Ωcand)q(Ωcurr|Ωcand)

f(Ωcurr)q(Ωcand|Ωcurr)

}
. (9.5)

More precisely, a uniform(0,1) random variable V is drawn, and then we
set Ωcurr = Ωcand if V ≤ r.

The popular “random-walk” MH algorithm uses q(Ωcand|Ωcurr) = h(
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Ωcand−Ωcurr) for some probability density h. Often, as in our examples,
h(·) is symmetric so that

r = min

{
1,
f(Ωcand)

f(Ωcurr)

}
. (9.6)

The “Metropolis-Hastings within Gibbs algorithm” uses the MH al-
gorithm at those steps in a Gibbs sampler where the full conditional is
difficult to sample. Suppose sampling ωj is one such step. If we generate
the candidate ωj,cand from h(·−ωj,curr) where h is symmetric and ωj,curr
is the current value of ωj , then r in (9.6) is

r = min

{
1,
f(ωj,cand|Ỹ,W̃, Z̃, ω`,curr for ` 6= j)

f(ωj,curr|Ỹ,W̃, Z̃, ω`,curr for ` 6= j)

}
.

Often, h is a normal density, a heavy-tailed normal mixture, or a t-
density. The scale parameter of this density should be chosen so that
typical values of ωj,cand are neither too close to nor too far from ωj,curr.
If ωj,cand is too close to ωj,curr with high probability, then the MH algo-
rithm takes mostly very small steps and does not move quickly enough. If
ωj,cand is generally too far from ωj,curr, then the probability of acceptance
is small. To get good performance of the Metropolis within Gibbs algo-
rithm, we might use a Normal(0, σ2) proposal density where σ2 is tuned
to the algorithm so that the acceptance probability is between 25% and
50%. Gelman, Carlin, Stern, & Rubin (2004, page 306) state that the op-
timal jumping rule has 44% acceptance in one dimension and about 23%
acceptance probability in high dimensions when the jumping and target
densities have the same shape. To allow for occasional large jumps, one
might instead use a heavy-tailed normal mixture of 90% Normal(0, σ2)
and 10% Normal(0, Lσ2), where L might be 2, 3, 5, or even 10. This
density is very easy to sample from, since we need only generate inde-
pendent Z ∼ Normal(0, 1) and U ∼ [0, 1]. Then we multiply Z by σ or√
Lσ according as U ≤ 0.9 or U > 0.9. The Normal(0, Lσ2) component

gives the mixture heavy tails and allows the sampler to take large steps
occasionally. One can experiment with the value of L to see which gives
the best mixing, that is, the least autocorrelation in the sample.

More information on the Gibbs sampler and the MH algorithm can be
found in Roberts, Gelman, & Gilks (1997), Chib & Greenberg (1995),
Gelman et al. (2004), and in many other books and papers. See Roberts
& Rosenthal (2001) for more discussion about scaling of MH jumping
rules.
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9.4 Linear Regression

In this section, an example is presented where the full conditionals are
all conjugate. For those new to Bayesian computations, we will show
in some detail how the full conditionals can be found. In the following
sections, this example will be modified to models where some, but not
all, full conditionals are conjugate.

Suppose we have a linear regression with a scalar covariateXmeasured
with error and a vector Z of covariates known exactly. Then the first
three steps in Figure 9.1 are as follows. The so–called “outcome model”
for the outcome Y given all of the covariates (observed or not) is

Yi = Normal(Ztiβz +Xiβx, σ
2
ε ). (9.7)

Suppose that we have replicates of the surrogate W for X. Then the
so–called “measurement model” is

Wi,j = Normal(Xi, σ
2
u), j = 1, . . . , ki. (9.8)

Finally, suppose that the “exposure model” for the covariate measured
with error, X, given Z is

Xi = Normal(α0 + Z
t
iαz, σ

2
x). (9.9)

The term “exposure model” comes from epidemiology where X is often
exposure to a toxicant.

For this model it is possible to have conjugate priors for all of the full
conditionals. The prior we will use is that independently

βx = Normal(0, σ2β), βz = Normal(0, σ2βI)

α0 = Normal(0, σ2α), αz = Normal(0, σ2αI),

σ2ε = IG(δε,1, δε,2), σ
2
u = IG(δu,1, δu,2), σ

2
x = IG(δx,1, δx,2).

As discussed in Section A.3, this prior is conjugate for the full condition-
als. Here IG(·, ·) is the inverse gamma density, and the hyperparameters
σβ and σµ are chosen to be “large” and the δ hyperparameters to be
“small” so that the priors are relatively non-informative. In particular,
because σβ and σµ are large, using a mean of zero for the normal priors
should not have much influence on the posterior. See Section A.3 for the
definition of the inverse gamma distribution and discussion about choos-
ing the hyperparameters of an inverse gamma prior. The unknowns in
this model are (βx, βz, σε, σu), (X1, . . . ,Xn), and (α0, αz, σx).

Define

Ci =

(
Zi
Xi

)
, Y = (Y1, ...,Yn)

t, and β =

(
βz
βx

)
.
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The likelihood for a single observation is

f(Yi,Wi,Xi|Zi,Ω) = (2π)−3/2
1

σxσεσ
ki
u

× exp{−
(
Yi −Ct

iβ
)2
/(2σ2ε )} (9.10)

×exp
{
−∑ki

j=1(Wi,j −Xi)
2/(2σ2u)− (Xi − α0 − Ztiαz)2/(2σ2x)

}
.

The joint likelihood is of course the product over index i of the terms
(9.10). The joint density of all observed data and all unknown quantities
(parameters and true X’s for non-validation data) is the product of the
joint likelihood and the joint prior.

In our calculations, we will use the following:

Rule: If for some p-dimensional parameter θ we have

f(θ|others) ∝ exp
{
−
(
θtAθ − 2bθ

)
/2
}

where the constant of proportionality is independent of θ, then f(θ|others)
is Normal(A−1b,A−1).

To find the full conditional for β, we isolate the terms depending on β
in this joint density. We write the full conditional of β given the others
as f(β|others). This gives us

f(β|others) ∝ exp

{
− 1

2σ2ε

n∑

i=1

(Yi −Ct
iβ)

2 − 1

2σ2β
βtβ

}
, (9.11)

where the first term in the exponent comes from the likelihood and the
second comes from the prior. Let C have ith row Ct

i and let ∆ = σ2ε /σ
2
β .

Then (9.11) can be rearranged to

f(β|others) ∝ exp

[
− 1

2σ2ε

{
βt
(
CtC +∆I

)
β + 2CtYβ

}]
, (9.12)

where Y = (Y1, . . . ,Yn)
t. Using the Rule,

f(β|others) = N
({
CtC +∆I

}−1 CtY, σ2ε
(
CtC +∆I

)−1)
(9.13)

Here we see how the Gibbs sampler can avoid the need to calculate
integrals. The normalizing constant in (9.12) can be found from (9.13)
simply by knowing the form of the normal distribution.

Result (9.13) is exactly what we would get without measurement er-
ror, except that for the non-validation data the X’s in C are “filled-in”
rather than known. Therefore, C will vary on each iteration of the Gibbs
sampler. The parameters ∆ and σε will also vary even if there is no
measurement error.
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The full conditional for α = (α0, α
t
z)
t can be found in the same way

as for β. First, analogous to (9.11),

f(α|others) ∝ exp

{
−
∑n

i=1{Xi − (α0 + Z
t
iαz)}2

2σ2x
− αtα

2σ2α

}
.

Let Di = (1 Zti)
t and let D be the matrix with ith row equal to Dt

i . Also,
let η = σ2x/σ

2
α. Then, analogous to (9.13),

f(α|others) = N
{(
DtD + ηI

)−1DtX, σ2x
(
DtD + ηI

)−1}
, (9.14)

where X = (X1, . . . ,Xn)
t.

To find the full conditional for Xi, defineWi =
∑ki

J=1Wi,j/ki. Then

f(Xi|others) ∝ exp
[
−(Yi −Xiβx − Ztiβz)2/(2σ2ε )

]
(9.15)

×exp
{
−(Xi − α0 − Ztiαz)2/(2σ2x)− ki(Wi −Xi)

2/(2σ2u)
}
.

After some algebra and applying the Rule again, f(Xi|others) is seen to
be normal with mean

(Yi − Ztiβz)(βx/σ2ε ) + (α0 + Z
t
iαz)/σ

2
x +Wi/σ

2
W

(β2x/σ
2
ε ) + (1/σ2x) + 1/σ2

W

and variance {
(β2x/σ

2
ε ) + (1/σ2x) + (1/σ2

W
)
}−1

.

Notice that the mean of this full conditional distribution for Xi given
everything else depends on Yi, so that, unlike in regression calibration,
Yi is used for imputation of Xi.

Now we will find the full conditional for σ2ε . Recall that the prior
is IG(δε,1, δε,2), where from Appendix A.3 we know that the IG(α, β)
distribution has mean β/(α − 1) if α > 1 and density proportional to
x−(α+1)exp(−β/x). Isolating the terms depending on σ2ε in the joint
density of the observed data and the unknowns, we have

f(σ2ε |others)

∝ (σ2ε )
−(δε,1+n/2+1) exp

{−δε,2 +− 1
2

∑n
i=1(Yi −Xiβx − Ztiβz)2

σ2ε

}

which implies that

f(σ2ε |others) = IG

[
(δε,1 + n/2),

{
δε,2 + (1/2)

n∑

i=1

(Yi −Xiβx − Ztiβz)2
}]

.

By similar calculations,

f(σ2x|others) ∝ (σ2x)
−(δx,1+n/2+1) exp

{−δx,2 − 1
2

∑n
i=1(Xi − µx)2
σ2x

}
,
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so that

f(σ2x|others) = IG

[
(δx,1 + (n/2)),

{
δx,2 + (1/2)

n∑

i=1

(Xi − µx)2
}]

.

Let MJ =
∑n

i=1 ki/2. Then we have in addition that

f(σ2u|others)

∝ (σ2u)
−(δu,1+MJ+1) exp

{
−δu,2 − 1

2

∑n
i=1

∑ki
j=1(Wi,j −Xi)

2

σ2u

}
,

whence

f(σ2u|others) = IG


(δu,1 +MJ),



δu,2 +

1

2

n∑

i=1

ki∑

j=1

(Wi,j −Xi)
2






 .

The Gibbs sampler requires a starting value for Ω. For βx, βz, and σε,
one can use estimates from the regression of Yi on Zi and Xi (validation
data) or W (non-validation data). Although there will be some bias,
these naive estimators should be in a region of reasonably high posterior
probability and bias should not be a problem since they are being used
only as starting values. We start Xi at Wi. Also, µx and σx can be
started at the sample mean and standard deviation of the starting values
of the Xi’s. The replication data can be used to find an analysis of
variance estimate of σ2u for use as a starting value, see equation (4.3).

9.4.1 Example

We simulated data with the following parameters: n = 200, βt = (β0, βx,
βz) = (1, 0.5, 0.3), αt = (α0, αz) = (1, 0.2), Xi = α0 + αzZi +Vi, where
Vi ∼ Normal(0, σ2x) with σx = 1. The Zi were independent Normal(1, 1),
and since the analysis is conditioned on their values, their mean and
variance are not treated as parameters. Also,

Yi = β0 + βxXi + βzZi + εi, (9.16)

where εi = Normal(0, σ2ε ) with σε = 0.3, and Wi,j = Normal(Xi, σ
2
u),

with σ2u = 1. The observed data are (Yi,Zi,Wi,1,Wi,2).
We used Gibbs sampling with 10,000 iterations after a burn-in period

of 2000 iterations. The prior parameters were σβ = σα = 1000, δε,1 =
3, δε,2 = 1, δx,1 = 3, δx,2 = 1, and δu,1 = 3, δu,2 = 1. As discussed
in Section A.3, the choice of δε,1 = 3 and δε,2 = 1 suggests a prior
guess at σ2ε of δε,2/δε,1 = 1/3 and that the prior has the amount of
information that would be obtained from 2δε,1 = 6 observations. The
same is true of the other δ’s. We experimented with other choices of
these prior parameters, in particular, smaller values of the effective prior
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Figure 9.2 Every 20th iteration of the Gibbs sampler for the linear regression
example.

sample size, and found that the posterior was relatively insensitive to
the priors provided that δε,2 is not too large.

Starting values for the unobserved covariates wereXi =Wi = (Wi,1+
Wi,2)/2. The starting values of the parameters were chosen indepen-
dently: σx, σu, σε ∼ Uniform(0.05, 3). The starting value for β and α
were generated from (9.13) and (9.14).

Figure 9.2 shows every 20th iteration of the Gibbs sampler. These
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are the so-called trace plots that are used to monitor convergence of
the Gibbs sampler, i.e., at convergence, they should have no discernible
pattern. No patterns are observed, and thus the sampler appears to have
mixed well. This subset of the iterations was used to make the plots
clearer; for estimation of posterior means and variance, all iterates were
used. Using all iterates, the sample autocorrelation for βx looks like an
AR(1) process with a first-order autocorrelation of about 0.7. We used a
large number (10,000) of iterations, to reduce the potentially high Monte
Carlo variability due to autocorrelation.

To study the amount of Monte Carlo error from Gibbs sampling and
to see if 10,000 iterations is adequate, the Gibbs sampler was repeated
four more times on the same simulated data set but with new random
starting values for σx, σu, and σε. The averages of the five posterior
means and standard deviations for βx were 0.4836 and 0.0407. The stan-
dard deviation of the five posterior means, which estimates Monte Carlo
error, was only 0.00093. Thus, the Monte Carlo error of the estimated
posterior means was small relative to the posterior variances, and of
course this error was reduced further by averaging the five estimates.
The results for the other parameters were similar.

It is useful to compare this Bayesian analysis to a naive estimate that
ignores measurement error. The naive estimate from regressingYi onWi

and Zi was β̂x = 0.346 with a standard error of 0.0233, so the naive esti-
mator is only about half as variable as the Bayes estimator, but the mean
square error of the naive estimator will be much larger and due almost
entirely to bias. The estimated attenuation was 0.701 and so the bias-
corrected estimate was 0.346/0.701 = 0.494. Ignoring the uncertainty
in the attenuation, the standard error of the bias-corrected estimate is
0.0233/0.701 = 0.0322. This standard error is smaller than the posterior
standard deviation but is certainly an underestimate of variability, and
if we wanted to use the bias-corrected estimator we would want to use
the bootstrap or the sandwich formula to get a better standard error.

In summary, in this example the Bayes estimate of βx is similar to
the naive estimate corrected for attenuation, which coincides with the
regression calibration estimate. The Bayes estimator takes more work
to program but gives a posterior standard deviation that takes into ac-
count uncertainty due to estimating other parameters. The estimator
corrected for attenuation would require bootstrapping or some type of
asymptotic approximation, e.g., the delta-method or the sandwich for-
mula from estimating equations theory, to account for this uncertainty.
However, for linear regression, Bayesian MCMC is a bit of overkill. The
real strength of Bayesian MCMC is the ability to handle more difficult
problems, e.g., segmented regression with multiplicative errors, a prob-
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lem which appears not to have been discussed in the literature but which
can be tackled by MCMC in a straightforward manner; see Section 9.1.4.

9.5 Nonlinear Models

The ideas in Section 9.4 can be generalized to complex regression models
in X.

9.5.1 A General Model

The models we will study are all special case of the following general
outcome model

[Yi|Xi,Zi, β, θ, σε] = Normal{m(Xi,Zi, β, θ), σ
2
ε }, (9.17)

where
m(Xi,Zi, β, θ) = φ(Xi,Zi)

tβ1 + ψ(Xi,Zi, θ)
tβ2 (9.18)

is a linear function in β1, β2 and nonlinear in θ. The functions φ, and
ψ may include nonlinear terms in X and Z as well as interactions
and may be scalar or vector valued. When ψ ≡ 0 particular cases of
model (9.17) include linear and polynomial regression, interaction mod-
els, and multiplicative error models. An example of nonlinear component
is ψ(Xi,Zi, θ) = |Xi−θ|+ that appears in segmented regression with an
unknown break point location. We assume that the other components of
the linear model in Section 9.4 remain unchanged and that Xi is scalar,
though this assumption could easily be relaxed. The unknowns in this
model are (β, θ, σε, σu), (X1, . . . ,Xn), (α0, αz, σx).

In addition to the priors considered in Section 9.4 we consider a general
prior π(θ) for θ and assume that all priors are mutually independent. It
is easy to check that the full conditionals f(α|others), f(σ2x|others) and
f(σ2u|others) are unchanged, and that

f(σ2ε |others) = IG

[
δε,1 + (n/2), δε,2 + (1/2)

n∑

i=1

{Yi −m(Xi,Zi, β, θ)}2
]
.

Denoting by C(θ) the matrix with ith row

Ct
i(θ) = [φ(Xi,Zi), ψ(Xi,Zi, θ)],

letting β = (βt1, β
t
2)
t, and letting ∆ = σ2ε /σ

2
β , the full conditional for β

becomes normal with mean {C(θ)tC(θ) + ∆I}−1 C(θ)tY and covariance

matrix {C(θ)tC(θ) + ∆I}−1.
By grouping together all terms that depend on θ one obtains

f(θ|others) ∝ exp

[
−

n∑

i=1

{Y(1)
i − ψ(Xi,Zi, θ)β2}2

2σ2ε

]
π(θ), (9.19)
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where Y
(1)
i = Yi − φ(Xi,Zi)β1. Since ψ is a nonlinear function in θ

this full conditional is generally not in a known family of distributions
regardless of how π(θ) is chosen. One can update θ using a random walk
MH step using Normal(θ,Bσ2θ) as the proposal density, where B is tuned
to get a moderate acceptance rate.

The full conditional for Xi is

f(Xi|others) ∝ exp
[
−{Yi −m(Xi,Zi, β, θ)}2/(2σ2ε )

]
(9.20)

×exp
{
(Xi − α0 − αzZi)2/(2σ2x) + ki(Wi −Xi)

2/(2σ2u)
]
.

To updateXi, we use a random walk MH step with Normal(Xi, B σ
2
u/ki)

with the “dispersion” factor, B, chosen to provide a reasonable accep-
tance rate.

We now discuss the details of implementation for polynomial, multi-
plicative measurement error, and segmented regression.

9.5.2 Polynomial Regression

A particular case of the outcome model (9.17) is the polynomial regres-
sion in X

Yi = Z
t
iβz +Xiβx,1 + · · ·+Xp

i βx,p + εi, (9.21)

for some p > 1, where εi are independent Normal(0, σ2ε ), obtained by
setting φ(Xi,Zi) = (Zti,Xi, . . . ,X

p
i ) and ψ(Xi,Zi, θ) = 0. The ith row

of C := C(θ) is Ct
i = φ(Xi,Zi) and β = (βtz, βx,1, . . . , βx,p)

t. With this
notation, all full conditionals are as described in Section 9.5.1. In partic-
ular, the full conditional of θ in (9.19) is not necessary because ψ = 0.
In this example, the full conditional for Xi is the only non–standard
distribution and can be obtained as a particular case of (9.20) as

f(Xi|others) ∝ exp
{
−(Yi −Ct

iβ)
2/(2σ2ε )

}
(9.22)

×exp
{
−(Xi − α0 − Ztiαz)2/(2σ2x)− ki(Wi −Xi)

2/(2σ2u)
}
.

The full conditional for Xi is non-standard because Ci contains powers
of Xi.

To illustrate these ideas consider the quadratic regression in X

Yi = β0 + βx,1Xi + βx,2X
2
i + βzZi + εi, (9.23)

with βx,2 = 0.2 and the other parameters unchanged. To update Xi the
proposal density was Normal(Xi, B σ

2
u/ki). After some experimentation,

the “dispersion” factor B was chosen to be 1.5 to get approximately 25%
acceptance. We found that the performance of the Gibbs sampler was
not particularly sensitive to the value of B and B equal to 1 or 2.5 also
worked well.

As in the linear example, we used five runs of the Gibbs sampler, each



NONLINEAR MODELS 221

with 10,000 iterations, and with the same starting value distribution as
before. The posterior means of β0, βx,1, βx,2, and βz were 1.015, 0.493
0.191, and 0.348, close to the true values of the parameters which were
1.0, 0.5, 0.2, and 0.3. In contrast, the naive estimates obtained by fitting
(9.23) with Xi replaced by Wi were 1.18, 0.427, 0.104, and 0.394, so,
in particular, the coefficient of X2 was biased downward by nearly 50%.
The posterior standard deviations were 0.057, 0.056, 0.027, and 0.040,
while the standard errors of the naive estimates were 0.079, 0.052, 0.021,
and 0.049.

9.5.3 Multiplicative Error

We now show that a linear regression model (9.7) with multiplicative
measurement error is a particular case of model (9.17). As discussed in
Section 4.5, this model is relatively common in applications. Indeed, if
X∗
i = log(Xi) andW

∗
i,j = log(Wi,j) then the outcome model becomes

Yi = Z
t
iβz + eX

∗
i βx + εi,

which can be obtained from (9.17) by setting φ(X∗
i ,Zi) = (Zti, e

X∗
i )

and ψ(X∗
i ,Zi, θ) = 0. The ith row of C := C(θ) is Ct

i = φ(X∗
i ,Zi) and

β = (βtz, βx)
t.

We replace the exposure model (9.9) by a lognormal exposure model
where (9.24) holds with Xi replaced by , i.e.,

X∗
i ∼ Normal(α0 + Z

t
iαz, σ

2
x). (9.24)

The measurement model is

[W∗
i,j |Xi] ∼ Normal(X∗

i , σ
2
u), j = 1, . . . , ki, i = 1, . . . , n. (9.25)

With this notation the full conditionals for this model are the same
as in Section 9.5.1. One trivial change is that Xi is replaced everywhere
by X∗

i and the full conditional of θ is not needed because ψ = 0.
To illustrate these ideas we simulated 200 observations with β0 = 1,

βx = 0.3, βz = 0.3, α0 = 0, αz = 0.2, σx = 1, and σu = 1. The Zi
were Normal(−1, 1). We ran the Gibbs sampler with tuning parame-
ter B = 2.5 which gave a 30% acceptance rate. Figure 9.3 shows the
output from one of five runs of the Gibbs sampler. There were 10,500
iterations of which the first 500 were discarded. One can see that β0
and, especially, βx mix more slowly than the other parameters, yet their
mixing seems adequate. In particular, the standard deviation of the five
posterior means for βx was 0.0076 giving a Monte Carlo standard er-
ror of 0.0078/

√
5 = 0.0034. while the posterior standard deviation of

that parameter was 0.0377 about ten times larger than the Monte Carlo
standard error.
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Figure 9.3 Every 20th iteration of the Gibbs sampler for the linear regression
example with multiplicative error.

9.5.4 Segmented Regression

A commonly used regression model is a segmented line, that is, two lines
joined together at a knot. This model can be written as

Yi = Z
t
iβz + βx,1Xi + βx,2(Xi − θ)+ + εi, (9.26)

where we use the notation a+ = min(0, a), θ is the knot, βx,1 is the
slope of Y on X before the knot and βx,2 is the change in this slope at
the knot. An intercept could be included in Ztiβz.

The outcome model (9.26) is a particular case of model (9.17) with
φ(Xi,Zi) = (Zti,Xi) and ψ(Xi,Zi, θ) = (Xi − θ)+. The i

th row of C(θ)
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is Ct
i(θ) = {Zti,Xi, (Xi − θ)+}t and β = (βtz, βx,1, βx,2)

t. With this
notation, all full conditionals are as described in Section 9.5.1.

To illustrate segmented regression with measurement error and un-
known knot location we simulated data with n = 200, J = 2, β0 = 1,
βx = 1, βx,2 = 0.8, βz = 0.1, θ = 1, α0 = 1, αz = 0, σε = 0.15,
σx = 1, and σu = 1. The Zi were Normal(1, 1). Since αz = 1, the Xi

were Normal(1, 1) independently of the Zi.

We ran the Gibbs sampler five times, each with 10,000 iterations.
Starting values for θ were Uniform(0.5, 1.5). In the prior for θ, we used
the Normal(µθ, σ

2
θ) distribution with µθ =W and σθ = 5 s(W) where

s(W) was the sample standard deviation ofW1, . . . ,Wn. This prior was
designed to have high prior probability over the entire range of observed
values of W. In the proposal density for θ, we used B = 0.01. This
value was selected by trial and error and gave an acceptance rate of 36%
and adequate mixing. The posterior mean and standard deviation of θ
were 0.93 and 0.11, respectively. The Monte Carlo standard error of the
posterior mean was only 0.005.

Figure 9.4 reveals how well the Bayesian modeling imputes the Xi and
leads to good estimates of θ. The top, left plot shows the true Xi plotted
with the Yi. The bottom, right plot is similar, except that instead of
the unknown Xi we use the imputed Xi from the 10,000th iteration of
the fifth run of the Gibbs sampler. Notice that the general pattern of X
versus Y is the same for the true and the imputed Xi. In contrast, a plot
of Yi and eitherWi or Ê(Xi|Wi) = (1− λ̂)Wi+ λ̂Wi shows much less

similarity with the (Xi,Yi) plot. Here λ̂ is the estimated attenuation
andW is the mean ofW1, . . . ,Wn.

The plot of the imputed Xi versus Yi shows the existence and lo-
cation of the knot quite clearly, and it is not surprising that θ can be
estimated with reasonably accuracy. Of course, this “feedback” of infor-
mation about the Xi to information about θ works both ways. Accurate
knowledge of θ well helps impute the Xi. One estimates both the Xi and
θ well in this example because their joint posterior has highest probabil-
ity near their true values.

9.6 Logistic Regression

In this section, we assume the same model with nonlinear measurement
error as in Section 9.5 but with a binary outcome. We use the logistic
regression model

log

{
P (Yi = 1|Xi,Zi)

P (Yi = 0|Xi,Zi)

}
= m(Xi,Zi, β, θ)
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Figure 9.4 Segmented regression. Plots of Yi and Xi and three estimator of
Xi. Top left: Y plotted versus the true X. Top right: Y plotted versus the
mean of the replicated W-values. Bottom left: Y plotted versus the regression
calibration estimates of X. Bottom right: Y plotted versus the imputed X in
a single iteration of the Gibbs sampler. Note how the Gibbs sampler more
faithfully reproduces the true X-values.

so the outcome likelihood is proportional to

exp

[
n∑

i=1

Yim(Xi,Zi, β, θ)−
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}]
,

[β, θ|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ)−
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}

−β
tβ

2σ2β

]
π(θ), (9.27)

and

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ)−
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}

+
(Xi − α0 − αzZi)2

σ2x
+

(Wi −Xi)
2

σ2
W

]
. (9.28)

To updateXi we use a random-walk MH step with the same Normal(Xi,
B σ2

W
) proposal density as for polynomial regression. To update β we use
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a random-walk MH step with proposal density N{β, B ′var(β̂)} where

var(β̂) is the covariance matrix of the naive logistic regression estimator
using W in place of X and B′ is another tuning constant. A similar
strategy may be applied to update θ when ψ in (9.18) is not identically
zero.

To illustrate the fitting algorithms for logistic regression with mea-
surement error we simulated data from a quadratic regression similar to
the one in Section 9.5.2 but with a binary response following the logistic
regression model. The intercept β0 was changed to −1 so that there were
roughly equal numbers of 0’s and 1’s among theYi. Also, the sample size
was increased to n = 1500 to ensure reasonable estimation accuracy for
β. Otherwise, the parameters were the same as the example in Section
9.5.2. The tuning parameters in the MH steps were B = B ′ = 1.5. This
gave acceptance rates of about 52% for the Xi and about 28% for β.

Figure 9.5 show the output from one of the five runs of the Gibbs
sampler. The samplers appear to have converged and to have mixed rea-
sonably well. The posterior mean of β was (−1.18, 0.55, 0.24, 0.30) which
can be compared to β = (−1, 0.5, 0.2, 0.3). The posterior standard devi-
ations were (0.13, 0.17, 0.09, 0.06). The Monte Carlo error, as measured
by the between-run standard deviations of the posterior means, was less
than one-tenth as large as the posterior standard deviations.

9.7 Berkson Errors

The Bayesian analysis of Berkson models is similar to, but somewhat
simpler than, the Bayesian analysis of error models. The reason for the
simplicity is that we only need a Berkson error model for [X|W] or
[X|W,Z]. If instead we had an error model [W|X,Z] then, as we have
seen, we would also need a structural model [X|Z].

We will consider nonlinear regression with a continuously distributed
Y first and then logistic regression.

9.7.1 Nonlinear Regression with Berkson Errors

Suppose that we have outcome model (9.17), which for the reader’s con-
venience is

[Yi|Xi,Zi, β, θ, σε] = Normal{m(Xi,Zi, β, θ), σ
2
ε }, (9.29)

but now with Berkson error so that we observeWi where

Xi =Wi +Ui, E(Ui|Zi,Wi) = 0.

Model (9.29) is nonlinear in general, but includes linear models as a
special case. The analysis in Section 9.5.1, which was based upon repli-
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Figure 9.5 Every 20th iteration of the Gibbs sampler for the quadratic logistic
regression example.

cated classical measurement error and a structural model that says that
X|Z ∼ Normal(α0 + αzZ), must be changed slightly because of the
Berkson errors. The only full conditionals that change are for the Xi.
Specifically, equation (9.20), which is

f(Xi|others) ∝ exp
[
−{Yi −m(Xi,Zi, β, θ)}2/(2σ2ε )

]

× exp
{
−(Xi − α0 − αzZi)2/(2σ2x)− ki(Wi −Xi)

2/(2σ2u)
}
,
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is modified to

f(Xi|others) ∝ exp
[
−{Yi −m(Xi,Zi, β, θ)}2/(2σ2ε )

]
(9.30)

× exp
{
−(Wi −Xi)

2/(2σ2u)
]
.

Thus, we see two modifications. The term −(Xi −α0 −αzZi)2/(2σ2x) in
(9.20), which came from the structural assumption, is not needed and
ki(Wi −Xi)

2 is replaced by (Wi −Xi)
2 since there are no replicates in

the Berkson model. That’s it for changes—everything else is the same!
This analysis illustrates a general principle, which may have been ob-

vious to the reader, but should be emphasized. When we have a Berkson
model which gives [X|Z,W], we do not need a model for marginal den-
sity [W] of W— the Wi are observed so that we can condition upon
them. In contrast, if we have a error model for [W|Z,X], we cannot
do a conditional analysis given the Xi since these are unobserved, and
therefore a structural model for [X] or, perhaps, [X|Z] is also needed.

9.7.2 Logistic Regression with Berkson Errors

When errors are Berkson, the analysis of a logistic regression model
described in Section 9.6 changes in a way very similar to the changes
just seen for nonlinear regression. In particular, equation (9.28), which
is

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ)−
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}

+
(Xi − α0 − αzZi)2

σ2x
+

(Wi −Xi)
2

σ2
W

]
,

becomes

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ)−
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}

+
(Wi −Xi)

2

σ2u

]
. (9.31)

As before, the term (Xi−α0−αzZi)2/σ2x in (9.28) came from the struc-
tural model and is not needed for a Berkson analysis andWi is replaced
byWi because there is no replication.

9.7.3 Bronchitis Data

We now continue the analysis of the bronchitis data described in Section
8.7. Recall, that in that section we found that the MLE of the Berk-
son measurement error standard deviation, σu, was zero. Our Bayesian
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Figure 9.6 Munich bronchitis data. Histogram of 1,250,000 samples from the
posterior for σu.

analysis will show that σu is poorly determined by the data. Although
σu is theoretically identifiable, for practical purposes it is not identified.
Gustafson (2005) has an extensive discussion of non-identified models.
He argues in favor of using informative priors on non-identified nuisance
parameters, such as σu here. The following analysis applies Gustafson’s
strategy to σu.

We will use a Uniform (0.025, 0.4) prior for σu. This prior seems rea-
sonable, since σw is 0.72, so the lower limit of the prior implies very little
measurement error. Also, the upper limit is over twice the value, 0.187,
assumed in previous work by Gössi and Küchenhoff (2001). We will use
a Uniform {1.05min(Wi), 0.95max(Wi)} prior for βx,2. This prior is rea-
sonable since βx,2 is a TLV (threshold limiting value) within the range of
the observed data. The prior on β, the vector of all regression coefficient,
is Normal(0, 106I).

There were five MCMC runs, each of 250,000 iterations excluding a
burn-in of 1000 iterations. Figure 9.6 is a histogram of the 1,250,000
values of σ2u from the five runs combined. The posterior is roughly pro-
portional to the likelihood, since there are uniform priors on σu and βx,2
and a very diffuse prior on β. The histogram is monotonically decreas-
ing, in agreement with the MLE of 0 for σu. However, the posterior is
very diffuse and much larger values of σu are plausible under the poste-
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rior. In fact, the posterior mean, standard deviation, 0.025 quantile, and
0.975 quantile of σu were 0.13, 0.098, 0.027, and 0.37, respectively. The
95% credible interval of (0.027, 0.37) is not much different than (0.0344,
0.3906), the interval formed by the 2.5 and 97.5 percentiles of the prior.
Thus, the data provide some, but not much, information about σu.
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Figure 9.7 Trace plots for the Munich bronchitis data.

Figure 9.7 shows trace plots for the first of the five MCMC runs. Trace
plots for the other runs are similar. The mixing for σu is poor, but the
mixing for the other parameters is much better. The poor mixing of σu
was the reason we used 250,000 iterations per run rather than a smaller
value such as 10,000 that was used in previous examples.

We experimented with a Uniform(0, 10) prior for σu and encountered
difficulties. On some runs, the sampler would get stuck at σu = 0 and
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Figure 9.8 Munich bronchitis data. Histogram of 1,250,000 samples from the
posterior for TLV, βx,2.

Xi =Wi for all i. On runs where this problem did not occur the mixing
was very poor for σu and fair to poor for the other parameters. We
conclude that a reasonably informative prior on σu is necessary. However,
fixing σu at a single value, as Gössi and Küchenhoff (2001) have done,
is not necessary.

Figure 9.8 is a histogram of the 1,250,000 value of βx,2 from the com-
bined runs with burn-ins excluded. The posterior mean of βx,2 was 1.28,
very close to the naive of 1.27 found in Section 8.7. This is not surprising
since the simulations in Section 8.7.3 showed that the naive estimator
had only a slight negative bias. The 95% highest posterior density cred-
ible interval was (0.53, 1.73).

9.8 Automatic implementation

Bayesian analysis for complex models with covariates measured with
error needs to be based on carefully constructed prior, full conditional
and proposal distributions combined with critical examination of the
convergence and mixing properties of the Markov Chains. The MAT-
LAB programs used in the previous sections are specially tailored and
optimized to address these issues. However, standard software such as
WinBUGS may prove to be a powerful additional tool in applications
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where many models are explored. We now show how to use WinBUGS
for fitting models introduced in Sections 9.4 and 9.5.

9.8.1 Implementation and simulations in WinBUGS

We describe in detail the implementation of the linear model in Section
9.4 and note only the necessary changes for the more complex mod-
els. The complete commented code presented in Appendix B.8.1 follows
step–by–step the model description in Section 9.4.
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Figure 9.9 Every 20th iteration for the WinBUGS Gibbs sampler for the linear
regression example.

The first for loop specifies the outcome, measurement and exposure
model (9.7), (9.8), and (9.9). Note that Nobservations is the sample
size and that the # sign indicates a comment. The code is structured
and intuitive. For example, the two lines in the outcome model

Y[i]~dnorm(meanY[i],taueps)

meanY[i]<-beta[1]+beta[2]*X[i]+beta[3]*Z[i]

specify that the outcome of the ith subject,Yi, has a normal distribution
with mean mY (i) = β1 + β2Xi + β3Zi and precision parameter τε =
1/σ2ε . It is quite common in Bayesian analysis to specify the normal
distribution in terms of its precision instead of its variance.
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The nested for loop corresponding to the replication model

for (j in 1:Nreplications) {W[i,j]~dnorm(X[i],tauu)}

specifies that, conditional on the unobserved exposure, Xi, of the ith

subject the proxies Wi,j are normally distributed with mean Xi and
precision τu = 1/σ2u. Here Nreplications is the number of replications
and it happened to be the same for all subjects. A different number
of replications could easily be accommodated by replacing the scalar
Nreplications by a vector Nreplications[].

The code corresponding to the measurement error model

X[i]~dnorm(meanX[i],taux)

meanX[i]<-alpha[1]+alpha[2]*Z[i]

specifies that the exposure of the ith subject, Xi, has a normal distribu-
tion with mean α1 + α2Zi and precision parameter τx = 1/σ2x.

The code for prior distributions

tauu~dgamma(3,1)

taueps~dgamma(3,1)

taux~dgamma(3,1)

specifies that the precision parameters τu, τε, τx have independent Gamma
priors with parameters 3 and 1. The dgamma(a,b) notation in WinBUGS
specifies a Gamma distribution with mean a/b and variance a/b2. The
code for prior distributions

for (i in 1:nalphas){alpha[i]~dnorm(0,1.0E-6)}

for (i in 1:nbetas){beta[i]~dnorm(0,1.0E-6)}

specifies that the parameters α1, α2, β1, β2, β3 have independent normal
priors with mean zero and precision 10−6. Here nalphas and nbetas

denote the number of α and β parameters.
The last part of the code contains only definitions of explicit functions

of the model parameters. For example

sigmaeps<-1/sqrt(taueps)

sigmau<-1/sqrt(tauu)

sigmax<-1/sqrt(taux)

define the standard deviations σε = 1/
√
τε, σu = 1/

√
τu and σx = 1/

√
τx

for the outcome, replication and exposure models respectively and

lambda<-tauu/(tauu+taux)

defines the reliability ratio λ = τu/(τu + τx) = σ2x/(σ
2
x + σ2u).

To assess the quality of inference based on the WinBUGS program,
we simulated 2, 000 data sets from the linear model with measurement
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Figure 9.10 Squared error for the Bayes and Naive methods for estimating the
exposure effect βx in the linear model with measurement error in the model
(9.16).

error described in Section 9.4.1. For each data set we used 10, 500 simu-
lations based on the WinBUGS program and we discarded the first 500
simulations as burn in.

Figure 9.9 shows every 20th iteration of the Gibbs sampler for one
data set indicating that the mixing properties are comparable to those
shown in Figure 9.2. However, this is not always the case and Win-
BUGS programs typically need 10 to 100 times more simulations than
expert programs to achieve comparable estimation accuracy. Of course,
the time saved by using WinBUGS instead of writing a program often
compensates for the extra computational time.

Figure 9.10 displays the squared error of the posterior mean of the
exposure effect βx using Bayes and naive estimators for the linear model
with measurement error introduced in Section 9.4. More precisely, for the
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dth data set, d = 1, . . . , 2000, denote by β̂
(B)
x,d the posterior mean of βx

using the WinBUGS program and by β̂
(N)
x,d the MLE of βx in a standard

linear regression where Xi is replaced byWi = (Wi1 +Wi2)/2. Then,

the two boxplots in Figure 9.9 correspond to (β̂
(B)
x,d −βx)2 and (β̂

(N)
x,d −βx)2

respectively.
We also calculated the coverage probabilities of βx by the 90% and

95% equal-tail probability credible intervals obtained from the Bayesian
analysis based on MCMC simulations implemented in WinBUGS. The
true value of the parameter βx was covered for 89.5% and 94.6% of the
data sets by the 90% and 95% credible intervals respectively. In contrast,
the true value of βx was never covered by the 95% confidence interval of
the naive analysis because of its bias.

9.8.2 More complex models

Only minor changes are necessary to fit the quadratic polynomial regres-
sion model in Section 9.5.2. Indeed, the only change is that the specifi-
cation of the mean function of the outcome model becomes

meanY[i]<-beta[1]+beta[2]*X[i]+beta[3]*pow(X[i],2)

+beta[4]*Z[i]

while the number of β parameters in the data nbetas is changed from
3 to 4. Here pow(X[i],2) represents X2

i .
As discussed in Section 9.5.3, the multiplicative measurement error

model is equivalent with an additive measurement error model using a
log exposure scale. This can be achieved by the transformationsW∗

i,j =
log(Wi,j) and X∗

i = log(Xi). From a notational perspective in Win-
BUGS, there is no need to use the X∗

i notation instead of the Xi as long
as the data is transformed accordingly. Therefore, the only necessary
change is that the mean function of the outcome model becomes

meanY[i]<-beta[1]+beta[2]*exp(X[i])+beta[3]*Z[i]

where exp(X[i]) represents eX
∗
i and W[i,j] representsW∗

i,j .
To fit the segmented regression model in Section 9.5.4 one needs to

change the mean function of the outcome model to

meanY[i]<-beta[1]+beta[2]*X[i]

+beta[3]*(X[i]-theta)*step(X[i]-theta)

+beta[4]*Z[i]

where (X[i]-theta)*step(X[i]-theta) represents (Xi − θ)+ because
step(a) in WinBUGS is equal to a if a > 0 and 0 otherwise. One needs
only add the prior for θ
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theta~dnorm(barWbar,prec.theta)

where barWbar represents the average of allWij observations and prec.-

theta represents 1/(25σ2
W
) and are part of the data.

WinBUGS uses a rather inefficient simulation algorithm for fitting
complex measurement error models. This is most probably due to the
sampling scheme which updates one parameter at a time and does not
take advantage of the explicit full conditionals of groups of parameters.
For example, if γ = (γ1, γ2)

t has a full conditional Normal(µγ ,Σγ) with
a very strong posterior correlation it is much more efficient to sample
directly from Normal(µγ ,Σγ) then to sample γ1 given γ2 and the others
and then γ2 given γ1 and the others.

Therefore, the mixing properties of the Markov Chains generated by
WinBUGS should be carefully analyzed using multiple very long chains.
We also found that simple reparameterizations such as centering and
orthogonalization of covariates can substantially improve mixing.

While we encourage development, when feasible, of expert programs
along the lines described in Sections 9.4 and 9.5, WinBUGS can be a
valuable additional tool. The main strengths of WinBUGS are:

1. Flexibility – moderate model changes correspond to simple program
changes.

2. Simplicity – program follows almost literally the statistical model.

3. Robustness – program is less prone to errors.

4. Operability – programs can be called from different environments,
such as R or MATLAB.

The main weakness of WinBUGS is that chains may exhibit very poor
mixing properties when parameters have high posterior correlations.
This problem may be avoided by expert programs through the careful
study of full conditional distributions.

9.9 Cervical Cancer and Herpes

So far in this chapter, we have assumed that a continuously distributed
covariate is measured with error. However, Bayesian analysis is straight-
forward when a discrete covariate is misclassified.

In this section, we continue the analysis given in Section 8.4 of the cer-
vical cancer data discussed in Section 1.6.10. In particular, we continue
the retrospective parameterization in Section 8.4 using αxd = Pr(W =
1|X = x,Y = d) and γd = Pr(X = 1|Y = d), x = 0, 1 and d = 0, 1.

We use beta priors with parameters (axd, bxd) for the α’s and (a∗d, b
∗
d)

for the γ’s, with the α’s and γ’s being mutually independent. If we impose
the constraints, αx0 = αx1 for x = 0, 1, then we have a four-parameter,
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nondifferential measurement error model. The log-odds ratio is related
to the γ’s by

β = log [{γ1/(1− γ1)} / {γ0/(1− γ0)}] .
Thus, the posterior distribution of β can be found via transformation
from the posterior distribution of the γ’s.

If we could observe all the X’s, the joint density of the parameters
and all the data would be proportional to

1∏

x=0

1∏

d=0

[
αaxd−1xd (1− αxd)bxd−1 (9.32)

×
n∏

i=1

{
αWi

xd (1− αxd)1−Wi

}I(Xi=x,Yi=d)
]

×
1∏

d=0

[
γ
a∗d−1
d (1− γd)b

∗
d−1

n∏

i=1

{
γXi

d (1− γd)1−Xi

}I(Yi=d)
]
.

We can use (9.4) and (9.32) to note that the posterior distribution of
γd is a beta distribution with parameters

∑n
i=1XiI(Yi = d) + a∗d and∑n

i=1(1−Xi)I(Yi = d) + b∗d. The posterior distribution of αxd is also a
beta distribution but with parameters

∑n
i=1WiI(Xi = x,Yi = d)+axd

and
∑n

i=1(1−Wi)I(Xi = x,Yi = d)+ bxd. The conditional distribution
of a missing Xi, given the (Wi,Yi) and the parameters, is Bernoulli
with success probability p1i/(p0i + p1i), where

pxi = γxYi
(1− γYi

)
1−x

αWi

xYi
(1− αxYi

)
1−Wi .

Thus, in order to implement the Gibbs sampler, we need to simulate
observations from the Bernoulli and beta distributions, both of which
are easy to do using standard programs, so the Metropolis-Hastings al-
gorithm was not needed.

For nondifferential measurement error, the only difference in these
calculations is that αx0 = αx1 = αx, which have a beta prior with pa-
rameters (ax, bx) and a beta posterior with parameters

∑n
i=1WiI(Xi =

x) + ax and
∑n

i=1(1−Wi)I(Xi = x) + bd.
We used uniform priors throughout, so that axd = bxd = a∗d = b∗d =

1. We ran the Gibbs sampling with an initial burn-in period of 2, 000
simulations, and then recorded every 50th simulation thereafter. The
posterior modes were 0.623 and 0.927, respectively, these being very
close to the maximum likelihood estimates. Note the large difference
between the estimates for d = 1 and for d = 0, indicating the critical
nature of whether or not the error is assumed to be nondifferential.

This example shows the value of validation data—without it, one is
forced to assume nondifferential error and may, unwittingly, reach erro-
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neous conclusions because this assumption does not hold. If at all feasi-
ble, the collection of validation is worth the extra effort and expense.

9.10 Framingham Data

As an illustration, we consider only those males ages 45+ whose choles-
terol values at Exam #3 ranged from 200 to 300, giving a data set of
n = 641 observations. Recall that Y is the indicator of coronary heart
disease. Initial frequentist analysis of this data set showed no evidence
of age or cholesterol effects, so we work only with two covariates, smok-
ing status, Z, and X = log(SBP−50), where SBP is long-term average
systolic blood pressure. The main surrogate W is the measurement of
log(SBP−50) at Exam #3, while the replicate T is log(SBP−50) mea-
sured at Exam #2. Given (Z,X), W and T are assumed independent
and normally distributed with mean X and variance σ2u; σ

2
u = α̃1 in the

general notation of Chapter 8. The distribution of X given Z is assumed
to be normal with mean α0 + αzZ and variance σ2x|z (α̃2 in the general

notation). We also assume that σ2x|z is constant, i.e., independent of Z.

Let Θ = (σ2u, α0, αz, σ
2
x|z).

Previous analysis suggested that the measurement error variance is
less than 50% of the variance of the true long-term SBP given smoking
status. We define ∆ = σ2u/σ

2
x|z to be the ratio of these variances and

assume ∆ ∈ (0, 0.5). Restricting the range here makes sense, and we
would not credit an analysis that suggested that the measurement error
variance is larger than the variance of true long-term SBP given smoking
status.

The Bayesian analysis will be based on the original model, so that Y
given (X,Z) is treated as being logistic with mean

H(β0 + βxX+ βzZ) .

The unknown parameters are (β0, βx, βz, α0, αz, σ
2
x|z, ∆). The first five

of these are given diffuse (noninformative) locally uniform priors, the
next-to-last has a diffuse inverse Gamma prior, the density functions
being proportional to 1/σ2x|z, and ∆ has a uniform prior on the interval
between zero and one half.

We useWinBUGS to implement the Bayesian logistic regression model.
The WinBUGS model together with an R file used for data and output
manipulation are provided as part of the software files for this book.

Mixing was very good for βz, α0, αz, σ
2
x|z, σ

2
u and λ. For these pa-

rameters 1, 000 burn-in and 10, 000 simulations were enough for accurate
estimation. However, the chains corresponding to β0 and βx were mixing
very slowly and we ran 310, 000 iterations of the Gibbs algorithm and
discarded the first 10, 000 as burn-in. Figure 9.11 displays every 600th
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Figure 9.11 Every 600th iteration of the Gibbs sampler for Framingham ex-
ample.

iteration for the model parameters with similar, but less clear patterns,
for the un–thinned chains.

Table 9.1 compares the inference results for the maximum likelihood
analysis based on the regression calibration approximation with the
Bayesian inference based on Gibbs sampling. Clearly, the two types of
inferences agree reasonably closely on most parameters. The Bayesian
analysis estimates an 8.5% higher effect of SBP βx = 1.91 for Gibbs sam-
pling compared to βx = 1.76 for Maximum Likelihood, but the difference
is small relative to the standard errors. Results in Table 9.1 are similar
to the likelihood and regression calibration results given in Section 8.5,
and the differences are easily due to our use here of only 641 out of the
1,615 subjects analyzed in Section 8.5.

9.11 OPEN Data: A Variance Components Model

The OPEN Study was introduced in Section 1.2 and Section 1.5, see
Subar, Kipnis, Troiano, et al. (2003) and Kipnis, Midthune, Freedman,
et al. (2003)indexsLongitudinal data. Briefly, each participant completed
up to two food frequency questionnaires (FFQ) which measured reported
Protein intake, and also up to two biomarkers for Protein intake (urinary
nitrogen). Letting Y denote the logarithm of the FFQ,W the logarithm
of the biomarker and X the logarithm of usual intake, the variance com-
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Parameter ML. Boot. Bayes Bayes
est. se p. mean p. std.

β0 −10.10 2.400 −10.78 2.542
βx 1.76 0.540 1.91 0.562
βz 0.38 0.310 0.40 0.302
α0 4.42 0.019 4.42 0.019
10× αz −0.19 0.210 −0.20 0.217
10× σ2x|z 0.47 0.033 0.51 0.032

10× σ2u 0.14 0.011 0.16 0.008
λ 0.30 0.031 0.28 0.025

Table 9.1 Framingham data. The effects of SBP and smoking are given by
βx and βz, respectively. The measurement error variance is σ2u. The mean
of long-term SBP given smoking status is linear with intercept α0, slope αz
and variance σ2x|z. Also, λ = σ2u/σ

2
x|z. “ML” = maximum likelihood, “se” =

standard error, “Boot.” = bootstrap, “Bayes” =Bayesian inference based on
Gibbs sampling implemented in WinBUGS, “p. mean” = posterior mean, and
“p. std” = posterior standard deviation.
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Figure 9.12 Results of the OPEN Study for Protein intake for females. Plotted
is the posterior density of the attenuation λ, defined in this case as the slope
of the regression of true intake on a single food frequency questionnaire. The
posterior mean is 0.13, with 95% credible interval [0.04, 0.21], roughly in line
with results reported previously.
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ponents model used is

Yij = β0 + βxXi + ri + εij , (9.33)

Wij = Xij + Uij ,

where εij = Normal(0, σ2ε ), Uij = Normal(0, σ2u) and ri = Normal(0, σ2r):
the terms ri is a person-specific bias or equation error, see Section 1.5.
In Chapter 11, we note that (9.33) is a linear mixed model with repeated
measures. We used a subset of the women in the OPEN study for this
analysisindexsLongitudinal data.

The purpose of the OPEN study was to investigate the properties
of the FFQ for use in large cohort studies. In regression calibration,
Chapter 4, in a cohort study we use the regression of usual intake on the
FFQ as the predictor of disease outcome. The slope of this regression is
simply

λregcal = cov(Q,X)/var(Q).

Kipnis, Subar, Midthune, et al. (2003) describe λregcal as the attenuation
factor and note that the regression calibration approximation says that
if the true relative risk is R, then the observed relative risk from the use
of the FFQ will be Rλregcal . For example, a true relative risk of 2 would
appear as 2.4 = 1.32 if the attenuation factor were 0.4 and as 2.2 = 1.15
if the attenuation factor were 0.2. It is thus of considerable interest to
estimate λregcal. The WinBUGS code along with the prior distributions
used is given in Appendix B.8.2.

We plot the posterior density of λregcal in Figure 9.12. The posterior
mean is 0.13, with 95% credible interval [0.04, 0.21], roughly in line with
results reported by Kipnis, Subar, Midthune, et al. (2003). This means
that a true relative risk of 2 for Protein intake will be attenuated to a
relative risk of 20.13 = 1.09 when using the FFQ. As Kipnis, et al. state:
“Our data clearly document the failure of the FFQ to provide a suffi-
ciently accurate report of absolute protein . . . intake to allow detection
of their moderate associations with disease.

Bibliographic Notes

Since the first edition of this book, the literature on Bayesian compu-
tation has exploded. The reader is referred to Gelman, Carlin, Stern, &
Rubin, Gelman, (2004), Carlin & Louis (2000), and Gilks, Richardson, &
Spiegelhalter, (1996) for a thorough introduction. Other important ref-
erences include two classics, Box & Tiao (1973) and Berger (1985). The
latter has an extensive and excellent theoretical treatment. There is also
now a statistical package for Bayesian computation, called WinBUGS:
we will illustrate the use of WinBUGS in this chapter. The literature
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now even includes an excellent book devoted exclusively to the Bayesian
approach to measurement error modeling, especially for categorical data,
see Gustafson (2004).

Good introductions to MCMC are given by Gelman, Carlin, Stern, &
Rubin (2004), Carlin & Louis (2003), and Gilks, Richardson, & Spiegel-
halter (1996).

The mechanics of stopping the Gibbs sampler and whether one should
use one long sequence or a number of shorter sequences are matters of
some controversy and not discussed here; however, we note that Gel-
man & Rubin (1992) and Geyer (1992) give exactly opposite recommen-
dations. There is a large literature on diagnostics for convergence; see
Cowles & Carlin (1996), Polson (1996), Brooks & Gelman (1998), Kass,
Carlin, Gelman, & Neal (1998), and Mengersen, Robert, & Guihenneuc-
Jouyaux (1999). Kass et al. (1998) is an interesting panel discussion of
what is actually done in practice by three Bayesian experts, Carlin, Gel-
man, and Neal: Kass, though also an expert, is the moderator so we do
not learn about his views or experiences. This discussion is quite inter-
esting and well worth reading, unless you are already a Bayesian expert
yourself, and probably even in that case. It seems that the experts do not
use sophisticated convergence diagnostics, because they feel that these
can be misleading. However, they all look at trace plots of various pa-
rameters, such as Figure 9.2. Carlin and Gelman monitor R̂ (Gelman
& Rubin, 1992), which compares the estimated posterior variance from
several chains combined to the average posterior variance from the in-
dividual chains. R̂ close to 1 means that the chains have mixed. Carlin
and Neal also compute autocorrelations of various parameters; high au-
tocorrelations are a sign of slow mixing. Neal also suggests looking at
the log posterior density, which will be neither steadily increasing nor
steadily decreasing if the chain has converged.

Alternatives to the Metropolis-Hastings algorithm have been proposed,
though they seem less used in practice. For example, Smith & Gelfand
(1992) discuss the rejection method and the weighted bootstrap method.
Ritter & Tanner (1992) and references therein discuss ways of drawing
samples from (9.4), including the griddy Gibbs sampler, which effectively
discretizes the components of Ω in a clever way; this can be useful since
sampling from a multinomial distribution is trivial.




